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ABSTRACT 

This project explores the application of machine learning algorithms for the accurate 

detection of health indices in power transformers, a crucial undertaking for ensuring the 

reliability and longevity of these vital components within electrical power systems. 

Accurate health index assessment enables timely maintenance actions, preventing 

unexpected failures and potential disruptions to power supply. This research employs a 

diverse set of algorithms, including Elastic Net, Support Vector Regression (SVR), 

Random Forest, and Gradient Boosting, to model and predict the health index, offering a 

multi-faceted approach to health assessment. The performance of these algorithms is 

rigorously evaluated based on the R-squared metric, enabling a robust comparison of their 

predictive capabilities and identifying the most suitable approach for this application. 

To provide a comprehensive understanding of health index profiles across various 

transformer features, this project meticulously analyzes the health index values in relation 

to the diverse features available within the transformer datasheet. This comprehensive 

analysis reveals intricate relationships between transformer health and its various 

characteristics, offering valuable insights into the key factors that influence transformer 

health and potential deterioration. Furthermore, to visualize these relationships and 

facilitate the identification of prominent feature interactions, a heatmap is constructed, 

encompassing all features within the dataset. The heatmap grants a visual representation of 

feature correlations and their potential impact on transformer health, serving as a valuable 

tool for further analysis and interpretation. 

Building upon the individual capabilities of the explored algorithms, this project further 

investigates the implementation of a stacking ensemble model. This model seeks to 

combine the strengths of the previously analyzed algorithms (Linear Regression, SVR, 

Random Forest, and Gradient Boosting) through a hierarchical learning process. By 

leveraging the diverse predictive approaches of these models, the stacking ensemble has 

the potential to achieve superior accuracy and robustness compared to any single model 

alone. 

The findings of this project offer significant contributions to the field of power transformer 

health assessment. By employing and comparing multiple machine learning algorithms, 
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this research establishes a robust framework for health index prediction, aiding in the 

development of effective maintenance strategies. Additionally, the in-depth analysis of 

health index profiles in relation to transformer features uncovers critical insights into the 

factors influencing transformer health, enabling a more comprehensive understanding of 

transformer degradation processes. The construction of a comprehensive heatmap further 

visualizes these relationships, facilitating data interpretation and fostering the identification 

of key feature interactions. Ultimately, the outcomes of this project have the potential to 

significantly enhance the reliability and longevity of power transformers, bolstering the 

resilience of electrical power systems and minimizing the likelihood of unexpected failures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

ACKNOWLEDGEMENT 

With immense gratitude, I acknowledge the invaluable guidance and support that made this 

project possible. Firstly, I express my deepest appreciation to my esteemed Head of 

Department, Prof Runumi Sarma, for providing a nurturing academic environment and 

fostering my research interests. My sincerest thanks extend to my esteemed guide, Prof Ritu 

Nazneen Ara Begum, whose mentorship proved instrumental in shaping this project's 

direction and pushing me to achieve my full potential. I am also deeply indebted to my co-

guide, Prof Barnali Goswami, whose expertise and insights were invaluable in navigating 

the intricacies of my research journey. Finally, I offer heartfelt thanks to everyone who 

assisted me along the way – from professors and classmates who offered their time and 

knowledge to my friends and family who provided unwavering support and encouragement. 

This project would not have come to fruition without the collective contributions of each 

and every one of you. I am truly grateful for your generosity and kindness. 

 

 

 

With regards 

Ajaan Anubhav Borah 

AEC, Guwahati 

 

 

 

 

 

 

 

 

 

 



viii 
 

 TABLE OF CONTENTS 

 

Topics Page No 

Declaration i 

Certificate-I ii 

Certificate-II iii 

Forwarding of Approval iv 

Abstract v 

Acknowledgement vi 

Table of Content vii 

List of Figures viii 

List of Tables ix 

Chapter 1- introduction 

1.1       Motivation 

1.2       Objectives 

1.3       Literature Review 

  

 
1 

2 

2 

Chapter 2- Methodology 

2.1       The Process 

2.2       ML Models 

 

 

7 

14 

Chapter 3 – Results 

3.1        Health Profile 

3.2        Health Index 

3.3        Life Estimation 

 

23 

28 

33 

Chapter 4 - Conclusion 35 

References 37 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF FIGURES 

 

Figure 

No 

 Title  Page No 

1 Outliers of all the features in the datasheet                                   11 

2 Flowchart of the Process  13 

3 Elastic Net 15 

4 Random Forest Regressor 17 

5  SVR Model 19 

6 Gradient Boosting Regressor 20 

7 Suggested Model 21 

8 Health index profile based on different 

features 

27 

9 Health Index predicted by the best model 30 

10 Comparison of best model with 

model 1 

31 

11 Comparison of best model with 

model 2 

31 

12 Comparison of best model with 

model 3 

32 

13 Comparison of best model with 

model 4 

 32 

14 Health Estimation by the best model  34 

 

 

 

 

 

 

 

 

 

 



x 
 

     LIST OF TABLES 

 

Table No Name of the Table Page No 

1 Comparison of Performance 29 

2 Transformer Grading System 34 



 

1 
 

Chapter 1: Introduction 

1.1 Motivation 

Maintaining a robust and reliable power grid necessitates the precise and proactive 

management of its critical components, particularly power transformers. These giants of 

electrical infrastructure silently convert and elevate voltage levels, enabling efficient power 

transmission and distribution. However, their complex internal workings are susceptible to 

gradual degradation due to factors like ageing, thermal stress, and overloading. Early 

detection of these subtle declines in transformer health is crucial for preventing catastrophic 

failures, ensuring grid stability, and optimizing maintenance schedules. 

Traditional methods of transformer health assessment rely on periodic manual inspections 

and offline diagnostic tests. These techniques, while valuable, suffer from limitations like 

being resource-intensive, time-consuming, and often providing a snapshot picture rather 

than continuous health monitoring [2] [7]. This is where the transformative power of 

machine learning (ML) steps in. 

This research project aims to leverage the potential of ML algorithms like, Elastic net, 

Support Vector Regression (SVR), Random Forest, and Gradient Boosting also an 

ensemble of these four to establish a robust and dynamic system for power transformer 

health assessment and lifespan estimation. By feeding historical and real- time operational 

data from various sensors and measurements into these algorithms, we can unlock hidden 

patterns and correlations within the complex tapestry of transformer health indicators. 

These data points might include oil analysis results, vibration measurements, load profiles, 

and environmental parameters. 

By building predictive models and generating a dynamic "health index" – a quantifiable 

metric of the transformer's current condition – we can move beyond reactive maintenance 

towards proactive interventions. The ML algorithms will learn to identify subtle deviations 

from healthy operating parameters, potentially signaling incipient faults or impending 

failures. This early warning system empowers grid operators to schedule timely 

maintenance actions, minimize downtime, and prevent costly repairs, all while maximizing 

the transformer's operational lifespan. 



 

2 
 

Furthermore, by comparing the performance of different ML algorithms like SVR, Random 

Forest, and Gradient Boosting based on metrics like R-squared, we can glean valuable 

insights into their relative strengths and weaknesses in the context of transformer health 

assessment. This comparative analysis will not only guide the selection of the optimal 

algorithm for our specific application but also contribute to the broader field of power grid 

asset management by highlighting the efficacy of different ML approaches. 

This research project aspires to bridge the gap between traditional transformer health 

assessment techniques and the cutting-edge power of ML. By deploying these intelligent 

algorithms, we can pave the way for a future where power transformers become self-aware, 

continuously communicating their health status, and enabling a predictive, data-driven 

approach to grid management. This transition promises not only enhanced reliability and 

efficiency but also increased sustainability and resilience of the critical infrastructure that 

underpins our modern world. 

 

1.2. OBJECTIVES 

 

I. To develop a Machine Learning-based system for accurate health assessment of 

power transformers: 

II. To enable proactive maintenance through lifespan estimation: 

III. To advance the field of power grid asset management through comparative 

analysis. 

IV. To visualize the dynamic health profile of transformers: 

 

By achieving these objectives, this research project aims to empower grid operators with a 

data-driven approach to transformer health assessment, enabling proactive maintenance, 

optimizing lifespan, and contributing to a more stable and sustainable power grid. 

 

1.3. Literature Review 

Maintaining the health and longevity of power transformers is crucial for ensuring grid 

stability and efficient power delivery. Traditionally, this has been achieved through 
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periodic inspections and offline diagnostic tests. However, these methods suffer from 

limitations in timeliness, resource intensiveness, and often provide a static snapshot rather 

than continuous health monitoring. 

The emergence of machine learning (ML) [1] presents a transformative opportunity to 

overcome these limitations and establish a more proactive and data-driven approach to 

transformer health assessment. This literature review explores the existing research 

landscape in applying ML to transformer health assessment and lifespan estimation, with 

specific focus on your project's chosen algorithms: Support Vector Regression (SVR), 

Random Forest, and Gradient Boosting. 

Current Approaches: 

A. Dissolve Gas Analysis: 

Transformers are the workhorses of the power grid, efficiently transmitting electrical 

energy over long distances. However, their insulating oil degrades over time due to 

various factors like partial discharges and overheating. These degradation processes 

liberate distinct gaseous byproducts that dissolve in the oil. DGA is a well-established 

technique that analyzes the composition and quantity of these dissolved gases to 

diagnose internal faults within transformers [2] [3]. 

By meticulously extracting a small oil sample from the transformer, technicians can 

identify the presence and concentration of various gases, including hydrogen (H2), 

methane (CH4), ethylene (C2H4), and acetylene (C2H2). Each gas type points towards 

a specific type of fault, such as low-energy discharges (H2), incipient faults (CH4), and 

arcing (C2H2). By interpreting the gas signature, DGA empowers maintenance 

personnel to pinpoint the nature and severity of the internal fault, enabling timely 

intervention and preventing catastrophic failures [4]. 

While DGA is a powerful tool, interpreting the gas ratios and correlating them to 

specific faults can be challenging, especially for incipient faults with subtle gas 

signatures. Here's where Machine Learning (ML) enters the scene. Researchers have 

successfully integrated various ML algorithms, such as Artificial Neural Networks 
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(ANNs) and Support Vector Machines (SVMs), with DGA data. These algorithms are 

trained on historical data containing gas compositions and corresponding fault types. 

Once trained, the ML models can analyze new DGA data points and provide more 

accurate fault classification compared to traditional methods. 

Beyond fault diagnosis, the future holds immense promise for using ML-enhanced 

DGA for transformer health prognosis [5] [6]. By incorporating historical DGA trends 

and operational data into the ML models, researchers are exploring methods to predict 

the remaining useful life of transformers. This predictive capability would 

revolutionize transformer maintenance practices, enabling maintenance teams to 

prioritize interventions based on equipment health and prevent unnecessary outages. 

B. Partial discharge (PD) Detection: 

Partial discharge (PD) detection plays a crucial role in preventative maintenance for 

high-voltage equipment, particularly transformers [7][8]. These partial discharges are 

localized breakdowns within the insulation system, often caused by imperfections, 

aging, or contamination. Early detection of PD activity is essential because it signifies 

incipient (beginning) degradation of the insulation, which can eventually lead to 

catastrophic failure. By monitoring PD events, maintenance personnel can identify 

potential problems and schedule repairs before a critical breakdown occurs. 

Machine learning algorithms have emerged as powerful tools for analyzing PD data 

and assessing insulation health. One such approach, presented in [9], utilizes a Random 

Forest classifier to categorize PD patterns. This allows for not only the identification 

of PD occurrence but also the estimation of the severity of internal faults within the 

transformer. This capability provides valuable insights for prioritizing maintenance 

actions and optimizing equipment lifespan 

C. Operational Data Analysis: 

Traditionally, maintenance schedules were based on fixed intervals. However, 

advancements in data acquisition and analytics have opened doors to a more 

proactive approach. Operational data analysis offers a treasure trove of insights into 



 

5 
 

a transformer's health, enabling us to move towards condition-based maintenance 

(CBM) [10]. 

By analyzing data streams like load profiles [11], vibration measurements, and environmental 

parameters, we can gain a comprehensive understanding of a transformer's behavior under real-

world operating conditions. This data can be leveraged for various health assessment tasks, 

including [12]: 

• Early Fault Detection: Deviations from normal operating patterns in parameters like 

vibration or temperature can indicate emerging issues, allowing for timely intervention 

before they escalate into catastrophic failures. 

• Remaining Useful Life (RUL) Estimation: Machine learning algorithms can be 

trained on historical data to predict the remaining lifespan of a transformer with greater 

accuracy compared to traditional methods. This empowers informed decisions 

regarding maintenance or replacement strategies. 

• Root Cause Analysis: By correlating operational data with observed anomalies, 

engineers can pinpoint the root cause of transformer problems, facilitating targeted 

repairs and preventing future occurrences. 

 

Gaps and Opportunities: 

• While existing research demonstrates the potential of ML for transformer health 

assessment, there is a need for further exploration of multi-algorithm comparisons 

and feature selection techniques. The comparative analysis of SVR, Random 

Forest, and Gradient Boosting using R-squared as a metric addresses this gap in 

the project. 

• Integrating diverse data sources like DGA operational, and environmental data 

into a single health index framework presents an opportunity for comprehensive 

health assessment. This project focuses on developing a dynamic health index 

based on multiple features aligns with this direction. 

• Visualizing the health index profile over time for individual transformers can 

provide valuable insights and facilitate trend analysis. So, here main objective is 

to create graphical representations of the health index addressing this need for 

visual interpretation. 
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This literature review highlights the promising potential of ML for enhancing power 

transformer health assessment and lifespan estimation. In this project Elastic Net, SVR, 

Random Forest, and Gradient Boosting is used to develop a dynamic health index with 

visual representations, address key gaps in existing research and contribute to a more data- 

driven approach to transformer management. 
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Chapter 2: Methodology 

2.1 The Process 

This method leverages data readily available from platforms like Kaggle, making it a 

potentially cost-effective and data-driven solution. Here is a breakdown of the key steps 

involved: 

1. Data Pre-processing: 

• Environment Setup:  

o Anaconda: A popular platform for scientific computing that provides a user-

friendly interface and pre-installed libraries. 

o pandas: A powerful Python library for data manipulation and analysis. It 

excels at handling large datasets efficiently. 

o matplotlib & seaborn: These libraries create informative visualizations like 

heatmaps and scatterplots to explore the data. 

o scikit-learn: A comprehensive machine learning library offering a variety of 

algorithms for training and evaluating models. 

• Data Loading and Exploration:  

o The Kaggle dataset is loaded into a panda Data Frame, a structured format 

ideal for data analysis. 

o The structure, data types (e.g., numerical, categorical), and summary 

statistics (e.g., mean, standard deviation) of the data are examined to 

understand its characteristics. 

• Data Cleaning:  

o Techniques like removing rows with missing values or creating custom 

functions are employed to address missing data points that could negatively 

impact the model's performance. 

o Outliers, which are data points that deviate significantly from the majority, 

are also identified, and handled appropriately. This might involve removing 

them if justified or transforming them to minimize their influence. 
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In the initial exploration of the dataset, boxplots proved invaluable in revealing outlying 

data points for several key features. The analysis unveiled clear thresholds beyond which 

data could be considered anomalous. For instance, hydrogen values above 15,000, oxygen 

exceeding 40,000, and nitrogen surpassing 80,000 all stood out as potential outliers. 

Similarly, methane values above 2,000, carbon monoxide exceeding 1,250, and carbon 

dioxide exceeding 15,000 raised eyebrows. Further, elevated levels of ethylene (beyond 

7,500), ethane (beyond 3,000), and acetylene (beyond 6,000) demanded attention. Even the 

non-chemical features hinted at outliers, with power factor exceeding 30 and water content 

surpassing 100 joining the list. Notably, the "health index" itself exhibited outliers, with 

values above 80 raising concerns. 

However, simply identifying these outliers wasn't enough. Understanding their origins and 

potential impact on the analysis became crucial. Were these isolated incidents or indicative 

of larger trends? Did they represent measurement errors, inherent variabilities, or anomalies 

unique to specific sub-groups within the data? Delving deeper to answer these questions 

became paramount. Ultimately, after careful consideration and analysis, I opted to clean the 

data by dropping these outlying points. This decision was not taken lightly, and the potential 

loss of valuable information was not ignored. 

In the face of significant discrepancies and the potential for skewing the analysis, removing 

these outliers appeared to be the most judicious course of action. This data cleaning step 

paved the way for a more robust and reliable analysis, ensuring the remaining data points 

formed a cleaner foundation for drawing meaningful conclusions from the research. While 

the cleaned data undoubtedly offered a clearer picture, the discarded outliers remained an 

intriguing facet of the dataset. Recognizing their existence and potential influence prompted 

further investigations into their source and characteristics. These additional explorations 

could ultimately yield valuable insights, even if they weren't incorporated into the main 

analysis. After all, sometimes understanding the fringes can shed light on the core, and the 

story of the outliers, though separate, could still contribute to the richness and complexity 

of the overall narrative. 
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Figure (a) : Outliers of Hydrogen and Oxygen 

Figure (b): Outliers of Nitrogen and Methane 

Figure (c): Outliers of CO andCO2 
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Figure (d): Outliers of Ethylene and Ethane 

Figure (e): Outliers of Acetylene and DBDS 

Figure (f): Outliers of PF and Methane 
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Figure (g): Outliers of Dielectric rigidity and water content 

Figure 1 (a- g): Detection of Outliers of all the features                                                      

2. Exploratory Data Analysis (EDA): 

• Visualization:  

o Heatmaps are created to visually represent the correlation between different 

features in the dataset. Correlations indicate how changes in one feature 

might be related to changes in another. 

o Scatterplots are used to delve deeper into the relationship between individual 

features and the target variable, which is likely the health index of the 

transformer. Analyzing these plots helps to understand how specific factors 

(features) influence the overall health of the transformer. 

• Feature Scaling:  

o Feature scaling ensures all features are on a similar scale. This is crucial for 

many machine learning algorithms as they might be biased towards features 

with larger values. Standardization is a common technique that transforms 

each feature to have a mean of 0 and a standard deviation of 1. This levels 

the playing field for all features and allows the model to focus on the 

underlying relationships between them and the target variable. 

3. Model Training and Evaluation: 

• Data Splitting:  
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o The pre-processed data is divided into two sets: a training set and a testing 

set. The training set is used to train the machine learning model, while the 

testing set is used to evaluate its performance on unseen data. This helps to 

prevent overfitting, where the model simply memorizes the training data and 

performs poorly on new data. 

• Model Selection and Training:  

o Different machine learning models, such as Elastic Net and random forest 

regression, are evaluated. 

o Elastic Net is a regularized regression model that combines L1 and L2 

regularization, potentially leading to improved model performance and 

interpretability. 

o Random forest regression is an ensemble learning method that combines the 

predictions of multiple decision trees, leading to robustness and potentially 

higher accuracy. 

o Other models might also be considered based on the specific characteristics 

of the data and the desired outcome. 

• Model Evaluation:  

o The performance of each model is evaluated on the testing set using metrics 

like R-squared. R-squared indicates the proportion of variance in the target 

variable (health index) that can be explained by the model. A higher R-

squared value signifies a better fit and superior prediction capability. 

 

• Model Selection:  

o Based on the evaluation metrics, the model with the highest R-squared score 

is chosen as the best model for predicting the health index of power 

transformers. 
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               Figure 2: Flowchart of the Process 

 

4. Remaining Lifespan Estimation: 

• Literature Review:  

o Existing research and established industry knowledge are consulted to 

identify the relationship between the predicted health index and the 

remaining lifespan of transformers. This relationship might be represented 
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by formulas or degradation curves that map the health index to the expected 

remaining operational life of the transformer. 

• Lifespan Prediction:  

o By leveraging the chosen machine learning model to predict the health index 

for a specific transformer, and then using the established relationship 

between health index and remaining lifespan (obtained from the literature 

review), the remaining lifespan of that transformer can be estimated. 

This approach offers a data-driven and potentially more efficient way to assess transformer 

health and predict their remaining lifespan. By proactively identifying transformers with 

declining health, maintenance schedules can be optimized, preventing unexpected failures 

and associated downtime costs.  

2.2. ML Models 

I. Elastic Net: Combining Strengths for Feature Selection and Regularization 

Elastic Net, a regression technique that builds upon linear regression by incorporating two 

regularization methods: L1 and L2 [13]. Let's break down what this means: 

• Linear Regression: This is a statistical method that models the relationship between 

a dependent variable (what you're trying to predict) and one or more independent 

variables (the factors influencing the prediction) [14]. It essentially creates a best-

fitting straight line through the data points. 

• Regularization: In machine learning, this is a process that helps prevent a model 

from overfitting the training data [13]. Overfitting occurs when a model becomes 

too specific to the training data and performs poorly on unseen data. Regularization 

techniques add constraints to the model, reducing its flexibility and complexity. 

The Power of L1 and L2 : 

• L1 Regularization (Lasso): This technique penalizes the model for the absolute 

values of its coefficients (the weights assigned to each independent variable). A 

larger coefficient value indicates a stronger influence of that variable on the 
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prediction. L1 regularization encourages sparsity, meaning it can drive some 

coefficient values to zero. This essentially removes those features (independent 

variables) from the model, helping to identify irrelevant ones [16]. 

• L2 Regularization (Ridge): This technique penalizes the model for the sum of 

squared coefficients. It discourages large coefficient values, pushing them towards 

zero but not necessarily eliminating them completely. L2 regularization helps to 

shrink the coefficients, reducing the overall complexity of the model and preventing 

overfitting [17]. 

     

Figure 3: Elastic Net [18]                                                                   

Elastic Net: Striking a Balance: Elastic Net combines L1 and L2 regularization. The 

parameters l1_ratio and alpha control the relative influence of each penalty: 

• l1_ratio (set to 0.8): This value prioritizes feature selection. A higher l1_ratio 

strengthens the L1 penalty, making it more likely for coefficients to become zero 

and features to be dropped. In this case, 0.8 indicates a strong focus on identifying 

and removing irrelevant features. 
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• alpha (set to 0.5): This value controls the overall regularization strength. A higher 

alpha increases the combined effect of L1 and L2 penalties, leading to a more 

shrunken and less flexible model. Here, 0.5 suggests a moderate level of overall 

regularization while still allowing for some feature selection driven by the L1 

penalty. 

Elastic Net (model1) aims to achieve the following:  

a) Feature Selection: By leveraging L1 regularization, it identifies and removes 

irrelevant features from the model, potentially improving interpretability and 

reducing complexity. 

b) Regularization: It combines L1 and L2 penalties to prevent overfitting and enhance 

the model's ability to generalize unseen data. 

c) Tuned Parameters: The chosen values for l1_ratio and alpha prioritize feature 

selection while maintaining a moderate level of overall regularization. 

II. Random Forest Regressor: Power in Numbers 

Random Forest Regressor, a regression technique that leverages the collective power of 

multiple decision trees. Let's delve into its key aspects: 

• Ensemble Method: Random Forest doesn't rely on a single model; instead, it creates 

a group (ensemble) of decision trees. Each tree makes a prediction, and the final 

output is typically an average (for regression) or majority vote (for classification) of 

the individual predictions. This ensemble approach helps reduce variance and 

improve the overall accuracy and robustness of the model [19]. 

• Decision Trees: These are tree-like structures where data is split based on certain 

conditions (usually rules involving the independent variables) at each node. The 

splits continue until the data at a particular node (leaf) is sufficiently homogeneous 

regarding the dependent variable (what you're trying to predict). 
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Advantages for Regression Tasks: 

• Robust to Outliers: Random Forests are less susceptible to the influence of outliers 

(extreme data points) compared to some other regression methods. This is because 

individual trees might be affected by outliers, but averaging or voting across many 

trees reduces their impact on the final prediction [20]. 

• Effective in High Dimensions: Random Forests can handle datasets with a high 

number of independent variables (features) efficiently [21 . During tree 

construction, only a random subset of features is considered at each split point, 

which helps prevent overfitting and improves performance in high-dimensional 

settings. 

 

Figure 4: Random Forest Regressor [22] 

 

Balancing Complexity and Generalizability: 

• estimators (set to 150): This parameter controls the number of decision trees to build 

in the forest. A higher number generally leads to lower variance (more stable 
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predictions) but can also increase model complexity. Here, 150 suggests a moderate 

number of trees, balancing accuracy with efficiency. 

• Max depth (set to 5): This parameter restricts the maximum depth (number of splits) 

allowed in each tree. Deeper trees can capture more complex relationships but are 

also more prone to overfitting. Setting max_depth to 5 promotes simpler trees, 

reducing complexity and potentially improving generalizability (performance on 

unseen data). 

• random state: This parameter injects randomness into the tree creation process. 

Fixing random state ensures that the same ensemble of trees is generated every time 

the model is run, leading to reproducible results. This is helpful for debugging, 

comparing different model configurations, and sharing your work with others. 

Thus, Random Forest Regressor (model2) constructs a robust ensemble of decision trees to 

make predictions. It's advantageous for handling outliers, managing high-dimensional data, 

and achieving a balance between model complexity and generalizability through carefully 

chosen parameters. This method is a popular choice for regression tasks due to its accuracy 

and robustness. 

III. Support Vector Regression: Capturing Complexities  

Support Vector Regression (SVR), a technique that tackles regression tasks, particularly 

those involving non-linear relationships. Here's a breakdown of its key features: 

• Non-Linear Mapping (Kernel Function): Unlike linear regression, SVR can learn 

non-linear relationships between independent variables (features) and the dependent 

variable (what you're trying to predict). It achieves this by employing a kernel 

function [23]. This function essentially transforms the data points from their original 

space into a higher-dimensional space where linear relationships might become 

more evident. 

• Radial Basis Function (RBF Kernel): This is a specific type of kernel function 

commonly used in SVR. It's known for its flexibility in handling various types of 

non-linear relationships. Imagine the data points being projected onto a sphere in 
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higher-dimensional space. The RBF kernel considers the distance between points 

on this sphere to determine their influence on the model [24]. 

 

                   Figure 5: SVR Model [25] 

Balancing Accuracy and Complexity 

• Regularization Parameter (C): This parameter plays a crucial role in SVR. It 

controls the trade-off between fitting the training data closely and keeping the model 

complexity under control. A high C value prioritizes fitting the data well, potentially 

leading to overfitting. Conversely, a low C value focuses on simplicity but might 

underfit the data. 

• C (set to 15.0): Here, the chosen value suggests a moderate level of regularization. 

The model attempts to fit the data reasonably well while keeping its complexity in 

check to avoid overfitting and improve its generalizability (performance on unseen 

data) 

In a Nutshell, Support Vector Regression (SVR) utilizes a kernel function, like the RBF 

kernel here, to handle non-linear relationships. It also employs a regularization parameter 

(C) to balance the model's ability to fit the data with its generalizability. By carefully setting 

this parameter, SVR aims to achieve accurate predictions while managing complexity. This 
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technique is well-suited for regression tasks where linear relationships might not be 

sufficient. 

IV. Gradient Boosting Regressor: Sequential Learners 

 

              Figure 6 : Gradient Boosting Regressor [26] 

Gradient Boosting Regressor, another ensemble method that leverages the power of 

multiple models. Let's explore its core concepts: 

• Ensemble Method: Similar to Random Forests, Gradient Boosting doesn't rely on a 

single model. Instead, it builds a sequence of models (typically decision trees) in a 

stage-wise fashion. Each new model focuses on correcting the errors of the previous 

ones, leading to a cumulative improvement in prediction accuracy. 

• Sequential Learning: This is the key characteristic of Gradient Boosting. The first 

tree is built using the original data. Subsequent trees are trained on the residuals 

(errors) of the previous model's predictions. This approach helps the ensemble to 

gradually refine its predictions [27]. 

Reducing Variance and Complexity 

• n_estimators (set to 100): This parameter controls the number of decision trees to 

build in the sequence. A higher number generally leads to lower variance (more 

stable predictions) but can also increase model complexity [28][29]. Here, 100 
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suggests a moderate number of trees, aiming to reduce variance without introducing 

excessive complexity. 

• max_depth (set to 3): This parameter restricts the maximum depth (number of splits) 

allowed in each tree. Shallower trees (like those with max_depth=3) are less prone 

to overfitting and can help control model complexity [30][31]. This configuration 

prioritizes reducing variance while keeping the model relatively simple. 

• learning_rate (set to 0.1): This parameter controls the impact of each new tree on 

the overall model. A higher learning rate leads to larger adjustments in subsequent 

trees, but it can also lead to instability [32]. Here, a learning rate of 0.1 suggests 

smaller adjustments, allowing the ensemble to learn gradually and further reduce 

variance. 

So, Gradient Boosting Regressor builds a sequence of decision trees, each focusing on 

correcting the errors of the previous ones. The chosen configuration emphasizes reducing 

variance (more stable predictions) by using a moderate number of trees with limited depth 

and a small learning rate. This approach helps to control model complexity and improve 

generalizability. 

V. Stacking Regressor: Combining the Best of Many 

 

                        Figure 7: Suggested Model 
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Stacking Regressor, a powerful ensemble method that leverages the combined strengths of 

multiple models (model1, model2, model3, and model4 in this case). Let's break down its 

key features: 

• Ensemble Learning: Stacking builds upon the idea of ensemble methods. It doesn't 

discard the predictions made by individual models (model1 to model4). Instead, it 

treats these predictions as new features and trains a final model (often a linear 

regression model here) to combine them effectively. 

• Harnessing Diverse Strengths: By combining the predictions from different models 

(potentially with varying strengths and weaknesses), stacking aims to capture a 

more comprehensive picture of the data. Each base model might excel at learning 

specific aspects of the relationships within the data. Stacking attempts to leverage 

this diversity to potentially achieve better performance than any single model. 

• Linear Regression as Final Estimator: The final model used in this stacking model 

is a linear regression model. This choice prioritizes simplicity and interpretability. 

Linear regression offers a clear picture of how each base model's prediction 

contributes to the final output. 

Overall, Stacking Regressor combines predictions from various models (model1 to model4) 

to potentially achieve better performance than any single model. It leverages the strengths 

of each base model and utilizes a simple, interpretable linear regression model to make the 

final predictions. This approach is a powerful technique for extracting the most out of 

diverse models and potentially improving the overall accuracy and generalizability of the 

regression task. 
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Chapter 3: Results 

3.1.  Health Profile: 

 

Figure (p): Methane vs Hydrogen 

 

 

 

Figure (q): Methane vs Ethylene 
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Figure (r): Oxygen vs Hydrogen 

 

 

 

Figure (s): CO vs CO2 
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Figure (t): Nitrogen vs Hydrogen 

 

 

 

Figure (u): Power factor vs Interfacial V 
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Figure (v): Interfacial V vs Dielectric rigidity 

 

 

 

Figure (w): Dielectric rigidity vs Power Factor 
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Figure (x): Water Content vs DBDS 

Figure 8 (p-x): Health Index Profile Based on different Features 

Scatterplots were employed to unveil captivating visual narratives, revealing intricate 

relationships between various features and their influence on the "Health index." Each plot 

unfolded a unique story, with points dancing across the canvas, their hues whispering tales 

of correlation and influence. 

Hydrogen and methane intertwined in a captivating dance, their interplay painted against a 

backdrop of varying "Health index" values. The hues shifted from cool blues to vibrant 

greens, hinting at a dynamic connection between these two features and their impact on 

health. 

Ethylene and methane shared a similarly intriguing dialogue, their points weaving a tapestry 

of potential associations. The "Health index" colored their interactions, suggesting that its 

influence extended beyond individual features to encompass their interplay as well. 

Oxygen and hydrogen, fundamental elements of life, shared a stage painted in shades of the 

"Health index." Their interplay hinted at a delicate balance, where deviations in one could 

ripple through the other, echoing within the spectrum of health outcomes. 
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CO and CO2, gases often intertwined in environmental concerns, revealed their own 

spectral ballet. The hues of the "Health index" painted their relationship, suggesting a 

potential link between atmospheric composition and health outcomes. 

Nitrogen and hydrogen, partners in countless chemical reactions, engaged in a captivating 

visual dialogue. Their scatterplot hinted at a delicate interplay, where variations in one 

could reverberate through the other, influencing the "Health index" in subtle yet significant 

ways. 

DBDS and water content, features often associated with electrical systems, revealed a 

surprising dance of potential correlations. Their scatterplot, colored by the "Health index," 

suggested a link between electrical properties and health outcomes, inviting further 

exploration. 

Interfacial V, power factor, and dielectric rigidity, features entwined in the realm of 

electrical engineering, spun a tale of interconnectedness. Their scatterplots, vibrant with the 

hues of the "Health index," hinted at the profound influence of electrical properties on 

health, underscoring the importance of understanding their complex relationships. 

These scatterplots, like vibrant brushstrokes on a canvas, painted a captivating portrait of 

interconnectedness. Each feature, each dance of points, whispered a secret of the "Health 

index," revealing the delicate balance of factors that contribute to health outcomes. 

3.2. Health Index 

• R-squared is a statistical metric used in regression analysis to assess how well a 

model fits the data. It represents the proportion of variance (spread) in the dependent 

variable (what you're trying to predict) that's explained by the independent variables 

(features used for prediction). 

• A higher R-squared value (closer to 1) generally indicates a better fit. However, it's 

important to consider the number of features in the model. A complex model with 

many features can achieve a high R-squared simply by overfitting the data, which 

means it performs well on the training data but may not generalize well to unseen 

data. 
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Model Performance: 

• Model 1 (ElasticNet): R-squared = 0.5247. This score suggests that Model 1 

captures a moderate amount of variance (around 52%) in the data. 

• Model 2 (Random Forest): R-squared = 0.7026. This is a significantly better fit than 

Model 1, indicating that the Random Forest captures a larger portion (around 70%) 

of the variance. 

• Model 3 (SVR): R-squared = -0.0937 (negative value). A negative R-squared implies 

the model performs worse than predicted by simply averaging the dependent 

variable. It's likely that this model is not suitable for the data. 

• Model 4 (Gradient Boosting): R-squared = 0.6791. This score is similar to Model 

1, suggesting a moderate fit. 

• Model 5 (Stacking Regressor): R-squared = 0.7153. This is the highest R-squared 

among all models, indicating that the Stacking Regressor achieves the best overall 

fit. 

 

              Table 1: Comparison of Performance  

 

 

Model Number Model Name  R-squared value 

1 Elastic Net 0.5247 

2 Random Forest 0.7026. 

3 SVR -0.0937 

4 Gradient Boosting 0.6791 

5 Stacking Regressor 0.7153 
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                                                   Figure 9: Health Index predicted by the best model 

 

Stacking Regressor and Ensemble Methods: 

• The Stacking Regressor is an ensemble method that combines predictions from 

multiple models (here, Model 1, 2, 4, and 3) to create a potentially more accurate 

final prediction. 

• The idea is that by leveraging the strengths of different models, the ensemble can 

outperform any single model. In this case, Stacking Regressor seems to have 

captured more of the variance in the data compared to the individual models. 

Interpretation: 

• Based on the R-squared scores, Model 2 (Random Forest) appears to be a good 

initial choice due to its strong performance. 

• However, the Stacking Regressor (Model 5) achieves an even better fit by 

combining the predictions from multiple models. This suggests that the Stacking 

Regressor has learned from the strengths of each individual model, resulting in a 

more robust prediction. 
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                                           Figure 10: Comparison of best model with model 1 

 

 

Figure 11: Comparison of best model with model 2 
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Figure 12: Comparison of best model with model 3 

 

Figure 13: Comparison of Best model with model 4 
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3.3. Life Estimation 

Table 2 outlines a health grading system (A-E) for power transformers based on their 

estimated remaining lifespan. This system provides a clear and concise way to assess 

transformer condition and guide maintenance decisions. 

Category A: Minor Deterioration (Healthy) 

• Health Index: 85-100 (High) 

• Remaining Life: Greater than 15 years (Excellent) 

• Description: These transformers are in excellent condition with minimal wear and 

tear. They are expected to operate reliably for a long time, potentially requiring only 

routine maintenance like oil changes and inspections. 

Category B: Significant Deterioration (Good) 

• Health Index: 70-85 (Good) 

• Remaining Life: Greater than 10 years (Good) 

• Description: Compared to Category A, these transformers show a more noticeable 

decline in condition. They are still operational, but closer monitoring is 

recommended. Depending on the specific issues, corrective maintenance like 

tightening connections or addressing minor leaks might be necessary to ensure 

continued reliable operation. 

Category C: Widespread Deterioration (Needs Attention) 

• Health Index: 50-70 (Fair) 

• Remaining Life: Greater than 10 years (Limited) 

• Description: Transformers in Category C exhibit significant degradation across 

various components. Their remaining lifespan is considerably reduced compared to 

the previous categories. Preventative maintenance or refurbishment becomes 

crucial to avoid unexpected failures. Refurbishment could involve replacing worn-

out components or treating the insulation to extend the transformer's life. 

Category D: Widespread Very Serious Deterioration (Critical) 

• Health Index: 30-50 (Poor) 

• Remaining Life: Greater than 3 years (Very Limited) 

• Description: This category signifies a critical stage. The transformer experiences 

severe degradation throughout its system, and its functionality is highly 

compromised. Immediate action is required to prevent catastrophic failure. This 
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could involve replacing the transformer entirely or performing emergency repairs 

to temporarily extend its operation until a replacement is available. 

Category E: Extensive Deterioration (Inoperable) 

• Health Index: 0-30 (Very Poor) 

• Remaining Life: Greater than 1 year (Not Functional) 

• Description: Transformers in Category E have suffered extensive damage and are 

no longer operational. Replacing the transformer is the only viable course of action. 

 

Table 2: Transformer Grading System 

Grade Health 

Index 

Remaining 

Life (in years) 

A 85-100 >15 

B 70-85 >10 

C 50-70 >10 

D 30-50 >3 

E 0-30 >1 

 

 

 

Figure 14: Life Estimation of the Transformers 
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                                                               Chapter 4: CONCLUSION 

This research shows the successful application of machine learning, particularly a 

technique called Stacking Regressor, for predicting the health index of power transformers. 

Here's a breakdown of the key points: 

Success of Stacking Regressor: 

• The study compared various machine learning models for predicting a transformer's 

health index, a crucial indicator of its remaining lifespan. 

• The Stacking Regressor emerged as the most effective model, achieving a fit 

exceeding 71% (R-squared). This metric (R-squared) signifies how well the model's 

predictions align with the actual health index values. 

• The Stacking Regressor's strength lies in its ability to combine the strengths of 

individual models like Random Forest and potentially even higher-performing 

models not explicitly mentioned (Model 5 & 6). By leveraging these combined 

strengths, it delivers superior prediction accuracy. 

Future Research Directions: 

• Understanding Individual Model Contributions: A deeper analysis is recommended 

to understand how each model within the Stacking Regressor contributes to the 

final prediction. This would reveal which models provide the most valuable 

information and potentially allow for optimizing the ensemble for even better 

results. 

 

• Improving SVR Performance: The underperformance of Model 3 (Support Vector 

Regression - SVR) needs investigation. Exploring alternative parameter tuning 

techniques or potentially using a different kernel function within the SVR model 

could significantly improve its accuracy. A well-performing SVR could become a 

valuable contributor to the ensemble in future iterations. 

 

• Real-World Implementation: Integrating the Stacking Regressor into a real-world 

transformer health monitoring system would be a significant advancement. This 

would enable:  

o Real-time prediction of a transformer's health index. 

o Estimation of remaining lifespan, facilitating proactive maintenance 

strategies. 

o Potential prevention of costly transformer failures through early 

intervention. 
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Overall Impact: 

By addressing these future research avenues, researchers can further refine the Stacking 

Regressor's accuracy and pave the way for its practical application in power grid 

management. This can ultimately enhance the reliability and efficiency of the entire power 

grid infrastructure. 
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