# MANUFACTURE OF FURFURAL



# KAUSHAL KUMAR JAIN MANASHI ROY CHOWDHURY RUPANTAR CHOUDHURY

DEPARTMENT OF CHEMICAL ENGINEERING ASSAM ENGINEERING COLLEGE GUWAHATI – 781013 JULY 2021

## MANUFACTURE OF FURFURAL

## **EIGHT SEMESTER B.E. PROJECT**

Submitted in the partial fulfilment of The Requirement for the Degree of

**BACHELOR OF ENGINEERING** 

in

CHEMICAL ENGINEERING

of

## ASSAM SCEIENCE AND TECHNOLOGY UNIVERSITY

by

KAUSHAL KUMAR JAIN (170610010022)

MANASHI ROY CHOWDHURY (170610010023)

RUPANTAR CHOUDHURY (170610010037)



DEPARTMENT OF CHEMICAL ENGINEERING ASSAM ENGINEERING COLLEGE GUWAHATI – 781013 JULY 2021

# DEPARTMENT OF CHEMICAL ENGINEERING ASSAM ENGINEERING COLLEGE GUWAHATI – 781013

This is to certify that Mr. Kaushal Kumar Jain Roll No. 170610010022, Ms. Manashi Roy Chowdhury Roll No. 170610010023 and Mr. Rupantar Choudhury Roll No. 170610010037 of B.E. 8<sup>th</sup> Semester have jointly carried out the project entitled "MANUFACTURE OF FURFURAL" under my supervision and submitted the report in partial fulfilment of the requirement for the Degree of Bachelor of Engineering in Chemical Engineering of Assam Science and Technology University, which may be accepted.

Date: 30<sup>th</sup> July, 2021

Mr. Souradip Choudhury Assistant Professor

## **ACKNOWLEDGEMENT**

The undersigned would like to express their sincere thanks to **Prof. Pratap Jyoti Handique**, Vice Chancellor, Assam Science and Technology University for having provided them with all the facilities to complete this project.

The undersigned would also like to express their sincere gratitude to **Dr. Atul Bora**, Principal Assam Engineering College for providing an opportunity and necessary facilities in carrying out this project work.

The undersigned is very grateful to **Prof. Runjun Das**, Associate Professor & Head, Department of Chemical Engineering, Assam Engineering College for her constant support and encouragement throughout the course of the project work.

The undersigned would like to express his faithful gratitude to his project supervisor and guide **Mr. Souradip Choudhury**, Guest Faculty, Department of Chemical Engineering, Assam Engineering College for his constant supervision and guidance during the entire period of work and arranging all the possible facilities required during the period.

The undersigned would also like to express their sincere gratitude to all the faculties of Department of Chemical engineering, Assam Engineering College for providing their valuable guidance and suggestion during the period of work.

At last, the undersigned would like to express his deepest gratitude to his parents for their constant support and also to the ALMIGHTY, who installed self-confidence, courage and strength to complete this project work.

KAUSHAL KUMAR JAIN MANASHI ROY CHOWDHURY RUPANTAR CHOUDHURY

#### ABSTRACT

Furfural, one of the principal chemical which acts as a starting reagent to produce several high value-added products. It can be produced from a variety of agricultural waste biomass including sugarcane bagasse, corncobs, oat hulls, wheat brans, rice hulls and sawdust containing polysaccharide hemicellulose (pentosan). The main route for furfural production consists of acid hydrolysis of hemicellulose present in biomass to obtain pentose sugar, which undergoes a dehydration reaction to produce furfural. Due to the presence of an aldehyde group and a conjugated system of double bonds, furfural can participate in several reactions, resulting in formation of a wide range of value-added products. It also acts as an intermediate for synthesizing chemical products such as nylons, lubricants, solvents, adhesives, medicines, and plastics. Furfural is an important renewable, non-petroleum based chemical feedstock. Furfuryl alcohol, a derivative of furfural, by reduction process can be used with phenol, acetone, or urea to make solid resins. Such resins are commonly used in making fibre glass, aircraft components and automotive brakes. Furfuryl alcohol is also used in pharmaceuticals, fungicides, and insecticides. Furfural has several applications such as antacids, fertilizers, plastics, inks, fungicides, nematicides, adhesives and flavouring compounds. This piece of work demonstrates a proposed idea of an industrial furfural manufacturing plant. It explores different characteristic properties of furfural and studies different literatures available to suggest a best suited manufacturing process. It also presents the process description, mass balance and energy balance as well as design calculations of a few equipment used in the proposed industrial manufacturing plant. It also spotlights some of the important applications and uses of furfural.

## **TABLE OF CONTENTS**

| CHA | PTER | NO.     | TITLE PAG                                             | E NO. |
|-----|------|---------|-------------------------------------------------------|-------|
|     |      |         | Certificate                                           | i     |
|     |      |         | Acknowledgment                                        | ii    |
|     |      |         | Table of contents                                     | iii   |
|     |      |         | Table of figures                                      | iv    |
|     |      |         | List of tables                                        | v     |
|     |      |         | Abstract                                              | vi    |
| 1   |      |         | Introduction and Literature Survey                    | 1-8   |
|     | 1.1  |         | Introduction                                          | 1     |
|     |      | 1.1.1   | Uses of furfural                                      | 3     |
|     | 1.2  |         | Literature Survey                                     | 4     |
|     |      | 1.2.1   | Various Industrial Process of Manufacture of Furfural | 4     |
|     |      | 1.2.2   | Various Laboratory Process of Manufacture of Furfural | 5     |
|     |      | 1.2.3   | Acid Catalyzed Hydrolysis of Rice Hull                | 6     |
|     |      | 1.2.3.1 | Furfural Production in two-stage process              | 7     |
|     |      | 1.2.3.2 | Furfural Production in one-stage process              | 7     |
|     |      | 1.2.4   | Dilute Acid Hydrolysis of Lignocellulosics            | 7     |
| 2   |      |         | Process Selection                                     | 9-10  |
| 3   |      |         | Process Description                                   | 11-13 |
|     | 3.1  |         | Production Process of Furfural by Dilute Acid         |       |
|     |      |         | Hydrolysis of Lignocelluloses                         | 11    |
|     |      | 3.1.1   | Raw Materials Used                                    | 11    |
|     |      | 3.1.2   | Process Development Unit (PDU)                        | 11    |

|   |     | 3.1.2.1 | Feed Vessel                                         | 11    |
|---|-----|---------|-----------------------------------------------------|-------|
|   |     | 3.1.2.2 | Steam Injector                                      | 12    |
|   |     | 3.1.2.3 | Shear Valve                                         | 12    |
|   |     | 3.1.2.4 | Acid Injector System                                | 12    |
|   |     | 3.1.2.5 | Tubular Reactor                                     | 12    |
|   |     | 3.1.2.6 | Base Injection System                               | 12    |
|   |     | 3.1.2.7 | Expansion Vessel                                    | 13    |
|   |     | 3.1.2.8 | Distillation Column                                 | 13    |
| 4 |     |         | Flowchart                                           | 14    |
| 5 |     |         | Material Balance                                    | 15-31 |
|   | 5.1 |         | Stage 1: Feed Vessel                                | 17    |
|   | 5.2 |         | Stage 2: Steam-Slurry Mixture                       | 18    |
|   | 5.3 |         | Stage 3: Addition of H <sub>2</sub> SO <sub>4</sub> | 20    |
|   | 5.4 |         | Stage 4: PFR Reactor                                | 23    |
|   | 5.5 |         | Stage 5: Addition of NaOH                           | 24    |
|   | 5.6 |         | Stage 6: Expansion Vessel                           | 26    |
|   | 5.7 |         | Stage 7: Distillation Column                        | 28    |
|   | 5.8 |         | Overall Material Balance                            | 30    |
|   | 5.9 |         | Material Balance Flowchart                          | 31    |
| 6 |     |         | Modified Material Balance                           | 32-37 |
|   | 6.1 |         | Stage 1: Feed Vessel                                | 32    |
|   | 6.2 |         | Stage 2: Steam-Slurry Mixture                       | 33    |
|   | 6.3 |         | Stage 3: Addition of H <sub>2</sub> SO <sub>4</sub> | 33    |
|   | 6.4 |         | Stage 4: PFR Reactor                                | 34    |

| 6.5 |       | Stage 5: Addition of NaOH                           | 34    |
|-----|-------|-----------------------------------------------------|-------|
| 6.6 |       | Stage 6: Expansion Vessel                           | 35    |
| 6.7 |       | Stage 7: Distillation Column                        | 35    |
| 6.8 |       | Overall Modified Material Balance                   | 36    |
| 6.9 |       | Modified Material Balance Flowchart                 | 37    |
|     |       | Energy Balance                                      | 38-62 |
| 7.1 |       | Stage 1: Feed Vessel                                | 41    |
| 7.2 |       | Stage 2: Steam-Slurry Mixture                       | 44    |
| 7.3 |       | Stage 3: Addition of H <sub>2</sub> SO <sub>4</sub> | 45    |
| 7.4 |       | Stage 4: PFR Reactor                                | 47    |
| 7.5 |       | Stage 5: Addition of NaOH                           | 50    |
| 7.6 |       | Stage 6: Expansion Vessel                           | 54    |
| 7.7 |       | Stage 7: Distillation Column                        | 57    |
| 7.8 |       | Energy Balance Flowchart                            | 62    |
|     |       | Design of Equipment                                 | 63-83 |
| 8.1 |       | Design of Distillation Column                       | 63    |
|     | 8.1.1 | Tower Top Temperature Calculation                   | 63    |
|     | 8.1.2 | Tower Bottom Temperature Calculation                | 66    |
|     | 8.1.3 | No. of Stages Calculation                           | 68    |
|     | 8.1.4 | Tower Diameter & Height Calculation                 | 71    |
| 8.2 |       | Design of Storage Tank                              | 77    |
|     |       | Conclusion                                          |       |
|     |       | Reference                                           |       |

## **TABLE OF FIGURES**

| Fig. 1.1 Derivatives of furfural and its application                      | 3  |
|---------------------------------------------------------------------------|----|
| Fig. 4.1 Flowchart of furfural application                                | 14 |
| Fig. 5.1 Material balance over feed vessel                                | 17 |
| Fig. 5.2 Material balance over steam-slurry vessel                        | 19 |
| Fig. 5.3 Material balance due to addition of $H_2SO_4$                    | 20 |
| Fig. 5.4 Material balance over PFR                                        | 23 |
| Fig, 5.5 Material balance due to addition of NaOH                         | 25 |
| Fig. 5.6 Material balance over expansion vessel                           | 27 |
| Fig. 5.7 Material balance over distillation column                        | 29 |
| Fig. 5.8 Overall material balance                                         | 30 |
| Fig. 5.9 Material balance flowchart                                       | 31 |
| Fig. 6.1 Overall modified material balance                                | 36 |
| Fig. 6.2 Modified material balance flowchart                              | 37 |
| Fig. 7.1 Energy balance over feed vessel                                  | 41 |
| Fig. 7.2 Energy balance over steam-slurry mixture                         | 44 |
| Fig. 7.3 Energy balance due to addition of H <sub>2</sub> SO <sub>4</sub> | 45 |
| Fig. 7.4 Energy balance over PFR                                          | 47 |
| Fig. 7.5 Heat of reaction for furfural                                    | 48 |
| Fig. 7.6 Energy balance due to addition of NaOH                           | 51 |
| Fig. 7.7 Heat of reaction for Na <sub>2</sub> SO <sub>4</sub>             | 52 |
| Fig. 7.8 Energy balance over expansion vessel                             | 54 |
| Fig. 7.9 Energy balance over distillation column                          | 57 |
| Fig. 7.10 Energy balance flowchart                                        | 62 |

| Fig. 8.1 Distillation column design        | 77 |
|--------------------------------------------|----|
| Fig. 8.2 Thickness section of storage tank | 83 |
|                                            |    |

## LIST OF TABLES

| Table 1.1 Production of furfural                                                      | 1  |
|---------------------------------------------------------------------------------------|----|
| Table 2.1 Comparison of various production processes of furfural                      | 9  |
| Table 5.1 Biomass composition                                                         | 16 |
| Table 5.2 Chemical composition of biomass constituents                                | 16 |
| Table 5.3 Chemical composition of feed in 100 kg biomass                              | 17 |
| Table 5.4 Material balance over feed vessel                                           | 18 |
| Table 5.5 Material balance over steam-slurry mixture                                  | 20 |
| Table 5.6 Material balance due to addition of H <sub>2</sub> SO <sub>4</sub>          | 22 |
| Table 5.7 Material balance over PFR                                                   | 24 |
| Table 5.8 Material balance due to addition of NaOH                                    | 26 |
| Table 5.9 Material balance over expansion vessel                                      | 28 |
| Table 5.10 Material balance over distillation column                                  | 29 |
| Table 6.1 Modified material balance over feed vessel                                  | 32 |
| Table 6.2 Modified material balance over steam-slurry mixture                         | 33 |
| Table 6.3 Modified material balance due to addition of H <sub>2</sub> SO <sub>4</sub> | 33 |
| Table 6.4 Modified material balance over PFR                                          | 34 |
| Table 6.5 Modified material balance due to addition of NaOH                           | 34 |
| Table 6.6 Modified material balance over expansion vessel                             | 35 |
| Table 6.7 Modified material balance over distillation column                          | 35 |
| Table 7.1 C <sub>P</sub> values of different components                               | 39 |
| Table 7.2 $\Delta_f H$ values of different components                                 | 39 |
| Table 7.3 Latent heat of vaporization of different components                         | 40 |
| Table 7.4 Energy balance over feed vessel                                             | 43 |

| Table 7.5 Energy balance over steam-slurry mixture                            | 45 |
|-------------------------------------------------------------------------------|----|
| Table 7.6 Energy balance due to addition of H <sub>2</sub> SO <sub>4</sub>    | 47 |
| Table 7.7 Energy balance over PFR                                             | 50 |
| Table 7.8 Energy balance due to addition of NaOH                              | 53 |
| Table 7.9 Sensible heat & latent heat of composition for expansion vessel     | 55 |
| Table 7.10 Energy balance over expansion vessel                               | 56 |
| Table 7.11 Sensible heat & latent heat of composition for distillation column | 58 |
| Table 7.12 Energy balance over distillation column                            | 60 |
| Table 8.1 Trial 1                                                             | 64 |
| Table 8.2 Trial 2                                                             | 64 |
| Table 8.3 Trial 3                                                             | 65 |
| Table 8.4 Trial 4                                                             | 65 |
| Table 8.5 Trial 1                                                             | 66 |
| Table 8.6 Trial 2                                                             | 67 |
| Table 8.7 Trial 3                                                             | 67 |
| Table 8.8 Composition table                                                   | 69 |
| Table 8.9 Summary table for thickness section                                 | 82 |

## **CHAPTER 1**

## **INTRODUCTION AND LITERATURE SURVEY**

## **1.1 INTRODUCTION**

Furfural is an organic compound derived from a variety of agricultural byproducts, that includes saw dust, bagasse, corn cubs, etc. Many forms of ligno-cellulosic biomass such as hardwood trees contain raw materials that can be hydrolysed easily to produce pentose sugars such as xylose, arabinose etc. which on further hydrolytic action yields furfural.

It is among the important biobased chemicals in biorefineries. It is a ring-structured heterocyclic aldehyde which is a colorless, oily liquid having odor of almonds which quickly darkens when exposed to air and dissolves readily in most polar organic compound but slightly soluble in either water or alkanes. It is toxic and flammable, and a versatile platform chemical that can be employed to produce green fuel and chemical intermediates. [1]

| Properties       | Specification                                |
|------------------|----------------------------------------------|
| Chemical Formula | C <sub>5</sub> H <sub>4</sub> O <sub>2</sub> |
| Molar Mass       | 96.085 g.mol <sup>-1</sup>                   |
| Appearance       | Colorless Oil                                |
| Odor             | Almond like                                  |
| Density          | 1.1601 g.ml <sup>-1</sup> (20 °C)            |
| Melting Point    | -37 °C (-35 °F; 236 K)                       |
| Boiling Point    | 161.7 °C (324 °F; 435 K)                     |

#### **Table 1.1 Properties of Furfural**

| Solubility in water     | 83 g/L                                      |
|-------------------------|---------------------------------------------|
| Vapor Pressure          | 2 mm Hg (20°C)                              |
| Magnetic susceptibility | -47.1×10 <sup>-6</sup> cm <sup>3</sup> /mol |

Furfural was first discovered in the year 1821 by a German chemist, Johann Wolfgang Döbereiner, who produced a small sample as a byproduct of formic acid synthesis. It was observed that furfural can be obtained from various vegetable substances. In 1840, Scottish chemist, John Stenhouse assigned the empirical formula for furfural to be  $C_5H_4O_2$ . In the year 1845, British chemist, George Fownes proposed the name 'furfurol' but was changed to furfural because of presence of aldehyde and the German chemist, Carl Harries deduced the structure of furfural in 1901. [2]

Furfural has two important functional groups, one being an aldehyde and the other being a conjugated system which helps in various applications. It is generally extracted from pentose, more precisely from xylose.

Furfural is an important renewable, non-petroleum based and chemical feedstock. It undergoes hydrogenation to form furfuryl alcohol which is a chemical intermediate used in the mass production of furan resin prepolymers used in thermostat polymer matrix composite, adhesives, casting resins, cement, etc. It is used as a fungicide, weed killer, can be used as a solvent for lubricating oils, to improve the characteristics of diesel fuel etc. [2]

The acceptance of furfural as a substitute for petrochemicals as a basic material for the production of tetrahydrofuran, furfuryl alcohol resins, and as a biofuel. A high oxygen content of furfural as compared to conventional fuel additives improves combustion and reduces smoke emissions in diesel engines and lowering diesel cost. It is formed by dehydrating five carbon sugars such as xylose and arabinose that can be acquired from the hemi-cellulose fraction of

lignocellulosic biomass. Various chemical reactions such as Grignard reactions and aldol and Knoevenagel condensation can occur in furfural through the aldehyde functional group.

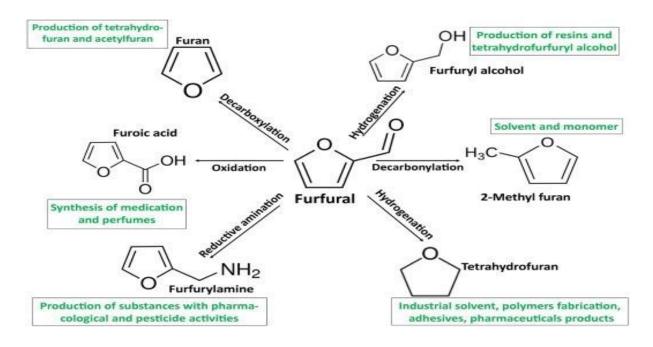



Fig. 1.1 Derivatives of furfural and its application.

Under the economy circle concept, the study of reaction zone in the production of furfural is important because it allows to reduce the excessive use of water, high energy consumption and the formation of decomposition products by reducing the separation costs. Furfural production is exclusively based on the acid-catalyzed conversion of pentosan sugars present in agricultural and forestry residues. [1] [2]

## **1.1.1 USES OF FURFURAL**

Furfural and its derivates has been extensively used in plastics, pharmaceutical and agrochemical industries. Furfural and its derivatives have been widely used as fungicides and nematicides, transportation fuels, gasoline additives, lubricants, resins, decolorization agents, jet fuel blend stocks, drugs, insecticides, bio-plastics, flavour enhancers for food and drinks, rapid oil weather report systems for bomb damaged runways and potholes and also for food modifications and book preservation. [1] [2]

#### **1.2 LITERATURE SURVEY**

Furfural (IUPAC name- 2-furaldehyde) of the fural family, is the source of the other technically important furans. The solubility of furfural is 8.3% at 20 °C and is completely dissolves in alcohol and ether. Its boiling point is 161.7°C. The first commercial production of furfural started in the year 1922. The raw materials used as a feed in the production process are corn cubs, oat hulls, rice husks, bagasse, and saw dust. [2]

#### 1.2.1 VARIOUS INDUSTRIAL PROCESS OF MANUFACTURE OF FURFURAL [1]

(1) Vedernikov developed a single-stage furfural production process based on simultaneous hydrolysis and dehydration of lignocellulosic biomass to furfural in dilute sulphuric acid solution. Because the pentoses formed would spontaneously be converted into furfural, the presence of any other pentoses in the solution would be limited, and so, the occurrence of side reactions and therefore, by-products would be minimal. As such, yield increases marginally (75% in this case). Moreover, biomass cellulose appears to be preserved in this process, which boosts the downstream application of cellulose in the production of other chemicals, such as ethanol. [3]

(2) In the second process, furfural was being manufactured using a novel reactor known as the multi-turbine column (MTC). In this process, the hemi cellulosic pentosans, which is obtained from pre-hydrolysis of straw, is acid hydrolysed first to xylose and simultaneously converted into furfural in one continuous reactor which is a one-step process. In this process, 5 wt.% aqueous solution which contains pentosans was used as feed, which was directly added to the column. Furfural was produced in aqueous phase in the reactor and was transferred into vapour phase. Various additives, such as acids and salts were used to improve yield, and it was observed that the concentration of acid (HCl or  $H_2SO_4$ ) and NaCl affected furfural production. The yield was 83% and the purity was over 99% were obtained under optimal conditions of

0.18 wt.% HCl, 1.7 M NaCl at 200°C. This method had an advantage of minimal formation of by-products such as HMF, acetic acid, and formic acid. As the process is continuous, it features low energy consumption, and therefore seems to be a more appropriate alternative to the conventional batch process. However, the optimal yield is achieved only when dilute solutions (5 wt.%) of pentosans are used. And so, lignocellulosic biomass cannot be directly used in this process. [3]

#### 1.2.2 VARIOUS LABORATORY PROCESS OF MANUFACTURE OF FURFURAL [1]

#### (1) Furfural production in autocatalytic systems:

Biomass is treated at high temperature (200 °C or higher) and pressure in batch systems to produce furfural. In this process, acetic acid is released from hydrolysis of acetyl groups present in the biomass hemicelluloses and acts as a catalyses the reaction. The hemicelluloses are isolated from biomass, depolymerized to pentoses and hexoses, and concurrently the pentoses and hexoses are converted to furfural and HMF respectively. [3]

#### (2) Furfural production in aqueous-acid catalytic systems:

The batch production process was studied using commercial xylose solutions (0.067–0.20 mol/L) as a feedstock and formic acid as the catalyst under different experimental conditions. The xylose conversion rate was increased from 6.2% to 98.2% by increasing temperature from 120 °C to 200 °C was observed. The furfural yield was increased (from 3.0% to 65.4%) by increasing temperature (from 140°C to 200 °C), whereas it decreased with increasing time (from 20 min to 40 min). The selectivity of furfural production varied from 42.3% to 72.7% under different conditions. [3]

#### (3) Furfural production in bi-phasic systems:

In this method, furfural is produced from pentose (mainly xylose) in an aqueous phase, and the formed furfural will spontaneously be transferred from the aqueous phase to organic phase in which the furfural is extracted from the batch. The reaction medium (aqueous phase) containing acid catalysts has a limited concentration of furfural as the furfural is instantaneously transferred as it is formed, which improves the overall yield. The objective of a bi-phasic reaction is to reduce side reactions and to avoid the azeotropic point of the furfural-water mixture, which makes separation difficult.

Furfural and its derivatives have been extensively used in plastics, pharmaceutical and agrochemical industries. Furfural and its derivatives have been widely used as fungicides and nematicides, transportation fuels, gasoline additives, lubricants, resins, decolorizing agents, jet fuel blend stocks, drugs, insecticides, bioplastics, flavor enhancers for food and drinks, rapid all weather report systems for bomb damaged runways and potholes and also for food modification and book preservation. [3]

### 1.2.3 ACID-CATALYZED HYDROLYSIS OF RICE HULL [2]

Furfural production was accomplished initially with the pre-hydrolysis of 10 gm sample in 100 ml of  $3\% \frac{wt}{wt}$  sulfuric acid at different reflux times. After this step, the hydrolyzed product was regulated to 250 ml in 50% sulfuric acid and heated with the help of an electric mantle. During the heating process, furfural was produced by steam distillation. The catalysts, AlCl<sub>3</sub>, ZnCl<sub>2</sub>, ZnO and TiO<sub>2</sub> were obtained commercially and used without any further purification. Zirconium oxide was made by impregnation of alumina with zirconyl chloride and then heated in an oven at 700 °C for an hour. TiO<sub>2</sub> was prepared by percolation of commercial TiO<sub>2</sub> with 1 N H<sub>2</sub>SO<sub>4</sub> heated at 700 °C for an hour. When the experiments were carried out on whole rice

hulls using the optimal conditions of 15%  $H_2SO_4$ , L/S 25 ml/gm, 30 minutes, the yield was about was decreased.

The catalyst used in the reaction acts as Lewis acid and stabilize intermediates in the dehydrocyclization of pentoses. Aluminium chloride appears to be the strongest Lewis acid, but titanium dioxide improves the yield of furfural production. It is further carried out in two different mechanism. [4]

#### **1.2.3.1 FURFURAL PRODUCTION IN TWO-STAGE PROCESS**

In this two-stage process, initially pentoses are separated from lignocellulosic substances in a pre-hydrolysis step. In the second step, dehydration of the sugar molecules takes place. The process was performed in 3% H<sub>2</sub>SO<sub>4</sub> with the sample at different times. A sample without pre-hydrolysis results in low efficiency in yield step. To achieve higher yield, the pre-hydrolysis process is carried put for 30 minutes.

#### **1.2.3.2 FURFURAL PRODUCTION IN ONE-STAGE PROCESS**

In the one-stage process, samples were autoclaved under mild condition to break down the sugar molecules from the lignocellulosic substances. When the reaction takes place in the autoclave, the yield goes up to 3.34 % dry basis at 20 %  $\frac{wt}{wt}$  sulfuric acid. This yield is low as compared to the yield of furfural produced from corn cubs. [5]

#### **1.2.4 DILUTE ACID HYDROLYSIS OF LIGNOCELLULOSICS**

The production of furfural by dilute acid hydrolysis of lignocellulosic materials gives a yield of about 40 - 60 % of the theoretical value in closed systems and it changes to 50 - 80 % when it is rapidly removed from reaction medium. The yield calculations are simple in this system because the amount of biomass used in the feedstock is of known quantity. But, when continuous units are used, the calculations become difficult because the mass flow rate fed to

the reactor is unknown. The operating conditions in the tubular reactor were 6 - 6.6 % slurry consistency, 0.6 % H<sub>2</sub>SO<sub>4</sub> concentration, 200 - 230 °C and residence time is about 95 - 105 seconds. Depending on the operating conditions, reaction temperature and residence time can vary. Reactors used in this process were either autoclaves or continuous reactors. In some special cases, a co-catalyst can also be used (example, sea salt). If high yield is to be achieved, the furfural formed should be separate from the acidic medium. Furfural yield is commonly expressed as a percent of the theoretical value. Therefore, it is important to know the exact quantity of wood introduced into the reactor to get the precise results.

The quantitative analysis of the product formed can be done by high performance liquid chromatography (HPLC) and gas chromatography (GC). [5]

## **CHAPTER 2**

## **PROCESS SELECTION**

During the literature survey, we have come across various processes used in the production of Furfural. In order to choose a particular process for furfural production, the following table gives a comparison between the processes based on reaction conditions such as optimum temperature, residence time, yield of the process and purity of the product obtained. [5]

Table 2.1 Comparison of various production processes of Furfural

| Sl<br>No | Raw<br>Material | Catalyst                                                   | Temperature | Time       | Reactor        | Yield<br>(%) | Reference                      |
|----------|-----------------|------------------------------------------------------------|-------------|------------|----------------|--------------|--------------------------------|
| 1.       | Xylose          | H <sub>2</sub> SO <sub>4</sub> ,1N                         | 300°C       | 1-2<br>sec | PFR            | 60-<br>70    | Medeiros and<br>Burnet 1983    |
|          |                 | H <sub>2</sub> SO <sub>4</sub> +<br>NaCl                   | 230-250°C   | 5-6<br>min | Batch          | 75-<br>83    | Chunguang Rong<br>et. al. 2011 |
| 2.       | Rice Husk       | H <sub>2</sub> SO <sub>4</sub> ,<br>1.6%                   | 180°C       | 2 h        | Autoclave      | 38-<br>49    | Ren Suxia et. Al.<br>2012      |
|          |                 | H <sub>2</sub> SO <sub>4</sub> ,<br>0.5M                   | 185°C       | 2 h        | Autoclave      | 50           | Sharma and<br>Sahgal 1982      |
| 3.       | Bagasse         | H <sub>2</sub> SO <sub>4</sub> ,<br>1:3 ratio<br>with feed | 170-185°C   | 3 h        | Batch          | 45-<br>50    | Leyanis Mesa et<br>al. 2014    |
|          |                 | H <sub>2</sub> SO <sub>4</sub> ,<br>1%                     | 110°C       | 90<br>min  | Batch          | 20-<br>34    | S. K. Uppal et.<br>Al. 2008    |
| 4.       | Hardwood        | H <sub>2</sub> SO <sub>4</sub> +<br>NaOH                   | 200-230°C   | 2<br>min   | Tubular<br>PFR | 40-<br>60    | F. Carrasco 1992               |
|          |                 | H <sub>2</sub> SO <sub>4</sub> ,<br>0.8%                   | 200-230°C   | 2<br>min   | PFR            | 40-<br>55    | Abatzoglou et al.<br>1990      |

From the above comparison table, we can conclude that Furfural production from xylose is economically not viable for industrial use due to its cost factor even though the reaction conditions are highly favorable. Again, with the raw material as bagasse, the reaction time is very high with lower yield that result in its less viability, thus more options can be explored. With rice husk as the feed, high reaction time is a big concern. But when hardwood is used as the raw material, the reaction conditions are better, with relatively cheaper raw material makes it the most viable option. But since hardwood is not feasible due to its availability and other environmental factors, with the same process and same reaction conditions, the raw material is changed to biomass which is a combination of hardwood, bagasse, and rice husk. [5]

## **CHAPTER 3**

## **PROCESS DESCRIPTION**

# 3.1 PRODUCTION PROCESS OF FURFURAL BY DILUTE ACID HYDROLYSIS OF LIGNOCELLULOSES

The acid catalysed hydrolysis of the pentosans and hexosans present in lignocellulose is a heterogeneous reaction where the reactants are in the solid phase and the catalyst in the aqueous phase.

#### **3.1.1 RAW MATERIALS USED:**

The raw material used in this process is a mixture of hardwood, bagasse, rice husk. The mixture was ground and screened up to a mesh size of 0.25mm. Grinding is done as it enhances the accessibility to the lignocellulosic complex and the glycosidic bonds become more accessible to hydrolytic action.

#### **3.1.2 PROCESS DEVELOPMENT UNIT (PDU)**

The acid hydrolysis was performed in a Process Development Unit which comprises of the following components-

#### **3.1.2.1 FEED VESSEL**

A known quantity of biomass is introduced into the feed vessel to complete a proper mass balance with 5% moisture content. Water is being added to the mixture to accomplish a proper uniformity throughout the mixture. [5]

#### **3.1.2.2 STEAM INJECTOR**

The slurry is subjected to direct heating with live steam with the help of an electric boiler. However, steam dilutes the slurry mixture from 9.4% to 6.0- 6.6%. The steam flow rate is necessary to achieve mass balance calculations as well as to calculate the slurry concentration at the starting of the hydrolytic treatment. [5]

#### 3.1.2.3 SHEAR VALVE

The heated slurry from the steam injector is then rapidly pumped at high pressure of about 18-20 MPa with the help of a slurry piston pump. The slurry is then discharged through a homogenizing value to a moderate pressure of 3.5 MPa. [5]

#### **3.1.2.4 ACID INJECTION SYSTEM**

Sulphuric Acid (9-10) % Wt/Wt is added via pump to catalyse the reaction at a flowrate of 40ml/min without being consumed in the reaction. [5]

#### **3.1.2.5 TUBULAR REACTOR**

The reactor made up of stainless-steel coil of inner diameter 1 cm, thickness of 1.1 mm, length 17.2m. Residence time varies from (98-104) sec with a temperature of (200-230) °C. In the reactor, acid hydrolysis takes place which results in solubilization of the biomass and dehydration reaction occurs that finally leads to the formation of furfural. [5]

Reaction involved:

 $(C_5H_8O_4)_n \longrightarrow n C_5H_4O_2 + 2n H_2O$ 

## **3.1.2.6 BASE INJECTION SYSTEM**

An aqueous sodium hydroxide solution ( $8\% \frac{wt}{wt}$ ) is pumped to neutralize the acid catalyst and to instantaneously conclude the hydrolytic reaction. [5] Reaction involved:

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$ 

## **3.1.2.7 EXPANSION VESSEL**

The slurry is then introduced in an expansion vessel at atmospheric pressure which results in flash vaporization which helps to cool down the slurry and separate the volatile products. Apart from water, the condensate includes acetic acid, formic acid, methanol, ethanol, HMF which wholly named as cellulose dehydrating product (CDP). [5]

## **3.1.2.8 DISTILLATION COLUMN**

Finally, from the expansion vessel, the products enter the atmospheric distillation column where the components are separated into distillate and bottom product. The distillate contains maximum amount of water and CDP and less amount of furfural whereas the bottom product comprises maximum amount of furfural in it and less amount of CDP and water. If the purity of furfural in the bottom product is above the required value, it is then passed to a storage tank where it can be stored before it gets transferred to the bottling unit. [5]





## FLOWCHART

**CHAPTER 4** 

## **CHAPTER 5**

## MATERIAL BALANCE

#### OVERALL ASSUMPTIONS:

- 1. There is no loss.
- 2. There is no accumulation of mass.
- 3. Conversion is 90%.
- 4. Conversion of 98% of furfural from liquid to vapor in expansion vessel.
- 5. Separation of 95% of furfural in distillation column.

Basis: 100 kg/hour of biomass and one hour operation.

DATA:

## **Specific Heat Values:**

- 1. The specific heat value for cellulose is,  $C_{P_{Cellulose}} = 1.3388 \text{ KJ/kg-K [6]}$
- 2. The specific heat value for hemicellulose is,  $C_{P_{\text{Hemicellulose}}} = 1.4 \text{ KJ/kg-K}$  [7]
- 3. The specific heat value for lignin with impurities is,  $C_{P_{Lignin}} = 1.10 \text{ KJ/ kg-K}$  [8]
- 4. The specific heat value for water is,  $C_{P_{Water}} = 4.1785 \text{ KJ/ kg-K}$  [9]
- 5. The specific heat value of steam,  $C_{P_{Steam}} = 1.9892 \text{ KJ/kg-K}$  [10]

#### Latent heat of Vaporization:

1. Latent Heat of Vaporization for Water,  $\lambda^{H_2O} = 2250 \text{ KJ/kg}$  [11]

## For steam at 250 °C:

- 1. H = 1164 btu/lb [12]
- 2. h = 218.59 btu/lb [12]
- 3.  $\lambda = (1164 218.59) = 945.41 \text{btu/lb} = \frac{945.41}{0.45} \text{btu/kg}$

## Feed composition:

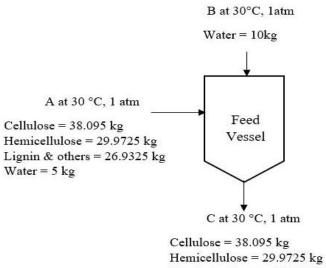
Feed for the process is a biomass consisting of hardwood, bagasse, and rice husks. The percentage of the items in the feed are assumed considering availability and reaction parameters from the comparison table. Moisture content of maximum 5% of the total weight of biomass is allowed.

| Feed Composition | Percentage | Weight (kg) |
|------------------|------------|-------------|
| Hardwood         | 35         | 33.25       |
| Bagasse          | 40         | 38          |
| Rice Husk        | 25         | 23.75       |
| Moisture         | 5          | 5           |

#### **Table 5.1 Biomass composition**

#### **Table 5.2 Chemical composition of biomass constituents**

| Content (kg) | Cellulose  |         | Hemicellulose |        | Lignin & Others |             |
|--------------|------------|---------|---------------|--------|-----------------|-------------|
|              | Percentage | Weight  | Percentage    | Weight | Percentage      | Weight (kg) |
|              |            | (kg)    |               | (kg)   |                 |             |
| Hardwood     | 45         | 14.9625 | 30            | 9.975  | 25              | 8.3125      |
| Bagasse      | 39         | 14.82   | 37            | 14.06  | 24              | 9.12        |


| Rice Husk | 35 | 8.3125 | 25 | 5.9375 | 40 | 9.5 |
|-----------|----|--------|----|--------|----|-----|
|           |    |        |    |        |    |     |

#### Table 5.3 Chemical composition of feed in 100 kg biomass

| Cellulose       | 38.095  |
|-----------------|---------|
| Hemicellulose   | 29.9725 |
| Lignin & others | 26.9325 |
| Water           | 5       |

#### 5.1 STAGE 1: FEED VESSEL

The feed vessel is fed with the raw materials which is a mixture of biomass (cellulose, hemicellulose, lignin, and others) which is stream A and with water (B) to reduce the viscosity.



Hemicellulose = 29.9725 kg Lignin & others = 26.9325 kg Water = 15 kg

#### Fig. 5.1 Material balance over feed vessel.

Mass In:

 $Amount = M_A + M_B$ 

$$= (38.095 + 29.9725 + 26.9325 + 5) + 10$$

= 110 kg

## Mass Out:

Amount =  $M_C$ 

=(38.095 + 29.9725 + 26.9325 + 15)

= 110 kg

## Table 5.4 Material balance over the feed vessel

| Materials            |                      | ]      | Οι     | Output       C |               |              |
|----------------------|----------------------|--------|--------|----------------|---------------|--------------|
|                      | Α                    |        |        |                |               | В            |
|                      | Amount Amount        |        | Amount | Amount Amount  |               | Amount       |
|                      | (kg)                 | (kmol) | (kg)   | (kmol)         | ( <b>kg</b> ) | (kmol)       |
| Cellulose            | 38.095               | 0.235  | -      | -              | 38.095        | 0.235        |
| Hemicellulose        | 29.9725              | 0.173  | -      | -              | 29.9725       | 0.173        |
| Lignin and<br>Others | 26.9325              | 0.0178 | -      | -              | 26.9325       | 0.0178       |
| Water                | 5                    | 0.278  | 10     | 0.555          | 15            | 0.833        |
| Total                | 100                  |        | 10     |                | 110           |              |
|                      | Total Input = 110 kg |        |        |                |               | put = 110 kg |

## 5.2 STAGE 2: STEAM-SLURRY MIXTURE

The output (C) from the feed vessel is sent to a steam-slurry mixture where steam (D) is injected.

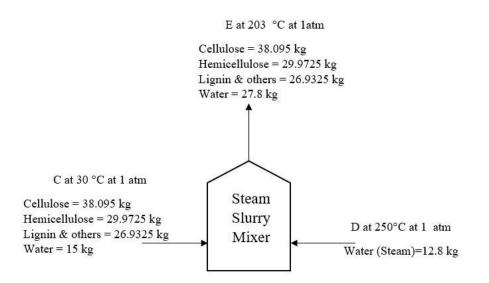



Fig. 5.2 Material Balance over the steam-slurry mixture.

As the quantity of steam rejected is unknown, we can calculate the required amount from energy balance equation. Let the amount of steam required be x kg and  $w_C$ ,  $w_H$ ,  $w_L$ ,  $w_W$  be the weight fraction of cellulose, hemicellulose, lignin, and water respectively.

$$w_{C} = \frac{38.095}{110} = 0.346$$

$$w_{H} = \frac{29.9725}{110} = 0.272$$

$$w_{L} = \frac{26.9325}{110} = 0.246$$

$$w_{W} = \frac{15}{110} = 0.136$$

$$C_{P_{Avg}} = \Sigma W_{i}C_{P_{i}}$$

$$= (0.346 \times 1.3388) + 1000$$

$$= 1.68208 \text{ KJ/Kg-°C}$$

 $C_{P_{out}} = \left(\frac{38.095}{110+x} \times 1.3388\right) + \left(\frac{29.9725}{110+x} \times 1.4\right) + \left(\frac{26.9325}{110+x} \times 1.1\right) + \left(\frac{15+x}{110+x} \times 3.305\right)$ 

 $+(0.272 \times 1.4) + (0.246 \times 1.1) + (0.136 \times 4.1725)$ 

By energy balance equation,

- $\Rightarrow [110 \times 1.68208 \times (30-25)] + x [(4.1725 \times (100-75)) + 2250 + (1.98 \times (250-100))] = (110 + x) \times C_{P_{out}} \times (200-25).$
- $\Rightarrow 925.144 + 2859.9375 \ x = (110+x) \times \left[\left(\frac{51.002}{110+x} + \frac{41.9615}{110+x} + \frac{29.6257}{110+x} + \frac{3.303(15+x)}{110+x}\right)\right]$ 
  - × (200 25)
- $\Rightarrow$  925.144 + 2859.9375 *x* = 175 (172.1642+3.305 *x*)
- $\Rightarrow x = 12.8 \text{ kg}$

#### Mass In:

Amount =  $M_C + M_D$ 

= (38.095+29.9725+26.9325+15) + 12.8

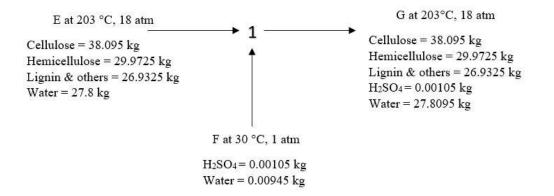
= 122.8 kg

#### Mass Out:

Amount =  $M_D$ 

= (38.095 + 29.9725 + 26.9325 + 27.8)

= 122.8 kg


#### Table 5.5 Material balance over steam-slurry mixture

| Materials     |         |        | Output<br>E |        |         |        |
|---------------|---------|--------|-------------|--------|---------|--------|
|               | С       |        |             |        | D       |        |
|               | Amount  | Amount | Amount      | Amount | Amount  | Amount |
|               | (kg)    | (kmol) | (kg)        | (kmol) | (kg)    | (kmol) |
| Cellulose     | 38.095  | 0.235  | -           | -      | 38.095  | 0.235  |
| Hemicellulose | 29.9725 | 0.173  | -           | -      | 29.9725 | 0.173  |

| Lignin | and                    | 26.9325 | 0.0178 | -           | -     | 26.9325 | 0.0178        |
|--------|------------------------|---------|--------|-------------|-------|---------|---------------|
| Others |                        |         |        |             |       |         |               |
| Water  |                        | 15      | 0.833  | 12.8(Steam) | 0.711 | 27.8    | 1.544         |
| Total  |                        | 110     |        | 12.8        |       | 122.8   |               |
|        | Total Input = 122.8 kg |         |        |             |       |         | t = 122.8  kg |

#### 5.3 STAGE 3: ADDITION OF H<sub>2</sub>SO<sub>4</sub>

The output (E) from steam-slurry mixture is mixed with small amount of  $H_2SO_4$  (F) to act as a catalyst, and the mixture (G) contains a mixture of cellulose, hemicellulose, lignin with other impurities, water, and  $H_2SO_4$ .



#### Fig. 5.3 Material Balance due to addition of H<sub>2</sub>SO<sub>4</sub>

**Calculations**:

Flow rate of  $H_2SO_4 = 40 \text{ ml/min}$ 

$$= \frac{40 \times 60}{1000} \text{ l/hr}$$
$$= \frac{2.4}{22.4} \times \frac{98}{1000}$$
$$= 0.0105 \text{ kg}$$

Concentration of  $H_2SO_4 = 10 \% \frac{wt}{wt}$  [5]

Amount of H<sub>2</sub>SO<sub>4</sub> added =  $\frac{10}{100} \times 0.0105 = 0.00105$  kg

Amount of  $H_2O = 0.00945$  kg

Mass In:

 $Amount = M_E + M_F$ 

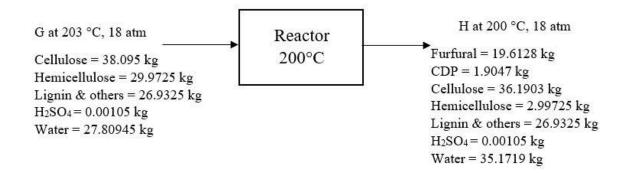
=(38.095+29.9725+26.9325+27.8)+(0.00945+0.00105)

= 122.8105 kg

 $Amount = M_{G} \\$ 

= (38.095 + 29.9725 + 26.9325 + 27.8095 + 0.00105)

= 122.8105 kg


#### Table 5.6 Material balance due to addition of H<sub>2</sub>SO<sub>4</sub>

| Materials     |                                     |        | 0       | utput    |          |                           |  |
|---------------|-------------------------------------|--------|---------|----------|----------|---------------------------|--|
|               | Ε                                   |        |         | F        |          | G                         |  |
|               | Amount                              | Amount | Amount  | Amount   | Amount   | Amount                    |  |
|               | (kg)                                | (kmol) | (kg)    | (kmol)   | (kg)     | (kmol)                    |  |
| Cellulose     | 38.095                              | 0.235  | -       | -        | 38.095   | 0.235                     |  |
| Hemicellulose | 29.9725                             | 0.173  | -       | -        | 29.9725  | 0.173                     |  |
| Lignin and    | 26.9325                             | 0.0178 | -       | -        | 26.9325  | 0.0178                    |  |
| Others        |                                     |        |         |          |          |                           |  |
| Water         | 27.8                                | 1.544  | 0.00945 | 0.000524 | 27.8095  | 1.545                     |  |
| Sulphuric     |                                     |        | 0.00105 | 0.000011 | 0.00105  | 0.000011                  |  |
| Acid          |                                     |        |         |          |          |                           |  |
| Total         | 122.8                               |        | 0.0105  |          | 122.8105 |                           |  |
|               | 1                                   |        | 1       |          |          |                           |  |
|               | Total Input = $122.8105 \text{ kg}$ |        |         |          |          | Total Output =122.8105 kg |  |

#### **5.4 STAGE 4: PFR REACTOR**

The stream G is now allowed to enter the reactor where reactions take place as

 $(C_5H_8O_4)_n \longrightarrow n C_5H_4O_2 + 2n H_2O$ 



#### Fig. 5.4 Material balance over PFR

As the efficiency is 90%, we proceed the further reaction. Although it is known that cellulose is more complex than hemicellulose, but under this condition, it will also undergo dehydration; assuming the conversion to b 5% (cellulose). The major constituents of CDP (cellulose dehydration product) are methanol, ethanol, formic acid, and acetic acid.

 $(C_5H_8O_4)_n \longrightarrow n C_5H_4O_2 + 2n H_2O$ 

The molecular mass of hemicellulose is 132 kg/kmol.

Molecular mass of furfural = 96 kg/kmol

Molecular mass of water = 18 kg/kmol

Total hemicellulose present =  $29.9725 \text{ kg} = \frac{29.9725}{_{132}} = 0.2273 \text{ kmol}$ 

Number of moles of hemicellulose reacting = 0.2043 kmol [90% conversion]

Number of moles of unreacted hemicellulose = 0.023 kmol

1 mole of hemicellulose gives 1 mole of furfural and 2 moles of water.

∴ 0.2043 kmol of hemicellulose gives 0.2043 kmol of furfural and 0.4086 kmol of water with

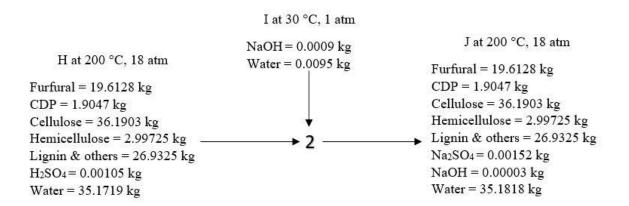
0.023 kmol of hemicellulose unreacted.

The reaction for cellulose is given as

 $C_6H_{10}O_5$  — Cellulose Dehydration Product (CDP)

Total cellulose present = 38.095 kg

Total CDP present =  $38.095 \times 0.05 = 1.9047$  kg [5% conversion]


Total unreacted cellulose = 36.1903 kg

## Table 5.7 Material balance over reactor

| Materials      | ]                    | Input         | 0              | utput    |  |
|----------------|----------------------|---------------|----------------|----------|--|
|                |                      | G             | Н              |          |  |
|                | Amount (kg)          | Amount (kmol) | Amount         | Amount   |  |
|                |                      |               | (kg)           | (kmol)   |  |
| Cellulose      | 38.095               | 0.235         | 36.1903        | 0.223    |  |
| Hemicellulose  | 29.9725              | 0.173         | 2.99725        | 0.017    |  |
| Lignin and     | 26.9325              | 0.0178        | 26.9325        | 0.0178   |  |
| Others         |                      |               |                |          |  |
| Water          | 27.80945             | 1.545         | 35.1719        | 1.954    |  |
| Sulphuric Acid | 0.00105              | 0.000011      | 0.00105        | 0.000011 |  |
| Furfural       | -                    | -             | 19.6128        | 0.204    |  |
| CDP            | -                    | -             | 1.9047         | 0.041    |  |
| Total          | 122.8105             |               | 122.8105       |          |  |
|                | Total Input = 122.81 | Total Outpu   | t =122.8105 kg |          |  |

## 5.5 STAGE 5: ADDITION OF NaOH

As the reaction is completed, the output stream H is now fed with a small amount of NaOH to neutralize the extra  $H_2SO_4$  present to stop further conversion.



#### Fig. 5.5 Material balance due to addition of NaOH

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$ 

For 1 mole of H<sub>2</sub>SO<sub>4</sub>, 2 moles of NaOH are required.

For 0.000011 kmol H<sub>2</sub>SO<sub>4</sub>, 0.000022 kmol of NaOH is required.

And for 0.000022 kmol of NaOH used, 0.000011 kmol of Na<sub>2</sub>SO<sub>4</sub> and 0.000022 kmol of H<sub>2</sub>O

is formed.

Therefore, weight of NaOH used =  $8.8 \times 10^{-4}$  kg

Concentration of NaOH = 9 %  $Wt/_{Wt}$  [5]

So, the amount of NaOH in the solution =  $\frac{9}{109} \times x$ 

Where, x = weight of NaOH solution

$$8.8 \times 10^{-4} = \frac{9}{109} \times x$$

x = 0.01039 kg

Also, 
$$0.01039 = \frac{y}{22.4} \times \frac{40}{1000}$$

Where, y = flow rate of NaOH in liter/hour

$$y = \frac{0.01309 \times 22.4 \times 1000}{40}$$

y = 5.82 liter/hour =  $\frac{5.82 \times 60}{1000}$  = 97 ml/min

|                                 |          | Inj      | put    | ut       |          | tput      |
|---------------------------------|----------|----------|--------|----------|----------|-----------|
|                                 | Н        | -        |        | Ι        |          | l         |
| Material                        | Amount   | Amount   | Amount | Amount   | Amount   | Amount    |
|                                 | (kg)     | (kmol)   | (kg)   | (kmol)   | (kg)     | (kmol)    |
| Furfural                        | 19.6128  | 0.204    | -      | -        | 19.6128  | 0.204     |
| Water                           | 35.1719  | 1.954    | 0.0095 | 0.00053  | 35.1818  | 1.9545    |
| CDP                             | 1.9047   | 0.041    | -      | -        | 1.9047   | 0.041     |
| Cellulose                       | 36.1903  | 0.223    | -      | -        | 36.1903  | 0.223     |
| Hemicellulose                   | 2.99725  | 0.017    | -      | -        | 2.99725  | 0.017     |
| Lignin & others                 | 26.9325  | 0.018    | -      | -        | 26.9325  | 0.018     |
| Na <sub>2</sub> SO <sub>4</sub> | -        | -        | -      | -        | 0.00152  | 0.00001   |
| NaOH                            | -        | -        | 0.0009 | 0.000021 | 0.00003  | 0.0000007 |
| H <sub>2</sub> SO <sub>4</sub>  | 0.00105  | 0.000011 | -      | -        | -        | -         |
| Total                           | 122.8105 | -        | 0.0104 | -        | 122.8209 | -         |
| Total Ir                        | 122.820  | 9        |        | Total =  | 122.8209 | •         |

## Table 5.8 Material balance while adding NaOH

### 5.6 STAGE 6: EXPANSION VESSEL

After neutralization of  $H_2SO_4$ , the stream J consists of both volatile (furfural, CDP) and non-

volatile (NaOH, Na<sub>2</sub>SO<sub>4</sub>) components which is separated using an expansion vessel.

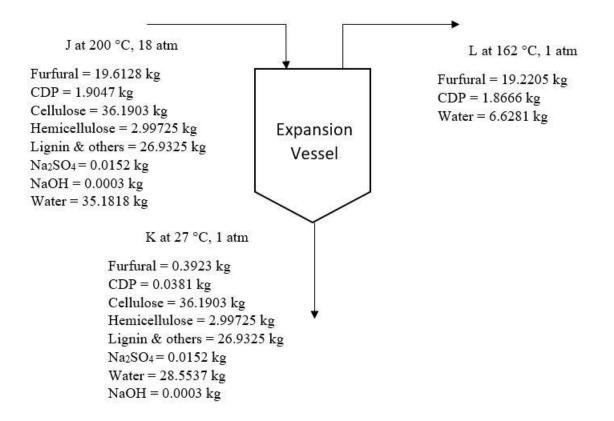



Fig. 5.6 Material balance over expansion vessel

After separation, the stream K is discarded, and the output stream L is sent for distillation for

further separation.

Assuming 98% of furfural gets vaporized,

Amount in:

 $m_{Furfural} = 19.6128 \text{ kg}$ 

 $m_{CDP} = 1.9047 \text{ kg}$ 

Amount out:

For furfural,

 $m_{Furfural} = m_{Furfural_{K}} + m_{Furfural_{L}}$ 

 $m_{Furfural} = (0.02 \times 19.6128) + (0.98 \times 19.6128)$ 

 $m_{Furfural} = 19.6128 \text{ kg}$ 

For CDP,

 $m_{CDP} = m_{CDP_K} + m_{CDP_L}$ 

 $m_{CDP} = (0.02 \times 1.9047) + (0.98 \times 1.9047)$ 

 $m_{CDP} = 1.9047 \text{ kg}$ 

## Table 5.9 Material balance over expansion vessel

| Material                        | Input    |           |                  | Ou       | itput   |        |
|---------------------------------|----------|-----------|------------------|----------|---------|--------|
|                                 |          | J         |                  | K        |         | L      |
|                                 | Amount   | Amount    | Amount           | Amount   | Amount  | Amount |
|                                 | (kg)     | (kmol)    | (kg)             | (kmol)   | (kg)    | (kmol) |
| Furfural                        | 19.6128  | 0.204     | 0.3923           | 0.004    | 19.2205 | 0.200  |
| Water                           | 35.1818  | 1.9545    | 28.5537          | 0.039    | 6.6281  | 0.3682 |
| CDP                             | 1.9047   | 0.041     | 0.0381           | 0.001    | 1.8666  | 0.040  |
| Cellulose                       | 36.1903  | 0.223     | 36.1903          | 0.223    | -       | -      |
| Hemicellulose                   | 2.99725  | 0.017     | 2.99725          | 0.017    | -       | -      |
| Lignin &<br>others              | 26.9325  | 0.018     | 26.9325          | 0.018    | -       | -      |
| Na <sub>2</sub> SO <sub>4</sub> | 0.00152  | 0.00001   | 0.00152          | 0.00001  | -       | -      |
| NaOH                            | 0.00003  | 0.0000007 | 0.00003          | 0.000007 | -       | -      |
| Total                           | 122.8209 | -         | 95.1057          | -        | 27.7152 | -      |
| Total Input = 12                | 2.8209   | 1         | Total = 122.8209 |          |         |        |

### 5.7 STAGE 7: DISTILLATION COLUMN

The output stream (L) from the expansion vessel now enters a distillation column where the final separation takes place.

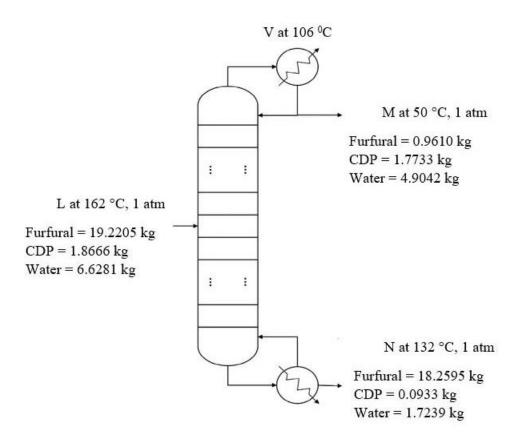



Fig. 5.7 Material balance over distillation column

Assuming 95% of the furfural gets separated.

Amount of furfural in stream N is 95% of furfural from stream L.

For stream N,

 $m_{Furfural} = 0.95 \times 19.2205$ 

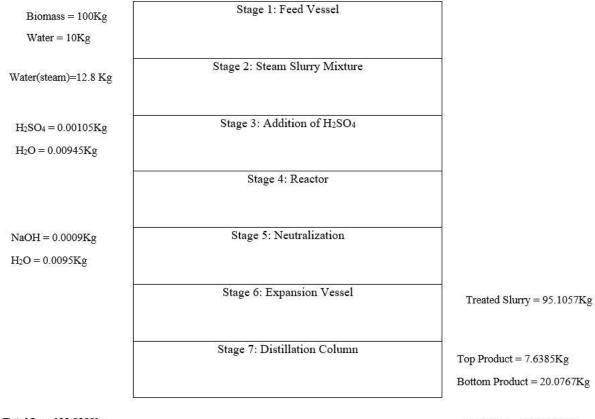
 $m_{Furfural} = 18.2595 \text{ kg}$ 

### Table 5.10 Material balance over distillation column

| Material | Input   |        | Output |        |         |        |
|----------|---------|--------|--------|--------|---------|--------|
|          | ]       |        | Ν      | Л      |         | N      |
|          | Amount  | Amount | Amount | Amount | Amount  | Amount |
|          | (kg)    | (kmol) | (kg)   | (kmol) | (kg)    | (kmol) |
| Furfural | 19.2205 | 0.200  | 0.9610 | 0.010  | 18.2595 | 0.190  |

| Water                   | 6.6281  | 0.3682 | 4.9042      | 0.2725        | 1.7239  | 0.0958 |
|-------------------------|---------|--------|-------------|---------------|---------|--------|
| CDP                     | 1.8666  | 0.040  | 1.7733      | 0.038         | 0.0933  | 0.002  |
| Total                   | 27.7152 | -      | 7.6385      | -             | 20.0767 | -      |
| Total Input = 27.7152kg |         |        | Total Outpu | t = 27.7152kg | 5       |        |

% purity =  $\frac{\text{weight of furfural}}{\text{total weight of bottom product}} \times 100\%$ 


% purity =  $\frac{18.2595}{20.0767} \times 100\%$ 

% purity = 90.94 %

#### **5.8 OVERALL MATERIAL BALANCE**

Materials In

**Materials** Out



Total In = 122.8209kg

Total Out = 122.8209Kg

#### Fig 5.8 Overall material balance.

#### 5.9 MATERIAL BALANCE FLOWCHART

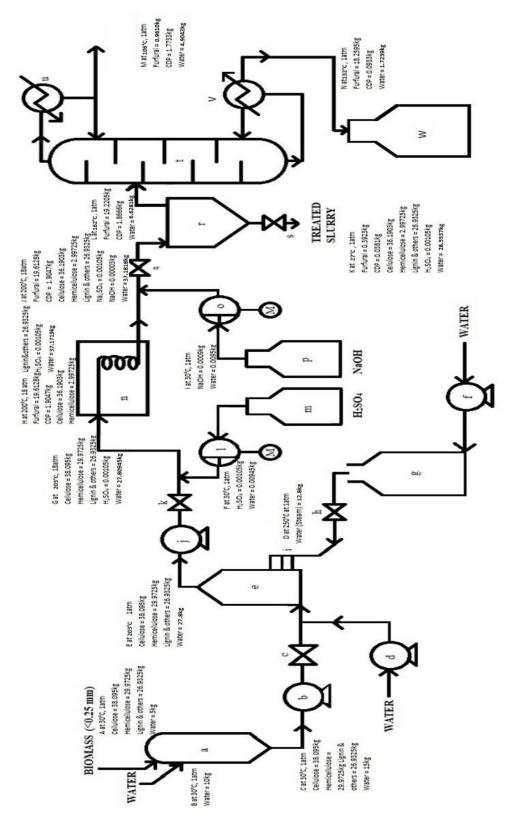



Fig 5.9 Material Balance Flowchart.

# **CHAPTER 6**

# **MODIFIED MATERIAL BALANCE**

Modified Material Balance Calculation:

- Industrial capacity of furfural production plant is 2,000 TPA
- Assuming 330 working days in a year, amount of product from above plant

= 20.0767 x 24 x 330 = 159007.464 kg/year

• Multiplying factor = (2,000 x 1000)/159007.464 = 12.578 kg/year

### 6.1 STAGE 1: FEED VESSEL

#### Table 6.1 Modified Material balance over the feed vessel

| Materials             | Input         |               | Output                 |
|-----------------------|---------------|---------------|------------------------|
|                       | Α             | В             | С                      |
|                       | Amount        | Amount        | Amount                 |
|                       | ( <b>kg</b> ) | ( <b>kg</b> ) | ( <b>kg</b> )          |
| Cellulose             | 479.1589      | -             | 479.1589               |
| Hemicellulose         | 376.9441      | -             | 376.9441               |
| Lignin and            | 338.7570      | -             | 338.7570               |
| Others                |               |               |                        |
| Water                 | 62.8900       | 125.7800      | 188.6700               |
| Total                 | 1257.8000     | 125.7800      | 1383.58                |
| Total Input = 1383.58 |               |               | Total Output = 1383.58 |

## 6.2 STAGE 2: STEAM SLURRY MIXTURE

| Materials     | Input                  |                  | Output                   |
|---------------|------------------------|------------------|--------------------------|
|               | С                      | D                | Ε                        |
|               | Amount                 | Amount           | Amount                   |
|               | ( <b>kg</b> )          | ( <b>kg</b> )    | ( <b>kg</b> )            |
| Cellulose     | 479.1589               | -                | 479.1589                 |
| Hemicellulose | 376.9441               | -                | 376.9441                 |
| Lignin and    | 338.7570               | -                | 338.7570                 |
| Others        |                        |                  |                          |
| Water         | 188.6700               | 160.9984 (steam) | 349.6684                 |
| Total         | 1383.58                | 160.9984         | 1544.5784                |
|               | Total Input = 1544.578 | 4                | Total Output = 1544.5784 |

## Table 6.2 Modified Material balance over the steam slurry mixture

## 6.3 STAGE 3: ADDITION OF H<sub>2</sub>SO<sub>4</sub>

# Table 6.3 Modified Material balance due to the addition of H<sub>2</sub>SO<sub>4</sub>

| Materials     | Ing                  | out    | Output                   |
|---------------|----------------------|--------|--------------------------|
|               | E                    | F      | G                        |
|               | Amount               | Amount | Amount                   |
|               | ( <b>kg</b> )        | (kg)   | ( <b>kg</b> )            |
| Cellulose     | 479.1589             | -      | 479.1589                 |
| Hemicellulose | 376.9441             | -      | 376.9441                 |
| Lignin and    | 338.7570             | -      | 338.7570                 |
| Others        |                      |        |                          |
| Water         | 349.6684             | 0.1189 | 349.7873                 |
| Sulphuric     | -                    | 0.0132 | 0.0132                   |
| Acid          |                      |        |                          |
| Total         | 1544.5784            | 0.1321 | 1544.7105                |
|               | Total Input = 1544.7 | 105    | Total Output = 1544.7105 |

## **6.4 STAGE 4: PFR REACTOR**

| Materials     | Input       | Output                    |
|---------------|-------------|---------------------------|
|               | G           | Н                         |
|               | Amount (kg) | Amount                    |
|               |             | ( <b>kg</b> )             |
| Cellulose     | 479.1589    | 455.2016                  |
| Hemicellulose | 376.9441    | 37.6994                   |
| Lignin and    | 338.7570    | 338.7570                  |
| Others        |             |                           |
| Water         | 349.7873    | 442.3922                  |
| Sulphuric     | 0.0132      | 0.0132                    |
| Acid          |             |                           |
| Furfural      | -           | 246.6898                  |
| CDP           | -           | 23.9573                   |
| Total         | 1544.7105   | 1544.7105                 |
| Total Input = | 1544.7105kg | Total Output =1544.7105kg |

# Table 6.4 Modified Material balance over PFR

## 6.5 STAGE 5 ADDITION OF NaOH

### Table 6.5 Modified Material balance due to addition of NaOH

| Material                        | Inj         | Output      |             |
|---------------------------------|-------------|-------------|-------------|
|                                 | Н           | Ι           | J           |
|                                 | Amount (kg) | Amount (kg) | Amount (kg) |
| Furfural                        | 246.6898    | -           | 246.6898    |
| Water                           | 442.3922    | 0.1195      | 442.5167    |
| CDP                             | 23.9573     | -           | 23.9573     |
| Cellulose                       | 455.2016    | -           | 455.2016    |
| Hemicellulose                   | 37.6994     | -           | 37.6994     |
| Lignin & others                 | 338.7570    | -           | 338.7570    |
| Na <sub>2</sub> SO <sub>4</sub> | -           | -           | 0.0191      |
| NaOH                            | -           | 0.0113      | 0.0004      |

| H <sub>2</sub> SO <sub>4</sub> | 0.0132              | -      | -         |
|--------------------------------|---------------------|--------|-----------|
| Total                          | 1544.7105           | 0.1308 | 1544.8413 |
|                                | Total = 1544.8413kg |        |           |

## 6.6 STAGE 6: EXPANSION VESSEL

# Table 6.6 Modified Material balance over expansion vessel

| Material                        | Input           | Ou          | tput        |
|---------------------------------|-----------------|-------------|-------------|
| _                               | J               | K           | L           |
| _                               | Amount (kg)     | Amount (kg) | Amount (kg) |
| Furfural                        | 246.6898        | 4.9343      | 241.7555    |
| Water                           | 442.5167        | 359.1489    | 83.3678     |
| CDP                             | 23.9573         | 0.4541      | 23.5032     |
| Cellulose                       | 455.2016        | 455.2016    | -           |
| Hemicellulose                   | 37.6994         | 37.6994     | -           |
| Lignin & others                 | 338.7570        | 338.7570    | -           |
| Na <sub>2</sub> SO <sub>4</sub> | 0.0191          | 0.0191      | -           |
| NaOH                            | 0.0004          | 0.0004      | -           |
| Total                           | 1544.8413       | 1196.2146   | 348.6267    |
| Total Input                     | t = 1544.8413kg | Total = 15  | 544.8413kg  |

## 6.7 STAGE 7: DISTILLATION COLUMN

## Table 6.7 Modified Material balance over distillation column

| Material | Input       |             | Output      |
|----------|-------------|-------------|-------------|
|          | L           | М           | N           |
|          | Amount (kg) | Amount (kg) | Amount (kg) |
|          |             |             |             |
| Furfural | 241.7555    | 12.0874     | 229.6681    |
| Water    | 83.3678     | 61.6846     | 21.6832     |
| CDP      | 23.5032     | 22.3046     | 1.1986      |
| Total    | 348.6267    | 96.0766     | 252.5499    |

## 6.8 OVERALL MODIFIED MATERIAL BALANCE

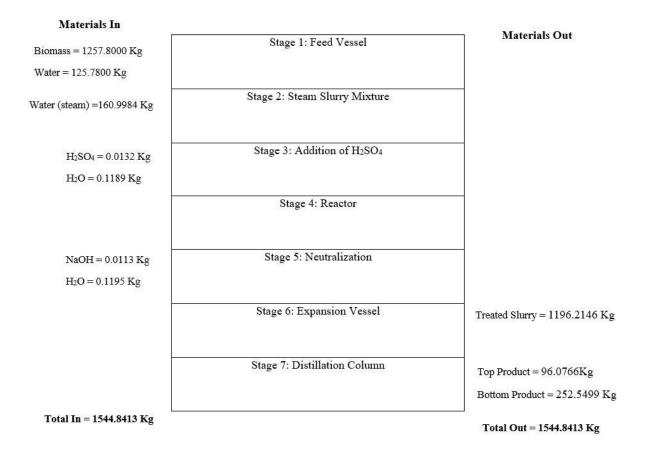



Fig 6.1 Overall modified material balance.

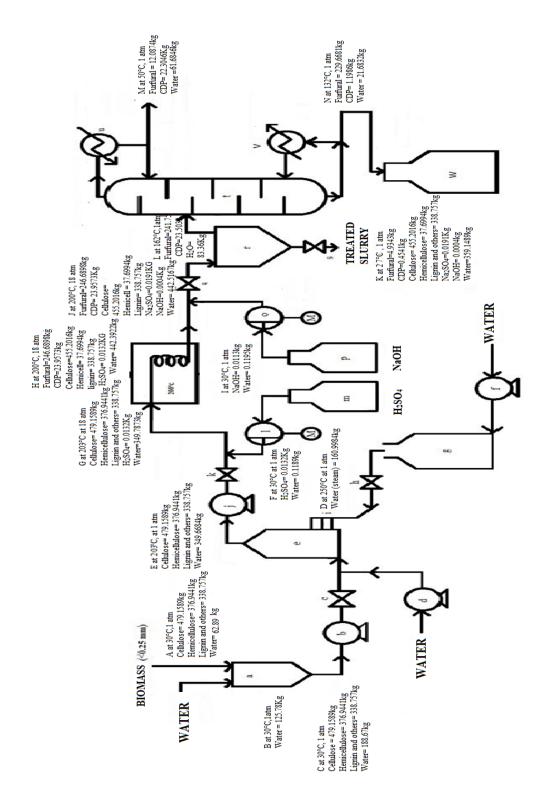



Fig 6.2 Modified Material Balance Flowchart.

# **CHAPTER 7**

## **ENERGY BALANCE**

#### **OVERALL ASSUMPTIONS:**

- 1. Energy balance is calculated on hourly basis.
- 2. Datum temperature of 25 °C has been taken in all energy balance calculations.
- 3. There is no heat loss in any equipment by conduction, convection, or radiation.
- 4. Ambient temperature is assumed to be 25 °C.

#### DATA:

#### **Specific Heat Values:**

- 1. The specific heat value for cellulose is,  $C_{P_{Cellulose}} = 1.3388 \text{ KJ/kg-K}$  [6]
- 2. The specific heat value for hemicellulose is,  $C_{P_{\text{Hemicellulose}}} = 1.4 \text{ KJ/kg-K}$  [7]
- 3. The specific heat value for lignin with impurities is,  $C_{P_{Lignin}} = 1.10 \text{ KJ/ kg-K}$  [8]
- 4. The specific heat value for water is,  $C_{P_{Water}} = 4.1785 \text{ KJ/ kg-K [9]}$
- 5. The specific heat value of steam,  $C_{P_{Steam}} = 1.9892 \text{ KJ/kg-K}$  [10]
- 6. The specific heat value for H<sub>2</sub>SO<sub>4</sub> at 30 °C, 10 %  $\frac{wt}{wt}$  is, C<sub>PH<sub>2</sub>SO<sub>4</sub></sub> = 3.8342 KJ/ kg-K [9]
- 7. The specific heat value for furfural is,  $C_{P_{Furfural}} = 1.66 \text{ KJ/kg-K}$  [13]
- 8. The specific heat value for NaOH at 30 °C 9%  $\frac{wt}{wt}$  is, C<sub>P<sub>NaOH</sub> = 3.49364 KJ/kg-K [14]</sub>
- 9. The specific heat value for Na<sub>2</sub>SO<sub>4</sub> is,  $C_{P_{Na_2SO_4}} = 0.9665 \text{ KJ/kg-K}$  [15]

| Components                      | C <sub>P</sub> (KJ/kg-K) |
|---------------------------------|--------------------------|
| Cellulose                       | 1.3388                   |
| Hemicellulose                   | 1.40                     |
| Lignin                          | 1.10                     |
| Water                           | 4.1785                   |
| Steam                           | 1.9892                   |
| $H_2SO_4$                       | 3.8342                   |
| Furfural                        | 1.66                     |
| NaOH                            | 3.49364                  |
| Na <sub>2</sub> SO <sub>4</sub> | 0.9665                   |

#### Table 7.1 C<sub>P</sub> values of different components.

### Heat of Formation:

- 1. The heat of formation for hemicellulose at 25 °C,  $\Delta_f H_{Hemicellulose} = -762.9 \text{ KJ/kmole}$  [16]
- 2. The heat of formation for furfural at 25 °C,  $\Delta_f H_{Furfural} = -200.2 \text{ KJ/kmole}$  [13]
- 3. The heat of formation for  $H_2SO_4$  at 25 °C,  $\Delta_f H_{H_2SO_4} = -909.27$  KJ/kmole [11]
- 4. The heat of formation for water at 25 °C,  $\Delta_f H_{Water} = -285.84$  KJ/kmole [11]
- 5. The heat of formation for NaOH at 25 °C,  $\Delta_f H_{NaOH} = -470.09$  KJ/kmole [11]
- 6. The heat of formation for Na<sub>2</sub>SO<sub>4</sub> at 25 °C,  $\Delta_f H_{Na_2SO_4} = -1389.47$  KJ/kmole [11]

(Ref: Perry's Handbook 7th Ed.; Table 2-220)

| Table 7.2 $\Delta_{\rm f}$ H | values of | different | components | at 25 °C. |
|------------------------------|-----------|-----------|------------|-----------|
|------------------------------|-----------|-----------|------------|-----------|

| Components                     | Δ <sub>f</sub> H (KJ/kmole) | Δ <sub>f</sub> H for 2.5013 |
|--------------------------------|-----------------------------|-----------------------------|
|                                |                             | mole (KJ)                   |
| Hemicellulose                  | -762.9                      | -1908241.77                 |
| Furfural                       | -200.2                      | -500760.26                  |
| H <sub>2</sub> SO <sub>4</sub> | -909.27                     | -227457.051                 |

| Water                           | -285.84  | -716971.592  |
|---------------------------------|----------|--------------|
| NaOH                            | -470.09  | -1175836.117 |
| Na <sub>2</sub> SO <sub>4</sub> | -1389.47 | -3475481.311 |

## Heat of Reaction:

For Furfural:

- 1.  $\Delta H_{rxn}^{298} = -8980 \text{ KJ/mole}$
- 2.  $\Delta H_{rxn}^{473} = 19618.20189 \text{ KJ}$

## For Na<sub>2</sub>SO<sub>4</sub>:

- 1.  $\Delta H_{rxn}^{298} = -111.68 \text{ KJ/mol}$
- 2.  $\Delta H_{rxn}^{473} = -22.9391 \text{ KJ}$

## **Latent heat of Vaporization:**

- 1. Latent Heat of Vaporization for Furfural,  $\lambda^{Furfural} = 444 \text{ KJ/kg}$  [13]
- 2. Latent Heat of Vaporization for Water,  $\lambda^{H_2O} = 2250 \text{ KJ/kg} [11]$
- 3. Latent Heat of Vaporization for CDP,  $\lambda^{\text{CDP}} = 712.5 \text{ KJ/kg} [17]$

## Table 7.3 Latent Heat of Vaporization of different components.

| Component | Latent Heat of Vaporization (KJ/kg) |
|-----------|-------------------------------------|
| Furfural  | 444                                 |
| Water     | 2250                                |
| CDP       | 712.5                               |

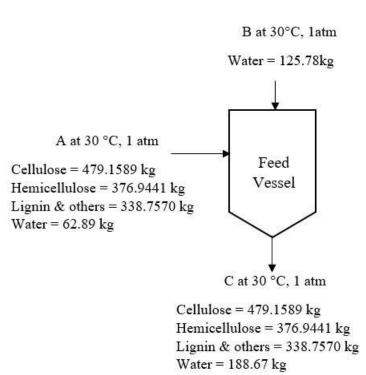



Fig. 7.1 Energy balance over feed vessel.

The feed vessel is fed with A, which is a mixture of cellulose, hemicellulose, lignin, and other impurities, and with B, which is water.

## **<u>Calculation of C</u>**<sub>Pave</sub>:

For stream A,

$$C_{P_A} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{A}} = \frac{479.1589 \times 1.3388}{1257.8} + \frac{376.9441 \times 1.4}{1257.8} + \frac{338.757 \times 1.1}{1257.8} + \frac{62.89 \times 4.1785}{1257.8}$$

$$C_{P_A} = 1.4347 \text{ KJ/kg-K}$$

For stream B,

$$C_{P_{B}} = 4.1785 \text{ KJ/kg-K}$$

For stream C,

$$C_{P_{C}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{C}} = \frac{1257.8 \times 1.4347}{1383.58} + \frac{125.78 \times 4.1785}{1383.58}$$

$$C_{P_{C}} = 1.6841 \text{ KJ/kg-K}$$

# Energy in:

$$Amount = H_A + H_B$$

$$= [mC_P dT]_A + [mC_P dT]_B$$
$$= [1257.8 \times 1.4347 \times (303 - 298)] + [125.78 \times 4.1785 \times (303 - 298)]$$
$$= 9022.8283 + 2627.85865$$
$$= 11650.68695 \text{ KJ}$$

# Energy out:

 $Amount = H_C$ 

 $= [mC_P dT]_C$ 

 $= 1383.58 \times 1.6841 \times (303 - 298)$ 

= 11650.43539 KJ

| Streams | Weight (Kg) | C <sub>p avg</sub> (KJ/KgK) | Temp difference(K) | mC <sub>p</sub> dt (KJ)     |
|---------|-------------|-----------------------------|--------------------|-----------------------------|
| A       | 1257.8      | 1.4347                      | 303-298=5          | $H_A = 9022.8283$           |
| В       | 125.78      | 4.1785                      | 303-298=5          | $H_B = 2627.85865$          |
|         | INPUT       |                             |                    |                             |
| С       | 1383.58     | 1.6841                      | 303-298=5          | H <sub>C</sub> =11650.43539 |
|         | OUTPUT      |                             |                    |                             |

### Table 7.4 Energy balance over the feed vessel

## 7.2 STAGE 2: STEAM-SLURRY MIXTURE

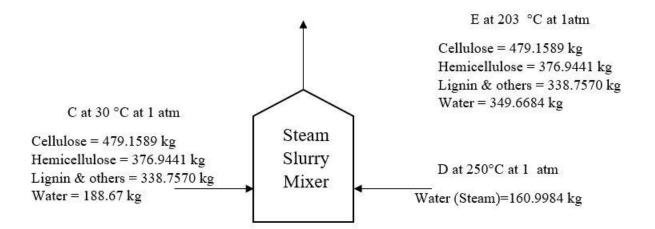



Fig. 7.2 Energy Balance over the steam-slurry mixture.

The output (C) from the feed vessel is now the input for the steam-slurry mixture. The steamslurry mixture is also fed with steam (D) and the output (E) from steam-slurry mixture is sent for to the next stage.

The output, E contains a mixture of cellulose, hemicellulose, lignin with other impurities, and water.

**Calculation of C**<sub>Pavg</sub>:

For stream D,

For stream E,

$$C_{P_{E}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{E}} = \frac{1383.58 \times 1.6841}{1544.5784} + \frac{160.9984 \times 1.9892}{1544.5784}$$

$$C_{P_E} = 1.718172 \text{ KJ/kg-K}$$

Energy in:

 $Amount = H_C + H_D$ 

$$= [mC_P dT]_C + m[C_{P_{H_2O}} dT + \lambda^{H_20} + C_{P_{steam}} dT]$$
  
= [1383.58 × 1.6841 × (303 – 298)] + 160.99847[4.1785 × (100 – 25) + 2250 + 1.9892  
× (250 – 100)]  
= 472385.4241 KJ

## Energy out:

 $Amount = H_E$ 

 $= [mC_P dT]_E$ 

 $= 1544.5784 \times 1.718172 \times (476 - 178)$ 

= 472385.5418 KJ

| Streams | Weight | C <sub>p avg</sub> | Sensible | Latent  | Super   | Temperature    | mC <sub>p</sub> dt (KJ)  |
|---------|--------|--------------------|----------|---------|---------|----------------|--------------------------|
|         | (kg)   | (KJ/KgK            | Heat at  | heat at | heat at | difference (K) |                          |
|         |        | )                  | 100°C    | 100°C   | 100°C   |                |                          |
|         |        |                    | for 1 kg | (KJ/Kg  | for 1   |                |                          |
|         |        |                    | (KJ/Kg)  | )       | kg      |                |                          |
|         |        |                    |          |         | (KJ/kg  |                |                          |
|         |        |                    |          |         | )       |                |                          |
| С       | 1383.5 | 1.6841             |          |         |         | 303-298 = 5    | H <sub>C</sub> =11650.43 |
|         | 8      |                    |          |         |         |                | 539                      |
| D       | 160.99 |                    | 313.387  | 2250    | 298.38  |                | H <sub>D</sub> =460734.9 |
|         | 84     |                    | 8        |         |         |                | 887                      |
|         |        |                    | 1        | L       | INPUT   |                | 472385.4241              |
| E       | 1544.5 | 1.718172           |          |         |         | 476-298 = 178  | H <sub>E</sub> =         |
|         | 784    |                    |          |         |         |                | 472385.5418              |
|         | 1      | OL                 | JTPUT    | 1       | 1       | 1              | 472385.5418              |

 Table 7.5 Energy balance over steam-slurry mixture

### 7.3 STAGE 3: ADDITION OF H<sub>2</sub>SO<sub>4</sub>

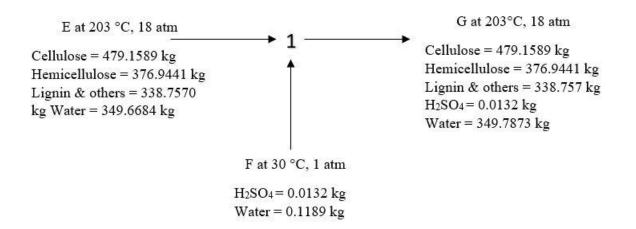



Fig. 7.3 Energy Balance due to addition of H<sub>2</sub>SO<sub>4</sub>

The output (E) from steam-slurry mixture is mixed with small amount of  $H_2SO_4$  (F) to act as a catalyst, and the mixture (G) contains a mixture of cellulose, hemicellulose, lignin with other impurities, water, and  $H_2SO_4$ .

## **<u>Calculation of C</u>**<sub>Pavg</sub>:

For stream G,

$$C_{P_{G}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{G}} = \frac{1544.5784 \times 1.718172}{1544.7105} + \frac{0.1321 \times 3.8342}{1544.7105}$$

$$C_{P_{G}} = 1.718035 \text{ KJ/kg-K}$$

#### Energy in:

 $Amount = H_{\rm E} + H_{\rm F}$ 

 $= [mC_PdT]_E + [mC_PdT]_F$  $= [1544.5784 \times 1.718172 (476 - 298)] + [0.1321 \times 3.8342 \times (303 - 298)]$ = 472388.0743 KJ

## Energy out:

 $Amount = H_{G}$ 

 $= [mC_P dT]_G$ 

 $= [1544.7105 \times 1.718035 \times (476 - 298)]$ 

= 472388.2733 KJ

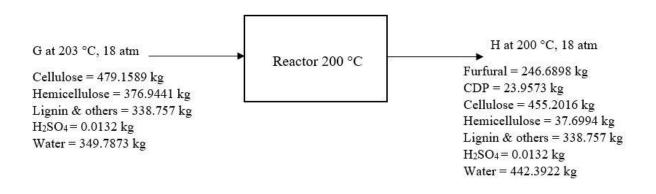

| Streams | Weight (kg) | C <sub>p avg</sub> (KJ/KgK) | Temp<br>Difference (K) | mC <sub>p</sub> dt (KJ)         |   |
|---------|-------------|-----------------------------|------------------------|---------------------------------|---|
| Е       | 1544.5784   | 1.718172                    | 476-298 = 178          | H <sub>E</sub> =<br>472385.5418 |   |
| F       | 0.1321      | 3.8342                      | 303-298= 5             | H <sub>F</sub> = 2.5325         |   |
|         | INPUT       | -                           |                        | 472388.0743                     |   |
| G       | 1544.7105   | 1.718035                    | 476-298=178            | H <sub>G</sub><br>472388.2733   | = |
|         | 472388.2733 |                             |                        |                                 |   |


Table 7.6 Energy balance due to addition of H<sub>2</sub>SO<sub>4</sub>

### 7.4 STAGE 4: PFR REACTOR

The stream G is now fed into a reactor where reaction takes place as

 $(C_5H_8O_4)_n \longrightarrow n C_5H_4O_2 + 2n H_2O$ 





## **<u>Calculation of C</u>**<sub>Pavg</sub>:

For stream H,

$$C_{P_{H}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{H}} = \frac{455.2016 \times 1.3388}{1544.7105} + \frac{37.6994 \times 1.4}{1544.7105} + \frac{338.7570 \times 1.1}{1544.7105} + \frac{442.3922 \times 1.9892}{1544.7105} + \frac{0.1321 \times 3.8342}{1544.7105} + \frac{246.6898 \times 1.66}{1544.7105} + \frac{23.9573 \times 3.8525}{1544.7105}$$

$$C_{P_{H}} = 1.5646 \text{ KJ/kg-K}$$

Energy in:

 $H_G = 472388.2733 \text{ KJ}$ 

Energy out:

 $H_H = m C_{P_H} dT$ 

 $H_{H} = 1544.7105 \times 1.5646 \times (200-25)$ 

 $H_H = 422949.45875 \text{ KJ}$ 

The heat of reaction is given as

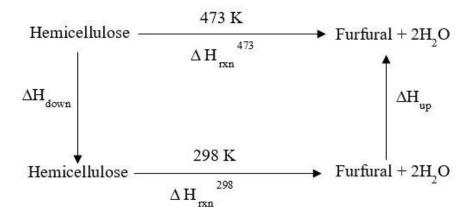



Fig. 7.5 Heat of reaction for furfural

No of moles reacted =  $12.5784 \times 0.2043 = 2.5013$  kmole =  $\times 2.5013 \times 10^3$  moles

 $\Delta_f H_{Hemicellulose} = -762.9 \times 2.5013 \times 10^3 = -1908241.77 \text{ KJ}$ 

 $\Delta_{f}H_{Furfural} = \text{-}200.2 \times 2.5013 \times 10^{3} = \text{-} 500760.26 \text{ KJ}$ 

 $\Delta_f H_{Water} = -285.84 \times 2.5013 \times 10^3 = -714971.592 \text{ KJ}$ 

 $\Delta {H_{rxn}}^{298} = \Delta_f H_{Product} \text{ - } \Delta_f H_{Reactant}$ 

 $\Delta H_{rxn}^{298} = [-500760.26 + 2(-714971.592)] - [-1908241.77]$ 

 $\Delta H_{rxn}^{298} = -22461.674 \text{ KJ}$ 

 $C_{P_{down}} = C_{P_{Hemicellulose}} = 1.4 \text{ KJ/kg-K}$ 

 $C_{P_{up}} = C_{P_{Furfural + Water}} = \frac{246.6898 \times 1.66}{246.6896 + 92.5549} + \frac{92.5549 \times 4.1785}{246.6898 + 92.5549}$ 

$$C_{P_{up}} = 2.1088 \text{ KJ/kg-K}$$

 $H_{up} = (246.6898 + 92.5549) \times 2.1088 \times (200 - 25)$ 

 $H_{up} = 125194.8272 \text{ KJ}$ 

 $H_{down} = (376.9441 - 37.6994) \times 1.4 \times (25 - 200)$ 

 $H_{down} = -83114.9515 \text{ KJ}$ 

 $\Delta {H_{rxn}}^{473} = \Delta H_{down} + \Delta {H_{rxn}}^{298} + H_{up}$ 

 $\Delta H_{rxn}^{473} = -83114.9515 - 22461.674 + 125194.8272$ 

$$\Delta H_{rxn}^{473} = 19618.20179 \text{ KJ}$$

The reactor is kept at a constant temperature of 473 K (203  $^{\circ}$ C). Let, the mass flow rate of water required in the cooling jacket is m. Therefore,

Input + Generation = Output + Removed

 $H_G + \Delta H_{rxn}^{473} = H_H + Removed$ 

472388.2733 + 19618.20179 = 422949.45875 + Removed

Removed = 69056.81734 KJ

 $mC_P dT = 69056.81734$ 

 $m \times 4.1785 \times (80 - 25) = 69056.81734$ 

m = 330.4855 kg/h

#### Table 7.7 Energy balance over PFR

| Streams    | Weight (Kg) | C <sub>p</sub> (KJ/kgK) | Temp Difference(K) | mC <sub>p</sub> dt (KJ)    |  |
|------------|-------------|-------------------------|--------------------|----------------------------|--|
| G          | 1544.7105   | 1.718035                | 476-298=178        | $H_G = 472388.2733$        |  |
|            | INPUT       |                         |                    |                            |  |
| Н          | 1544.7105   | 1.5646                  | 473-298= 175       | $H_{\rm H} = 422949.45875$ |  |
|            | OUTPUT      |                         |                    |                            |  |
| GENERATION |             |                         |                    | 1918.20179                 |  |
|            | REMOVED     |                         |                    | 69056.81734                |  |

## 7.5 STAGE 5: ADDITION OF NaOH

A small amount of NaOH (I) is added to the output stream from the reactor (H) to neutralize the excess amount of acid present to get stream (J) where following reactions take place.

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$ 

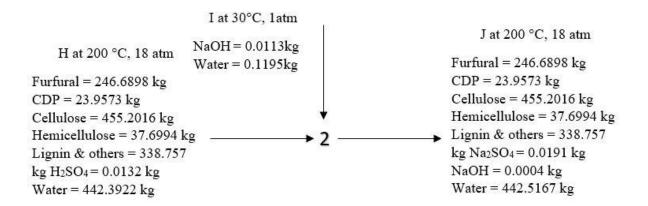



Fig. 7.6 Energy balance due to addition of NaOH.

#### **Calculation of C**Pavg:

For stream I,

$$C_{P_{NaOH}} = 3.49364 \text{ KJ/kg-K}$$

For stream J,

$$C_{P_J} = \frac{\Sigma miCpi}{m}$$

 $C_{P_J} = \frac{1544.7105 \times 1.5646}{1544.8413} + \frac{0.1308 \times 3.49364}{1544.8413}$ 

$$C_{P_{J}} = 1.56439 \text{ KJ/kg-K}$$

Energy in:

 $Amount = H_H + H_I$ 

 $= [mC_P dT]_H + [mC_P dT]_I$  $= 472388.2733 + [0.1308 \times 3.49364 \times (30 - 25)]$ = 422951.7436 KJ

#### Energy out:

 $Amount = H_J$ 

- $= [mC_P dT]_J$
- $= 1544.8413 \times 1.56439 \times (200 25)$

= 422928.4992 KJ

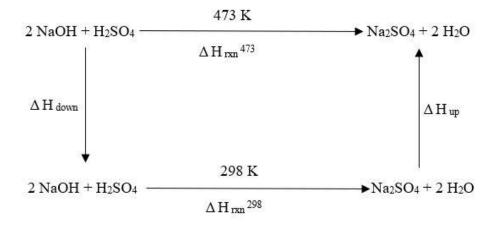



Fig. 7.7 Heat of reaction for Na<sub>2</sub>SO<sub>4</sub>

No of moles reacted =  $1.0714 \times 10^{-5}$  kmole =  $1.0714 \times 10^{-2}$  moles

 $\Delta {H_{rxn}}^{298} = \Delta_f H_{Product} \text{ - } \Delta_f H_{Reactant}$ 

$$\Delta H_{rxn}^{298} = [2(-285.83) + (-1389.47)] - [(-909.27) + 2(-470.09)]$$

 $\Delta H_{rxn}^{298} = -111.86 \text{ KJ/mol}$ 

 $\Delta H_{rxn}{}^{298} \, = \text{-}111.86 \times 1.0714 \times 10^{\text{-}2}$ 

 $\Delta {H_{rxn}}^{298} = \text{-} 1.1965 \text{ KJ}$ 

 $C_{P_{down}} = C_{P_{H_2SO_4 + NaOH}} = \frac{0.1321 \times 3.8342}{0.1321 + 0.1304} + \frac{0.1304 \times 3.49364}{0.1321 + 0.1304}$ 

$$C_{P_{down}} = 3.6731 \text{ KJ/kg-K}$$

 $C_{P_{up}} = C_{P_{Na_2SO_4} + H_2O} = \frac{0.2434 \times 4.1785}{0.2434 + 0.0191} + \frac{0.0191 \times 0.9665}{0.2434 + 0.0191}$ 

 $C_{P_{up}} = 3.1477 \text{ KJ/kg-K}$ 

 $H_{up} = (0.2434 + 0.0191) \times 3.1477 \times (200 - 25)$ 

 $H_{up} = 144.5994 \text{ KJ}$ 

 $H_{down} = (0.1321 + 0.1304) \times 3.6731 \times (25 - 200)$ 

 $H_{down} = -168.735 \text{ KJ}$ 

 $\Delta {H_{rxn}}^{473} \ = H_{down} + \Delta {H_{rxn}}^{298} \ + H_{up}$ 

 $\Delta H_{rxn}^{473} = -168.735 - 1.1965 + 144.5994$ 

 $\Delta H_{rxn}^{473} = -22.9391 \text{ KJ}$ 

During the neutralization reaction, some heat will generate. Therefore,

Input + Generation = Output

 $Output = H_H + H_I + \Delta H_{rxn}^{473}$ 

Output = 422951.7436 - 22.9391

Output = 422928.4992 KJ = H<sub>J</sub>

#### Table 7.8 Energy balance due to addition of NaOH

| Streams | Weight (kg) | C <sub>p</sub> (KJ/kgK) | Temp Difference(K) | mC <sub>p</sub> dt (KJ)    |
|---------|-------------|-------------------------|--------------------|----------------------------|
| Н       | 1544.7105   | 1.5646                  | 473-298= 175       | $H_{\rm H} = 422949.45875$ |
| Ι       | 0.1308      | 3.49364                 | 303-298=5          | $H_{I} = 2.2848$           |

|            | _         | 422951.7436         |  |          |
|------------|-----------|---------------------|--|----------|
| J          | 1544.8413 | $H_J = 422928.4992$ |  |          |
|            |           | 422928.4992         |  |          |
| GENERATION |           |                     |  | -22.9391 |

### 7.6 STAGE 6: EXPANSION VESSEL

The stream (J) after neutralization reaction contains furfural, water, some amount of methanol, ethanol, acetic acid, formic acid (which is collectively called as cellulose dehydrated product, CDP), lignin and other impurities, some unreacted NaOH, and Na<sub>2</sub>SO<sub>4</sub>.

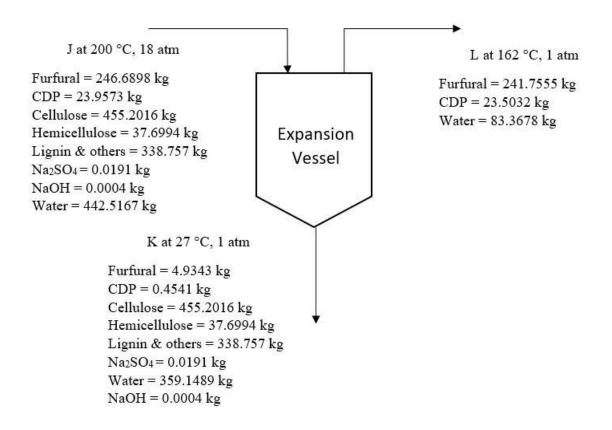



Fig. 7.8 Energy balance over expansion vessel.

The stream J enters in the expansion vessel in which the first separation takes place.

Components like furfural, water and CDP will boil upon flashing and turn into vapours. The

left out components such as lignin, Na<sub>2</sub>SO<sub>4</sub>, NaOH, etc. will not vaporize.

# Calculation of CPavg:

For stream K,

$$\begin{split} C_{P_{K}} &= \frac{\Sigma miCpi}{m} \\ C_{P_{K}} &= \frac{4.9394 \times 1.66}{1196.2146} + \frac{0.4541 \times 3.8525}{1196.2146} + \frac{455.2016 \times 1.3388}{1196.2146} + \frac{37.6994 \times 1.4}{1196.2146} \\ &\quad + \frac{0.0191 \times 0.9665}{1196.2146} + \frac{0.0004 \times 3.49364}{1196.2146} + \frac{359.1489 \times 4.1785}{1196.2146} + \\ &\quad \frac{338.757 \times 1.1}{1196.2146} \\ C_{P_{K}} &= 3.1035 \text{ KJ/kg-K} \end{split}$$

Table 7.9 Sensible heat and Latent heat of components for expansion vessel

| Components | ∆T (Sensible Heat) (K) | $\Delta T(Super Heat) (K)$ |
|------------|------------------------|----------------------------|
| Furfural   | 434.7 – 298 = 136.7    | 435 - 434.7 = 0.3          |
| CDP        | 362.34 - 298 = 64.34   | 435 - 362.34 = 71.66       |
| Water      | 373 - 298 = 75         | 435 - 373 = 62             |

 $H_{Furfural} = 241.755 \left[ \left\{ 1.66 \times (161.7 - 25) \right\} + 444 + \left\{ 1.66 \times (162 - 161.7) \right\} \right]$ 

 $H_{Furfural} = 162319.1421 \text{ KJ}$ 

 $H_{CDP} = 23.5032 \left[ \{ 3.8525 \times (89.34 - 25) \} + 712.5 + \{ 3.8525 \times (162 - 89.34) \} \right]$ 

 $H_{CDP} = 29150.8427 \text{ KJ}$ 

 $H_{H_{2}O} = 83.3678 \left[ \left\{ 4.1785 \times (100 - 25) \right\} + 2250 + \left\{ 1.9892 \times (162 - 100) \right\} \right]$ 

H<sub>H2</sub>O = 223938.2076 KJ

 $H_L = H_{Furfural} \ + \ H_{CDP} + H_{H_2O}$ 

 $H_L = 415408.1924 \ KJ$ 

Energy in:

 $Amount = H_J$ 

= 422928.4992 KJ

Energy out:

 $Amount = H_{K} + H_{L}$ 

=  $[mC_P dT]_K + 415408.1924$ = 1996.2146 × 3.1035 × (27 – 25) + 415408.1924 = 422928.7936 KJ

## Table 7.10 Energy balance over expansion vessel.

| Streams | Weight(kg)  | C <sub>p</sub> (KJ/kgK) | Temp<br>Difference(K) | mC <sub>p</sub> dt (KJ)                                                   |
|---------|-------------|-------------------------|-----------------------|---------------------------------------------------------------------------|
| J       | 1544.8413   | 1.56439                 | 473-298= 175          | $H_J = 422928.4992$                                                       |
|         | 422928.4992 |                         |                       |                                                                           |
| K       | 1196.2146   | 3.1035                  | 300-298=2             | $H_{\rm K} = 7520.6012$                                                   |
| L       |             |                         |                       | $ \begin{array}{l} H_L = H_1 + H_2 + H_3 \\ = & 415408.1924 \end{array} $ |

#### 7.7 STAGE 7: DISTILLATION COLUMN

After the streams have been separated using an expansion vessel, the volatile stream (L), consisting of furfural, water, and CDP is now fed to a distillation column where furfural is separated out from the rest of the components.

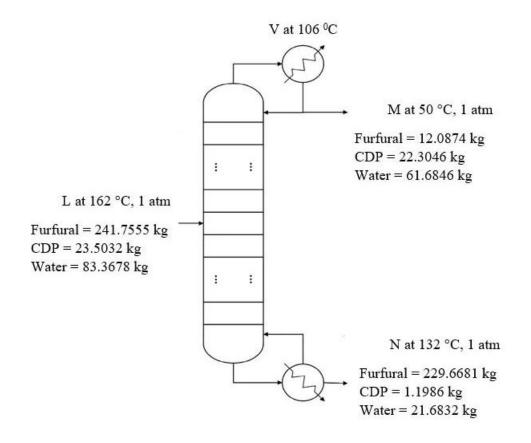



Fig. 7.9 Energy balance over distillation column.

# Calculation of C<sub>Pavg</sub>:

For stream M,

$$C_{P_{M}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{M}} = \frac{12.0874 \times 1.66}{96.0766} + \frac{61.6846 \times 4.1785}{96.0766} + \frac{22.3046 \times 3.8525}{96.0766}$$

$$C_{P_{M}} = 3.785 \text{ KJ/kg-K} = C_{L_{R}}$$

For stream N,

$$C_{P_{N}} = \frac{\Sigma miCpi}{m}$$

$$C_{P_{N}} = \frac{229.6681 \times 1.66}{252.5499} + \frac{21.6832 \times 4.1785}{252.5499} + \frac{1.1986 \times 3.8525}{252.5499}$$

$$C_{P_{N}} = 1.8866 \text{ KJ/kg-K}$$

Assuming Reflux Ratio (R) = 1.5

Tower top temperature =  $106 \ ^{0}C$ 

Tower bottom temperature =  $132 \ ^{0}C$ 

| Components | ΔT (Sensible Heat) (K) | $\Delta T(Super Heat) (K)$ |
|------------|------------------------|----------------------------|
| Furfural   | 379 - 298 = 81         | -                          |
| CDP        | 362.34 - 298 = 64.34   | 379 - 362.34 = 16.66       |
| Water      | 373 - 298 = 75         | 379 - 373 = 6              |

 $H_M = 96.0766 \times 3.785 \times (50-25)$ 

 $H_M = 9091.2483 \ KJ$ 

 $H_N = 252.5499 \times 1.8866 \times (132 - 25)$  $H_N = 50981.2886 \text{ KJ}$ R = 1.5  $\frac{L_R}{M} = 1.5$  $L_R = 1.5 \text{ M}$  $L_R=1.5\times96.0766$  $L_R = 144.1149 \text{ kg/h}$ And,  $V = L_R + M$ V = 144.1149 + 96.0766V = 240.1915 kg/h  $H_{Furfural} = 12.0874 \times 1.66 \times (106 - 25)$  $H_{Furfural} = 1625.2718 \text{ KJ}$  $H_{H_{2}O} = 61.6846 \left[ \left\{ 4.1785 \times (100 - 25) \right\} + 2250 + \left\{ 1.9895 \times (106 - 100) \right\} \right]$  $H_{H_2O} = 158857.8617 \text{ KJ}$  $H_{CDP} = 22.3046 \left[ \{ 3.8525 \times (89.34 - 25) \} + 712.5 + \{ 3.8525 \times (106 - 89.34) \} \right]$  $H_{CDP} = 22852.2337 \text{ KJ}$  $H_V = H_{Furfural} + H_{H_2O} + H_{CDP}$ 

 $H_V = 1625.2718 + 158857.8617 + 22852.2337$ 

 $H_V = 183335.3672 \text{ KJ}$ 

$$H_{L_R} = 144.1149 \times 3.785 \times (106 - 50)$$

 $H_{L_R} = 30546.5942 \text{ KJ}$ 

 $Q_{\rm C} = H_{\rm V} - H_{\rm M} - H_{\rm L_R}$ 

 $Q_C = 183335.3672 - 9091.2483 - 30546.5942$ 

Qc = 143697.5247 KJ

 $Q_B = H_L - Q_C - H_M \text{ - } H_N$ 

 $Q_B = 415408.1924 - 143697.5247 - 9091.2483 - 50981.2886$ 

 $Q_B = 211638.1308 \text{ KJ}$ 

 $H_L = H_M + H_N + Q_C + Q_B$ 

 $H_L = 9091.2483 + 50981.2886 + 143697.5247 + 211638.1308$ 

 $H_L = 415408.1924 \ KJ$ 

#### Table 7.12 Energy balance over distillation column

| Streams | Weight (Kg) | C <sub>p</sub> (KJ/kgK) | Temp Difference(K) | mC <sub>p</sub> dt (KJ)                 |
|---------|-------------|-------------------------|--------------------|-----------------------------------------|
| L       |             |                         |                    | $H_L = H_1 + H_2 + H_3$<br>=415408.1924 |
|         | 415408.1924 |                         |                    |                                         |
| М       | 96.0766     | 3.785                   | 323-298=25         | H <sub>M</sub> = 9091.2483              |
| Ν       | 252.5499    | 1.8866                  | 405-298=107        | $H_N = 50981.2886$                      |

| OUTPUT | $\begin{split} H_{M} + H_{N} + Q_{C} + Q_{B} \\ = 415408.1924 \end{split}$ |
|--------|----------------------------------------------------------------------------|
|--------|----------------------------------------------------------------------------|

The amount of water,  $m_C$  required in the condenser can be calculated as

 $Q_C = m_C \times C_{P_{Water}} \times (60-25)$ 

 $143697.5247 = m_C \times 4.18 \times 35$ 

 $m_C = 982.21 \text{ kg}$ 

The amount of steam,  $m_B$  required in the reboiler at 100 °C is

 $Q_B = mB \times \lambda^{H_2O}$ 

 $211638.1308 = m_B \times 2250$ 

 $m_B = 94.06 \text{ kg}$ 

## 7.8 ENERGY BALANCE FLOWCHART

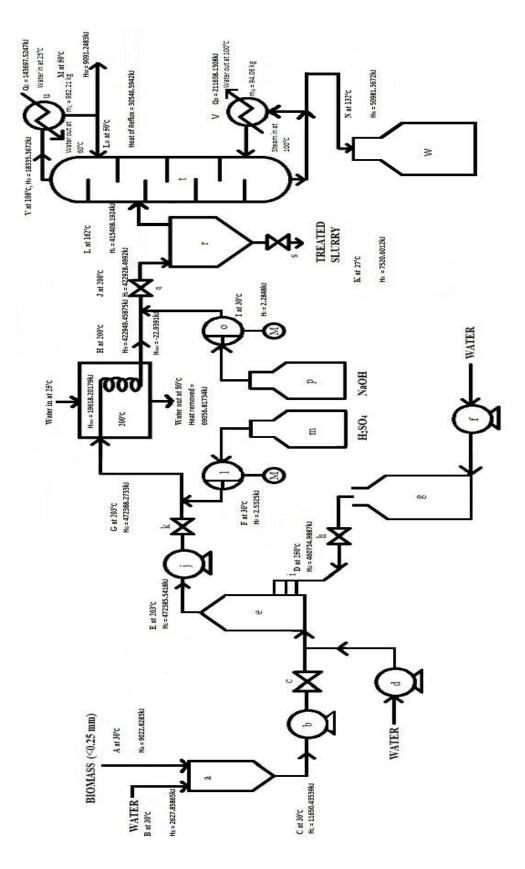



Fig 7.10 Energy Balance Flowchart

# **CHAPTER 8**

# **DESIGN OF EQUIPMENT**

### 8.1 DESIGN OF DISTILLATION COLUMN

Data:

- 1. P = 1 atm = 760 mm Hg.
- 2. Density of furfural,  $\rho_{Furfural} = 1160 \text{ kg/m}^3$  [19]
- 3. Density of water,  $\rho_{Water} = 997 \text{ kg/m}^3 \text{ [18]}$
- 4. Density of CDP,  $\rho_{CDP} = 789 \text{ kg/m}^3 [19]$
- 5. Molecular mass of furfural = 96.08 kg/kmol [20]
- 6. Molecular mass of water = 18 kg/kmol [20]
- 7. Molecular mass of CDP = 46.46 kg/kmol
- 8. Universal Gas Constant (R) = 0.082058 m3-atm/kmol-K

Taking base component = Furfural (A) = Heavy Key

Vapor pressure data are calculated using Antoine equation. [21]

### **8.1.1** Tower Top Temperature Calculation

#### <u>Trial 1</u>:

 $T = 161.7 \ ^{\circ}C$ 

| Component         | x <sub>Mi</sub> | P <sup>V</sup> (mm Hg) | $\mathbf{K}_{i} = \mathbf{P}^{V} / \mathbf{P}$ | $\alpha_{i}$ | $\alpha_i/x_i$ |
|-------------------|-----------------|------------------------|------------------------------------------------|--------------|----------------|
| (HK) Furfural (A) | 0.03            | 764.71                 | 1.01                                           | 1            | 0.03           |
| (LK) Water (B)    | 0.85            | 4294                   | 5.65                                           | 5.59         | 0.152          |
| CDP (C)           | 0.12            | 10143.82               | 13.34                                          | 13.21        | 0.0091         |

 $K_{C} = \Sigma \frac{\alpha_{i}}{x_{i}}$ 

 $K_C = 0.1911$ 

 $P^V = 0.1911 \times 760$ 

 $P^{V} = 145.236 \text{ mm Hg}$ 

 $T = 108.76 \text{ }^{\circ}\text{C} \neq 161.7 \text{ }^{\circ}\text{C}$ 

<u>Trial 2</u>:

 $T = 108.76 \ ^{\circ}C$ 

Table 8.2 Trial 2

| Component         | X <sub>Mi</sub> | P <sup>V</sup> (mm Hg) | $K_i = P^V/P$ | α <sub>i</sub> | $\alpha_i/x_i$ |
|-------------------|-----------------|------------------------|---------------|----------------|----------------|
| (HK) Furfural (A) | 0.03            | 134.15                 | 0.1765        | 1              | 0.03           |
| (LK) Water (B)    | 0.85            | 961.21                 | 1.265         | 7.17           | 0.118          |
| CDP (C)           | 0.12            | 2116.72                | 2.785         | 15.78          | 0.0076         |

 $K_{C} = \Sigma \frac{\alpha_{i}}{x_{i}}$ 

 $K_C = 0.1556$ 

 $P^V = 0.1556 \times 760$ 

 $P^V = 145.236 \text{ mm Hg}$ 

 $T = 103.30 \text{ }^{\circ}\text{C} \neq 108.76^{\circ}\text{C}$ 

# <u>Trial 3</u>:

 $T = 103.30 \ ^{\circ}C$ 

### Table 8.3 Trial 3

| Component         | X <sub>Mi</sub> | P <sup>V</sup> (mm Hg) | $K_i = P^V/P$ | $\alpha_{i}$ | α <sub>i</sub> /x <sub>i</sub> |
|-------------------|-----------------|------------------------|---------------|--------------|--------------------------------|
| (HK) Furfural (A) | 0.03            | 162.3                  | 0.21          | 1            | 0.03                           |
| (LK) Water (B)    | 0.85            | 1142.97                | 1.5           | 7.14         | 0.132                          |
| CDP (C)           | 0.12            | 2447.2                 | 3.22          | 13.18        | 0.0091                         |

 $K_{C} = \Sigma \frac{\alpha_{i}}{x_{i}}$ 

 $K_{C} = 0.1711$ 

 $P^{V} = 0.1711 \times 760$ 

 $P^{V} = 145.236 \text{ mm Hg}$ 

 $T = 105.76^{\circ}C \neq 103.30^{\circ}C$ 

<u>Trial 4</u>:

T = 105.76 °C

#### Table 8.4 Trial 4

| Component            | x <sub>Mi</sub> | P <sup>V</sup> (mm Hg) | $K_i = P^V/P$ | $\alpha_{\rm i}$ | $\alpha_i/x_i$ |
|----------------------|-----------------|------------------------|---------------|------------------|----------------|
| (HK) Furfural<br>(A) | 0.03            | 134.1                  | 0.176         | 1                | 0.03           |
| (LK) Water (B)       | 0.85            | 861.41                 | 1.133         | 6.44             | 0.1319         |
| CDP (C)              | 0.12            | 2046.52                | 2.692         | 15.3             | 0.009          |

$$K_{\rm C} = \Sigma \frac{\alpha_{\rm i}}{x_{\rm i}}$$

 $K_C = 0.1709$ 

 $P^V = 0.1709 \times 760$ 

 $P^{V} = 129.884 \text{ mm Hg}$ 

 $T = 105.729 \ ^{\circ}C \sim 105.76 \ ^{\circ}C$ 

Tower Top Temperature is 106 °C.

# 8.1.2 Tower Bottom Temperature Calculation

<u>Trial 1</u>:

 $T = 161.7 \ ^{\circ}C$ 

### Table 8.5 Trial 1

| Component         | X <sub>Ni</sub> | P <sup>V</sup> (mm Hg) | $K_i = P^V/P$ | α <sub>i</sub> | α <sub>i</sub> /x <sub>i</sub> |
|-------------------|-----------------|------------------------|---------------|----------------|--------------------------------|
| (HK) Furfural (A) | 0.66            | 764.71                 | 1.01          | 1              | 0.66                           |
| (LK) Water (B)    | 0.33            | 4294                   | 5.65          | 5.59           | 1.84                           |
| CDP (C)           | 0.07            | 10143.82               | 13.34         | 13.21          | 0.9247                         |

$$K_{c} = \frac{1}{\Sigma(\alpha_{i} x_{i})}$$

 $K_C = \frac{1}{2.8307}$ 

 $K_C = 0.3523$ 

 $P^V=0.3523\times 760$ 

 $P^V = 268.48 \text{ mm Hg}$ 

$$T = 126.14 \text{ }^{\circ}\text{C} \neq 161.7 \text{ }^{\circ}\text{C}$$

# <u>Trial 2</u>:

T = 126.14 °C

### Table 8.6 Trial 2

| Component         | X <sub>Ni</sub> | P <sup>V</sup> (mm Hg) | $K_i = P^V/P$ | αi    | $\alpha_i/x_i$ |
|-------------------|-----------------|------------------------|---------------|-------|----------------|
| (HK) Furfural (A) | 0.66            | 268.46                 | 0.35          | 1     | 0.66           |
| (LK) Water (B)    | 0.33            | 784.7                  | 1.035         | 2.95  | 0.9742         |
| CDP (C)           | 0.07            | 2647.764               | 3.4839        | 9.954 | 0.6968         |

 $K_{c} \!=\! \frac{1}{\Sigma(\alpha_{i} x_{i})}$ 

 $K_C = \frac{1}{2.331}$ 

 $K_{C} = 0.429$ 

 $P^V = 0.429 \times 760$ 

 $P^{V} = 326.04 \text{ mm Hg}$ 

 $T = 132.14 \text{ }^{\circ}\text{C} \neq 126.14 \text{ }^{\circ}\text{C}$ 

<u>Trial 3</u>:

 $T = 132.14 \ ^{\circ}C$ 

## Table 8.7 Trial 3

| Component        | X <sub>Ni</sub> | $\mathbf{P}^{\mathrm{V}}(\mathbf{mm}\;\mathbf{Hg}) \qquad \mathbf{K}_{\mathbf{i}} = \mathbf{P}^{\mathrm{V}}/\mathbf{P}$ |      | $\alpha_{i}$ | $\alpha_{i}/x_{i}$ |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------------|
| (HK)Furfural (A) | 0.66            | 281.2                                                                                                                   | 0.37 | 1            | 0.66               |

| (LK) Water (B) | 0.33 | 846.716  | 1.1141 | 3.011 | 0.9936 |  |
|----------------|------|----------|--------|-------|--------|--|
| CDP (C)        | 0.07 | 2831.684 | 3.7259 | 10.07 | 0.7049 |  |
| 1              |      |          |        |       |        |  |

$$K_c = \frac{1}{\Sigma(\alpha_i x_i)}$$

$$K_{\rm C} = \frac{1}{2.3585}$$

 $K_C = 0.42399$ 

$$P^{V} = 0.42399 \times 760$$

 $P^{V} = 322.23 \text{ mm Hg}$ 

T = 131.77 °C ~ 132.14 °C

Tower Bottom Temperature is 132°C.

## 8.1.3 Number of Stages Calculation

Taking B-A pair i.e., LK-HK pair, we get,

$$(\alpha_{BA})_{AVG} = [(\alpha_{BA})_{Top} \times (\alpha_{BA})_{Bottom}]^{0.5}$$

$$(\alpha_{BA})_{AVG} = [6.44 \times 3.011]^{0.5}$$

 $\left(\alpha_{BA}\right)_{AVG} = 4.4035$ 

Using Fenske Equation, we get,

$$N_{\min} = \log\left[\left(\frac{x_{\text{LK}} \cdot M}{x_{\text{HK}} \cdot N}\right)\left(\frac{x_{\text{HK}} \cdot N}{x_{\text{LK}} \cdot M}\right)\right] \times \frac{1}{\log(\alpha_{\text{BA}})_{\text{AVG}}}$$
$$N_{\min} = \log\left[\left(\frac{0.85 \times 0.66}{0.33 \times 0.03}\right)\right] \times \frac{1}{\log(4.4035)}$$
$$N_{\min} = 2.7234$$

$$(\alpha_{CA})_{AVG} = [(\alpha_{CA})_{Top} \times (\alpha_{CA})_{Bottom}]^{0.5}$$

$$(\alpha_{CA})_{AVG} = [15.3 \times 10.07]^{0.5}$$

 $\left(\alpha_{CA}\right)_{AVG}=12.4125$ 

#### **Table 8.8 Composition Table**

| Component         | a <sup>iA</sup> | X <sub>L</sub> | Feed (L) | x <sub>M</sub> | Distillate (M) | X <sub>N</sub> | Bottom      |
|-------------------|-----------------|----------------|----------|----------------|----------------|----------------|-------------|
|                   |                 |                |          |                |                |                | Product (N) |
| (HK) Furfural (A) | 1               | 0.33           | 241.7555 | 0.03           | 12.0874        | 0.66           | 229.6681    |
| (LK) Water (B)    | 4.4035          | 0.66           | 83.3678  | 0.85           | 61.6846        | 0.33           | 21.6832     |
| CDP (C)           | 12.4125         | 0.07           | 23.5032  | 0.12           | 22.3046        | 0.07           | 1.1986      |

For Saturated vapor feed, q = 0

Using Underwood Equation, we get,

 $1 - q = \Sigma \frac{\alpha_{iA} \times x_L}{\alpha_{iA} - \varphi}$  $1 - 0 = \frac{1 \times 0.33}{0.33 - \varphi} + \frac{4.4035 \times 0.66}{4.4035 - \varphi} + \frac{12.4125 \times 0.07}{12.4125 - \varphi}$ 

For  $\varphi = 2.0447$ , R.H.S of above equation becomes  $1.000038 \sim 1 = L.H.S$ 

Again,

 $R_{\min} + 1 = \Sigma \frac{\alpha_{iA} \times x_{M}}{\alpha_{iA} - \varphi}$   $R_{\min} + 1 = \frac{1 \times 0.33}{0.33 - 2.0447} + \frac{4.4035 \times 0.85}{4.4035 - 2.0447} \frac{12.4125 \times 0.12}{12.4125 - 2.0447}$ 

 $R_{min} + 1 = 10.6 \,$ 

 $R_{min}\!=9.6$ 

Thus,

 $R=1.5\;R_{min}$ 

**69 |** Page

$$\mathbf{R}=1.5\times9.6$$

$$R = 14.4$$

Using Gilliland Equation, we get,

$$\underline{X} = \frac{R - R_{min}}{R + 1}$$

$$\underline{X} = \frac{14.4 - 9.6}{14.4 + 1}$$

$$\underline{X} = 0.3117$$

$$\underline{Y} = 1 + e^{\frac{(1+54.5 X)(X-1)}{(11+117.2 X)(\sqrt{X})}}$$

$$\underline{Y} = 1 + e^{\frac{[1+(54.5 \times 0.3117)](0.3117 - 1)}{[11+(117.2 \times 0.3117)](\sqrt{0.3117})}}$$

 $\underline{Y} = 0.7728$ 

Thus,

 $\underline{\mathbf{Y}} = \frac{\mathbf{N} - \mathbf{N}_{\min}}{\mathbf{N} + 1}$ 

 $0.7728 = \frac{N - 2.7234}{N + 1}$ 

 $N = 15.39 \sim 16$  Stages, i.e., 15 trays and 1 reboiler

Using Kirkbride Equation, we get,

$$\frac{N_R}{N_S} = \left[\frac{x_{HK\cdot L}}{x_{LK\cdot L}} \times \left(\frac{x_{LK\cdot N}}{x_{HK\cdot M}}\right)^2 \times \frac{N}{M}\right]^{0.206}$$
$$\frac{N_R}{N_S} = \left[\frac{033}{0.66} \times \left(\frac{0.33}{0.03}\right)^2 \times \left(\frac{252.5499}{96.0766}\right)\right]^{0.206}$$
$$\frac{N_R}{N_S} = 2.84$$
**70** | P a g e

But,

 $N = N_R + N_S = 16$  $16 = N_S + 2.84 N_S$  $N_S = 4.17 \text{ Stages} \sim 4 \text{ Stages}$ 

 $N_R = 16 - 4.17 = 11.83 \sim 12$  Stages

Thus, feed is added on the 13<sup>th</sup> Tray from the top.

## **8.1.4 Tower Diameter and Height Calculation**

Distillate for Stream M, D = 96.0766 kg/h

Bottom Product for Steam N, W = 252.5499 kg/h

At the top of the tower at 106°C,

Vapor Flow rate, Stream V = 240.1915 kg/h

Liquid Flow rate, Stream L = 144.1149 kg/h

Average Molecular mass of stream V

 $= 0.03 \times 96.08 + 0.85 \times 18 + 0.12 \times 46.46$ 

=23.81 kg/kmol

Molar flow rate for stream V,

$$n = \frac{240.1915}{23.81}$$

n = 10.09 kmol/h

From ideal gas law,

 $\mathbf{PV} = \mathbf{nRT}$ 

 $Volume = \frac{(10.09 \times 0.082058 \times 379.15)}{1}$ 

Volume =  $313.70 \text{ m}^{3}/\text{h}$ 

Volume flow rate for stream V =  $313.70 \text{ m}^3/\text{h}$ 

Volume flow rate for stream V = 11078.211 ft<sup>3</sup>/h

Vapor density,  $\rho_G = \frac{240.1915}{313.70}$ 

 $\rho_G=0.766\ kg/m^3$ 

Liquid density for stream L

 $\frac{1}{\rho_{\rm L}} = \frac{m_{\rm Furfural}}{\rho_{\rm Furfural}} + \frac{m_{\rm Water}}{\rho_{\rm Water}} + \frac{m_{\rm CDP}}{\rho_{\rm CDP}}$  $\frac{1}{\rho_{\rm L}} = \frac{0.13}{1160} + \frac{0.64}{997} + \frac{0.23}{789}$ 

 $\rho_L \,{=}\, 995.417 \ kg/m^3$ 

Using Fair Method, the flow parameter,

$$F_{\rm lv} = \left(\frac{L}{V}\right) \left(\frac{\rho_{\rm L}}{\rho_{\rm G}}\right)^{0.5}$$
$$F_{\rm v} = \left(\frac{144.1149}{\rho_{\rm G}}\right) \left(\frac{0.766}{\rho_{\rm G}}\right)^{0.766}$$

$$F_{\rm lv} = \left(\frac{144.1149}{240.1915}\right) \left(\frac{0.766}{955.417}\right)^{0.5}$$

 $F_{\rm lv}=0.017$ 

Assuming Tray Spacing,

S = 18 inch

S = 0.4572 m

From Lygeros and Magoulas equation for Sounders- Brown flooding constant,

 $C_{SB} = 0.03445 + 5.421 \times 10^{-3} \times S^{0.755} e^{(-1.463} \times F_{lv}^{0.842)}$ 

 $C_{SB} = 0.03445 + 5.421 \times 10^{-3} \times (18)^{0.755} e^{(-1.463} \times 0.017^{0.842)}$ 

 $C_{SB}=0.08\ ft/s$ 

Flooding velocity,  $u_{fl}\!=\!C_{SB}\,[\frac{\rho_L}{\rho_G}\!-1]^{0.5}$ 

$$u_{fl} = 0.08 \left[\frac{955.417 - 0.766}{0.766}\right]^{0.5}$$

 $u_{\rm fl}=2.83\ ft/s$ 

Taking operating velocity 50% of flooding velocity,

 $u_s = 0.5 \times 2.83$ 

 $u_s = 1.415 \ ft/s$ 

Fractional approach,  $f_{fl} = 0.6$ 

For sieve tray, fractional downcomer area,  $f_d = 0.8$ 

Tower cross section at the top,

$$A_{\rm T} = \frac{\rm V}{\rm (f_{fl} u_{\rm S})(1-f_{\rm d})}$$

 $A_T = \frac{11078.211}{3600 \times (0.6 \times 1.1415) \times (1-.8)}$ 

 $A_T = 22.4652 \ ft^2$ 

Tower Top Diameter,

$$D = \sqrt{\frac{4 \times A_{T}}{\pi}}$$
$$D = \sqrt{\frac{4 \times 22.4625}{\pi}}$$
$$D = 5.3482 \text{ ft}$$

D = 1.63 m

At the bottom of the tower at 132 °C,

Vapor Flow rate, Stream V = 588.8182 kg/h

Liquid Flow rate, Stream L = 841.3681 kg/h

Average Molecular mass of stream  $\overline{V}$ 

 $= 0.66 \times 96.08 + 0.33 \times 18 + 0.07 \times 46.46$ 

= 65.64 kg/kmol

Molar flow rate for stream  $\overline{V}$ ,

 $n = \frac{588.8182}{65.64}$ 

n = 8.9704 kmol/h

From ideal gas law, PV = nRT

 $Volume = \frac{8.9704 \times 0.082 \times 405.15}{1}$ 

Volume =  $298.047 \text{ m}^{3}/\text{h}$ 

Volume flow rate for stream  $\overline{V} = 298.047 \text{ m}^3/\text{h} = 10525.43047 \text{ ft}^3/\text{h}$ 

Vapor density,  $\rho_G = 588.8182/298.047$ 

$$\rho_{\rm G} = 1.97 \ \rm kg/m^3$$

Liquid density for stream L

$$1/\rho_L = (m_{furfural}/\rho_{furfural}) + (m_{water}/\rho_{water}) + (m_{CDP}/\rho_{CDP})$$

$$1/\rho_{I} = (0.91/1160) + (0.086/997) + (0.004/789)$$

 $\rho_L \,{=}\, 1141.798 \; kg/m^3$ 

Using Fair Method, the flow parameter,

$$F_{\rm lv} = \left(\frac{L}{\bar{Y}}\right) \sqrt{\frac{\rho_G}{\rho_L}}$$

$$F_{\rm lv} = (\frac{841.3681}{588.8182}) \sqrt{\frac{1.97}{1141.798}}$$

 $F_{\rm lv} = 0.0593$ 

Assuming Tray Spacing,

S = 18 inch

 $S = 0.4572 \ m$ 

From Lygeros and Magoulas equation for Sounders- Brown flooding constant,

 $C_{SB} = 0.03445 + 5.421 \times 10^{\text{-3}} \, S^{0.755} \, e^{\text{-}1.463} \, {}^{\text{F}}_{\text{lv}} \, {}^{0.842}$ 

 $C_{SB} = 0.03445 + 5.421 \times 10^{\text{-3}} \, (18)^{0.755} \, e^{\text{-}1.463 \, \times \, 0.0593^{0.842}}$ 

 $C_{SB}=0.076\ ft/s$ 

Flooding velocity,  $u_{fl} = C_{SB} \frac{(\rho_L - \rho_G)^{0.5}}{\rho_G}$ 

$$u_{fl} = 0.076 \times \frac{(1141.798 - 1.97)}{1.97}^{0.5}$$

$$u_{\rm fl} = 1.8281 \, {\rm ft/s}$$

Taking operating velocity 50% of flooding velocity,

 $u_{s}\!=\!0.5\times1.8281$ 

 $u_s = 0.914 \text{ ft/s}$ 

Fractional approach,  $f_{\rm fl}\,{=}\,0.6$ 

For sieve tray, fractional downcomer area,  $f_d = 0.8$ 

Tower cross section at the bottom,

$$A_{T} = \frac{V}{(f_{fl} u_{s})(1 - f_{d})}$$
$$A_{T} = A_{T} = \frac{10525.43047}{3600 \times (0.6 \times 0.914) \times (1 - .8)}$$

$$A_T = 26.6569 \text{ ft}^2$$

Tower bottom Diameter,

$$\mathbf{D} = \sqrt{\frac{4 \times \mathbf{A}_{\mathrm{T}}}{\pi}}$$

$$D = \sqrt{\frac{4 \times 26.6569}{\pi}}$$

 $D = 5.8258 \ ft$ 

Column Height = Actual No. of Trays  $\times$  Tray spacing + 2  $\times$  Tray Spacing

(Ref: https://www.researchgate.net/publication/315733185)

Column Height =  $18 + (16-1) \times 18 + 18 = 306$  inch = 7.7724 m

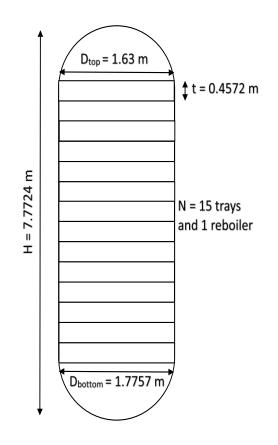



Fig 8.1 : Distillation Column design

### **8.2 DESIGN OF STORAGE TANK**

Data:

- 1. Density of furfural,  $\rho_{Furfural} = 1160 \text{ kg/m}^3$  [19]
- 2. Density of water,  $\rho_{Water} = 997 \text{ kg/m}^3$  [18]
- 3. Density of CDP,  $\rho_{CDP} = 789 \text{ kg/m}^3$  [19]

#### Assumptions:

1. The annual per unit cost of fabrication of the tank per unit area is 1.75 times the annual cost of fabrication of bottom per unit area, i.e.,  $C_1 = 1.75 C_2$ .

- 2. The annual cost of fabricated roof per unit area is 0.8 times the annual cost of fabrication of bottom per unit area, i.e.,  $C_3 = 0.8 C_2$ .
- 3. The annual cost of foundation and land taken together per unit area of the tank bottom

is 0.14 times the annual cost of fabrication per unit area, i.e.,  $C_4 + C_5 = 0.14 C_2$ .

Where,

- $C_1$  = Annual cost of fabricated shell per unit area in Rs/ft<sup>2</sup>.
- $C_2$  = Annual cost of fabricated bottom per unit area in Rs/ft<sup>2</sup>.
- $C_3$  = Annual cost of fabricated roof per unit area in Rs/ft<sup>2</sup>.
- $C_4$  = Annual cost of installation of foundation under the vessel in Rs/ft<sup>2</sup>.
- $C_5$  = Annual cost of land under the tank chargeable to the tank in Rs/ft<sup>2</sup> of tank bottom area.
- $C = Total annual cost of tank in Rs/ft^2$ .

Density of product stream N,

 $\frac{1}{\rho_{\rm N}} = \frac{m_{\rm Furfural}}{\rho_{\rm Furfural}} + \frac{m_{\rm Water}}{\rho_{\rm Water}} + \frac{m_{\rm CDP}}{\rho_{\rm CDP}}$  $\frac{1}{\rho_{\rm N}} = \frac{0.91}{1160} + \frac{0.086}{997} + \frac{0.004}{789}$ 

$$\rho_{\rm N} = 1141.798 \text{ kg/m}^3$$

Mass flow rate of product stream, N = 252.5499 kg/h

Volume flow rate of product stream, N =  $252.5499/\rho_N$ 

Volume =  $\frac{252.5499}{1141.798}$ 

Volume =  $0.2212 \text{ m}^{3}/\text{h}$ 

Considering storage capacity for 6 months (30 days in each month), we get,

Volume of the storage tank =  $0.2212 \times 24 \times 30 \times 6 = 955.584 \text{ m}^3$ 

Considering 25% excess volume, we get,

Design volume of the storage tank,

 $V = 1.25 \times 955.584 = 1194.48 \ m^3$ 

<u>Trial 1</u>:

Assuming the tank to be a small tank

Optimum tank proportion,

$$\frac{D}{H} = \frac{2 \times C_1}{C_2 + C_3 + C_4 + C_5}$$
$$\frac{D}{H} = \frac{2 \times 1.75 C_2}{C_2 + (0.8 \times C_2) + (0.14 \times C_2)}$$
$$\frac{D}{H} = 1.8$$

Therefore, 
$$D = 1.8 H$$

Now, 
$$V = \frac{\pi D^2 H}{4}$$
$$1194.48 = \frac{\pi \times 1.6 H^2 \times H}{4}$$

H = 9.4537 m = 31.016 ft

So,  $D = 1.8 \times 9.4537$ 

Assuming, double welded butt joint, condition for small tank is  $D(H-1) \le 1720$ 

D (H-1) = 55.83 (31.016 - 1) = 1675.79 < 1720

Thus, our assumption of considering a small tank is correct.

Optimum tank proportion,  $\frac{D}{H} = 1.8$ 

Now, circumference of the tank =  $\pi D = \pi \times 17.017 = 53.4605$  m

Assuming 'n' to be the number of plates. The total gap allowance for double welded butt joint is given by  $2n \times 10^{-3}$  m.

Effective circumference of the tank =  $\pi D - (2n \times 10^{-3})$ 

Length of each plate,  $L = \frac{\pi D - (2n \times 10^{-3})}{n}$ 

For n = 7,

$$L = \frac{53.4605 - (2 \times 7 \times 10^{-3})}{7}$$

L = 7.63 m

Width of the plate  $=\frac{H}{n}=\frac{9.537}{7}$ 

$$\frac{H}{n}$$
 = 1.3505 m = 1350.5 mm

Standard width available is W = 1.5 m nearest to 1.3505 m [23]

According to Indian Standards, number of plates are equal to the number of thickness sections for storage tank design. Thus, number of thickness sections, n = 7.

Considering IS: 2002 -1962, Steel 2B as material of construction at 200 °F.

Shear stress value is  $S = 1.18 \text{ kg}_f/\text{mm}^2 = 1180 \text{ kg}_f/\text{cm}^2$ . [24]

Corrosion allowance  $t_c = 0.3 \text{ mm}$ 

Joint efficiency for double welded butt joint, E = 0.85

Specific gravity, 
$$g = \frac{\rho_N}{\rho_{water}}$$
  
 $g = \frac{1141.798}{997}$   
 $g = 1.14$ 

From IS: 803-1976 code book of Indian Standards, Clause 6.3.3/6.3.3.1, Plate Thickness, t

given by

Plate thickness,  $t = \frac{50 (H - 0.3) \times D \times G}{S \times E}$ ; if S is in kg<sub>f</sub>/cm<sup>2</sup>. [25]

Thickness of 1<sup>st</sup> section, t<sub>1</sub>

 $t_1 = \frac{50 \; (9.4537 \; -0.3) \times 17.017 \; \times 1.14}{1180 \times 0.85}$ 

 $t_1=8.85\ mm$ 

Adding corrosion allowance = 8.85 + 0.3 = 9.15 mm

Thickness of 2<sup>nd</sup> section t<sub>2</sub>

 $t_2 = \frac{50 \; (7.9537 \; - \; 0.3) \times 17.017 \; \times 1.14}{1180 \times 0.85}$ 

 $t_2=7.40\ mm$ 

Adding corrosion allowance = 7.40 + 0.3 = 7.70 mm

Thickness of 3<sup>rd</sup> section t<sub>3</sub>

 $t_3 = \frac{50 \; (6.4537 \; -0.3) \times 17.017 \; \times 1.14}{1180 \times 0.85}$ 

 $t_3=5.95\ mm$ 

Adding corrosion allowance = 6.25 + 0.3 = 6.25 mm

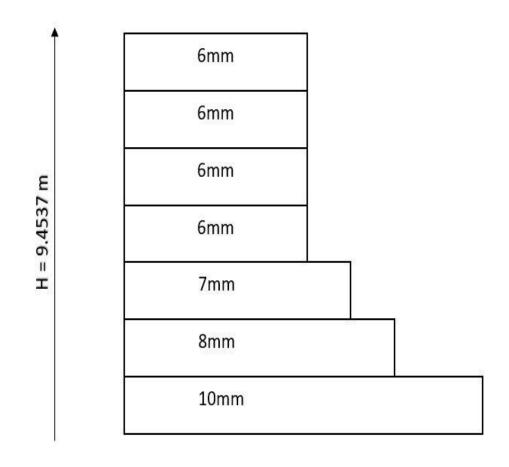
Thickness of 4<sup>th</sup> section t<sub>4</sub>

 $t_4 \!=\! \frac{50\;(4.9537\;-0.3)\times17.017\;\times1.14}{1180\times0.85}$ 

 $t_4 = 4.5 \ mm$ 

Adding corrosion allowance = 4.5 + 0.3 = 4.80 mm

According to Clause 6.3.3.2, IS: 803-1976 code book of Indian Standards, minimum


thickness for tank diameter, D = 17.017 m is 6 mm.

So, the thickness of the sections,  $t_4 = t_5 = t_6 = t_7 = 6 \text{ mm}$ 

 Table 8.9: Summary table for thickness sections

| Thickness  | Height, | Thickness without      | Thickness with           | Standard  |
|------------|---------|------------------------|--------------------------|-----------|
| section, n | H(m)    | corrosion allowance, t | corrosion allowance, t + | Thickness |
|            |         | ( <b>mm</b> )          | t <sub>c</sub> (mm)      | (mm)      |
| 1          | 9.4537  | 8.85                   | 9.15                     | 10        |
| 2          | 7.9537  | 7.40                   | 7.70                     | 8         |
| 3          | 6.4537  | 5.95                   | 6.25                     | 7         |
| 4          | 4.9537  | 4.50                   | 4.80                     | 6         |
| 5          | -       | -                      | -                        | 6         |
| 6          | _       | -                      | -                        | 6         |
| 7          | -       | -                      | -                        | 6         |

(For standard thickness values Ref: B.C. Bhattacharyya Book, Table B-1, Appendix B, Page 269)



D = 17.017 m

Fig. 8.2 Thickness sections of storage tank.

### CONCLUSION

Furfural being a very important non-petroleum derived chemical, has a widespread application ranging from its direct usage to synthesis of other important chemicals. India being a country of wide agricultural activities, availability of raw materials for the production process which is biomass like bagasse or rice hulls will not be a matter of concern. Although procuring hardwood may become challenging, but its usage is not essential and can be compensated by other sources of biomass. The production processes suggests that the residence time for hydrolysis reaction in a Plug flow reactor varies from 60 to 120 seconds with a percentage yield of 40 to 60 percent of the biomass taken as feed. Sulphuric acid being the catalyst used varies in concentration ranging from 0.8 to 5% wt. /wt. and the optimum reaction temperature of 170 to 250°C. Although much higher temperature is not suggested as it may result in degradation and charring of the organic thermo labile raw material. Sodium hydroxide is the suggested neutralising agent for sulphuric acid catalyst, although other agents like Potassium bases and other Sodium bases may also be used for this purpose. Product purity ranging from 85 to 95% can be obtained with one distillation column in the production system. More number of distillation columns can be added if higher purity is expected. The waste generated from the production process contains organic matter rich in nutrients and can be used as a fertiliser in agricultural activities after proper processing. Future works may include studies of other raw materials and also the reacting conditions so that higher percentage yields can be obtained.

#### REFERENCE

[1] S. K. Uppal, R. Gupta, R. S. Dhillon, S. Bhatia; Potential of sugarcane bagasse for production of furfural and its derivatives; Sugar Tech, November 2008

[2] Leyanis Mesa, et. al; Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production; Elsevier Ltd, July (2014)

[3] M. Dashtban, et.al.; Production of furfural: Overview and challenges; ResearchGate, 2015.

[4] Hector D Mansilla, et. al.; Acid-Catalysed Hydrolysis of Rice Hull: Evaluation of Furfural Production; Elsevier Ltd, April (1998); 189-193.

[5] F. Carrasco; Production of Furfural by Dilute-Acid Hydrolysis of Wood: Methods for Calculating Yield; Wood and Fibre Science, February (1992).

[6] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-219

[7] Emil Engelund, Thybring; Explaining the heat capacity of wood constituents by molecular vibration; Journal of Material Science, 19 October 2013

[8] Yanliu, Weiliao; A sustainable Lignocellulosic Biodiesel Production integrating solar & Bio-power Generation; Green Chemistry, September 2016

[9] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-217

[10] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-198

[11] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-220

[12] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-351

[13]A.P. Dunlop, Fredus N. Peter Jr., Thermal Stability of Furfural, Industrial Stability of Furfural, December 1940

[14] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-216

[15] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-194

[16] M. Ioelovich, Thermodynamics of Biomass-Based Solid Fuels, Scientific Israel-Technological Advantages, 2018

[17] A. Lee, C. K. Law, An experimental investigation on the vaporization and combustion of methanol and ethanol droplets, Combustion Science and Technology, 1992

[18] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-28

[19] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-94

[20] Robert H. Perry, 1997, Perry's Handbook 7th Ed., McGraw-Hill Companies, Table 2-1

[21] B.K. Dutta, 2012, Principles of Mass Transfer and Separation Processes, 5<sup>th</sup> Print, PHI Learning Pvt. Ltd., Table 7.2, Page 328-329)

[22] Aravindhan M, Production of furfural from Sugarcane bagasse & Experimental studies on microchannel reactor, ResearchGate, April 2017

 [23] B. C. Bhattacharyya, 1985, Introduction to Chemical Equipment Design Mechanical Aspects 1<sup>st</sup> Ed., CBS Publishers, Table B-1, Appendix B, Page 269

[24] IS: 2825-1969 code book of Indian Standards, Table A.1.1, Appendix A, Page 115

[25] IS: 803-1976 code book of Indian Standards, Clause 6.3.3/6.3.3.1

[26] IS: 803-1976 code book of Indian Standards, Clause 6.3.3.2

[27] B.C. Bhattacharyya Book, 1985, Introduction to Chemical Equipment Design
 Mechanical Aspects 1<sup>st</sup> Ed., CBS Publishers, Table B-1, Appendix B, Page 269