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Abstract

Railway safety is a major concern throughout the world. Unfortunately, railway accidents are
common and a good number of them occur due to derailment of the train off the track. One
way to minimize the accidents due to derailment, is to ensure proper health of the train and
the track. This can be achieved by condition monitoring of the train and the track. Condition
monitoring of railway vehicles and track has been a major thrust area of research. Although
a lot of work is done towards this goal, still a lot needs to be done to achieve satisfactory
results. In this work, a few trains of North-East Frontier Railway(NFR) are considered
for analysis. A suitable live track at Chandmari, Guwahati, Assam, India is selected for
sensor attachment; as suggested by the NFR authority. Two sensors viz. ADXL335 and
MPU6050 are used as sensing devices while Arduino boards are utilized as development
boards. The vibration signals generated by the trains while in motion over the track, are
captured by the sensors attached to the fish-plate of the track. The captured vibration signals
are transferred and stored in a laptop. Many signal processing techniques in time-domain,
frequency-domain, time-frequency domain, statistical measures and Graph Signal Processing
technique are utilized for the analyses of these signals. These vibration signals contain
information regarding both the train and the track. By analyzing these vibration signals,
modelling of railway track is achieved, faults are detected and also the trains are categorized
in different categories.
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1
Introduction

1.1 Importance of condition monitoring of a system

The assessment of system features for estimating the system condition is generally called
condition monitoring. Condition monitoring of a system is a process to monitor one or
more key parameters such as vibration, temperature etc. so as to find out the operating
condition, efficiency etc. of the system that enables one to estimate the overall health of
the system. Condition monitoring helps one collect all the necessary data that can ensure
timely maintenance of any system thereby reducing overall cost of repairing and downtime.
Once a machine is installed, it is important to monitor its health. Smooth operation of a
plant depends on smooth operation of its different components; where different machines,
machine-trains and other components become very important. Proper maintenance of these
components ensures smooth running of the plant and operation. With proper maintenance,
sudden breakdown of different machines can be avoided. Also proper monitoring ensures
timely repair of faulty parts and replacement of damaged parts. Hence a proper schedule for
different activities can be maintained and a smooth transition of plant status from working to
shutdown and shutdown to working can be achieved. Same philosophy may be extended to
the railways. By proper monitoring of train and track condition one can achieve timely repair
of different train components as well as the tracks .The purpose of condition monitoring is to
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achieve timely detection of different deterioration and rectify different faults before any major
breakdown occurs. Proper condition monitoring in railways will ensure minimum downtime
of track or different trains. Passenger comforts can also be taken care of by condition
monitoring of railways. Good health of tracks and trains will ensure minimum accidents
by minimizing derailment incidents. Railways are one of the most common, economical
and widely used modes of transport throughout the world. In India, it is very widely used,
Indian Railways run more than 20,000 passenger trains daily. In India, lakhs of people
use trains daily for their commute. Hence maintaining the trains and track at their best of
health is very necessary. Condition-based maintenance for railways can ensure minimum
downtime and safety for the passengers. Condition Based Maintenance(CBM) is a well
researched field especially in application to rotating machines. As far as CBM is considered
for railways, although a lot of work has been reported but mostly it is restricted to finding
wheel defects, suspension and bearing faults. For maintenance, generally three schemes
are followed; viz. Breakdown maintenance, Preventive maintenance and condition-based
maintenance [1]. Breakdown maintenance is used when the machine under consideration
is of non-critical nature. If the machine or the components under consideration are not
costly, easily available, then this type of maintenance can be considered. Also downtime
of the plant or the process due to this type of maintenance should not be very large i.e. the
machinery under consideration is not only cheap and available but also should be easily
replaceable. For the plant and the processes where downtime due to particular machinery can
bring significant loss, or there are safety issues, this type of maintenance is not acceptable.
Preventive maintenance is the kind of maintenance, where a fixed schedule of maintenance is
maintained. Generally this schedule is fixed based on experience or some industry standards.
A fixed interval such as 3000 operating hours or once a year is common [1]. Although
this type of maintenance is quite common in many industries it may not be the best type of
maintenance as there may be some sudden breakdown if all the components are not monitored
properly and consistently. Sudden breakdown may increase loss of production time , also it
will be time consuming to find out the fault , whether to repair or replace etc. Without proper
monitoring the quality of products may deteriorate and simply replacing the machinery at a
regular interval can not guarantee that there will be no sudden breakdown and in many cases
replacing all the components after a fixed interval may not be necessary. Condition-based
maintenance is superior compared to the previous two schemes especially if the process or
machinery under condition is of critical nature. As mentioned before, replacing everything
at a regular interval may not be necessary and again some components may break down
before their lifespan. Hence condition based maintenance is a good approach for critical
applications. Also regular monitoring may indicate when some machinery can break down
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Fig. 1.1 The classic Bathtub Curve of a life cycle of a machine [1]

and the operators can be prepared to replace or repair beforehand. Overall condition-based
maintenance is a good approach to prevent sudden breakdown and also useful in increasing
overall safety. Generally a machine’s life can be indicated by the classic bathtub curve as
shown in fig. 1.1 [1].

Railway system is complex and various factors affect their aging process and thereby
changing their behavior pattern over time. Smooth operation of a railway system depends on
the components such as rolling stock(the vehicle) and the infrastructure(the tracks, signaling,
power supply and passenger facilities) [2]. Again in the vehicle there are many components
such as the wagon itself, primary and secondary suspensions, the bogie and the wheels. The
track system consists of the track which sits upon sleepers which are in turn spread over
ballast and the entire structure is on the properly made substrate on the ground. It is of the
utmost importance to keep these components at their best health to ensure passenger comfort
and safety. In this type of system such as railway system breakdown maintenance is not
acceptable at all while preventive maintenance may not yield the best result. Condition-based
maintenance is the best option for such critical systems to operate smoothly. Condition
monitoring can be achieved by different methods such as aural, visual, operational variables,
temperature, wear debris and vibration [1]. Aural and visual methods are quite simple
and used by personnel with quite experience in their field. Aural method involves simply
listening to the sound produced by the machine or machine component and estimating any
change in operating condition of the machine. Sometimes a microphone can be used for a
better observation. Visual inspection may include observing the amplitudes of the vibration
produced and/or any change noticeable. Visual inspection also involves monitoring for
any color change in the hot area of the system which may be an indicative of unusual heat
production. For electrical systems, monitoring of currents and voltages are very important.



4 Introduction

Operational variable methods involve measuring of different variables associated with the
process. Constant monitoring of current,voltage, temperature etc. falls under this category.
Wear debris is generally generated where there is any moving component. This can be
found in lubricating oils, grease etc. Vibration monitoring is most widely used because of its
reliability and ability to find out the condition of different components of a system.

1.2 Vibration signal as an indicator of health of machine
and railway tracks and trains

Vibration analysis as a tool for diagnosis and predictive health maintenance is based on the
fact that all mechanical equipment while in motion generates some vibration. This generated
vibration is unique for different machines and is an indicator of its operating conditions.
This is also called the signature of that machine as the generated vibration profile is unique
for different machine and machine components. Whether the motion is linear, rotating or
reciprocating, vibration analysis can be used for diagnosis and preventive measures. The
major advantages of vibration analysis are that it is non-destructive and can be used online,
that is when the system is operating. The system need not to be shut down nor does it require
any opening of the system and system components. Properly implemented vibration based
condition monitoring can be a very reliable and efficient mode of condition monitoring.
It promises to provide data that is sufficient to analyze and find out any shift in operating
condition, probable failures in near future or if there is any urgent action to be taken. The
dynamics of a railway vehicle represents a balance between forces acting at the wheel-rail
interaction, suspension forces and inertia forces. The excessive response of the rail vehicle
to track irregularities can result in poor guidance and ride quality which may increase wear
on the wheel and rail, and can lead to derailment [3].Vibration analysis for railways is
a popular technique. By properly utilizing the analysis of vibration signals generated by
the train running over a track one can design a simple yet effective condition monitoring
technique for the train track system. An increase in vibration indicates aging. Vibration may
increase due to wear-out, axle bend, change of damping due to aging etc. Thus monitoring
the vibration level proves to be a good condition monitoring technique. Vibration based
condition monitoring approach can be classified in the following categories:

• Time domain

• Frequency domain

• Time-Frequency domain
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• Quefrency domain

Time domain analysis and frequency domain analysis are the most discussed approaches
in literature [4].

Time domain: Time domain approaches aim to compute signal statistics and signal shape
factors characterizing periodic behavior. Since time domain data rely on historical perspective
of the vibration data it is important to normalize the collected data so as to remove influence
of variables such as load etc. Reference or baseline data may be prepared for each machine
during installation when the machine is certified to be of good condition. The most used
time domain features are: Root Mean Square(RMS), mean, peak value, crest factor, skewness
and kurtosis. The RMS is used to compute the average power of the system’s vibrations.
The mean is estimated in the rectified vibration signal because in raw signals the mean
remains close to zero. These features are expected to increase when machines deteriorate.
Peak value and crest factor catches instantaneous accelerations or burst closely related with
cracks and indentations. Skewness and kurtosis are respectively the third order and the fourth
order signal’s statistical moment. For normally distributed data, skewness = 0 and kurtosis
= 3; these reference values allow to track shifts in the condition. Force generated by the
machines or different components of the machine may be captured by the accelerometer
data. RMS value of the acceleration is the best measure for this type of analysis [5]. While
the vibration data may be compared with the baseline data to find out its condition another
method of comparison is to compare the data with industrial standards. The International
Standards Organization (ISO) established the vibration-severity standards (ISO 2372 is such
a standard). These data are applicable for comparison with filtered narrow-band data taken
from machine-trains with true running speeds between 600 and 12,000 rpm. The values
from the table include all vibration energy between a lower limit of 0.3X of true running
speed and an upper limit of 3.0X. For example, an 1,800-rpm machine would have a filtered
narrow-band between 540 (1,800 X 0.3) and 5,400 rpm (1,800 X 3.0) [5].

Frequency-domain: Only time-domain analysis is not sufficient for proper diagnosis of a
machine or structure. Time-domain only provides limited information. However in frequency
analysis we can find out the concentration of energy around distinct frequency components.
Since the dynamic characteristics of individual components of the system are usually known,
we can relate the distinct frequency components (of the frequency response) to specific
components [6]. FFT is one of the most widely used method to find out frequency spectrum
of a vibration signal and that help us finding energy components of the signal about different
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specific frequencies.The phrase full Fast Fourier Transform (FFT) signature is usually applied
to the vibration spectrum that uniquely identifies a machine, component, system, or subsystem
at a specific operating condition and time [5]. The vibration signal generated depends on
the machines, machine components, mounting, installation and operation. The peaks of the
spectrum represent various machine components. Various frequencies regarding different
components like bearings, gearbox, pumps, fans, pulleys may be calculated and can be used
to relate these frequencies to the different peaks of the spectrum. Similarly other frequencies
for misalignment , looseness, unbalance etc can be calculated.

1.3 Literature survey

Railway structure is a complex system. A schematic of this massive structure is shown in
fig. 1.2. The car is connected to the bogie by a suspension system known as the secondary
suspension. The bogie and wheel are connected via another suspension known as the primary
suspension. Wheels are in direct contact with the rail, while the rail is placed on the sleepers
with rail-pads in between. Sleepers are generally placed on the stone ballast, which in turn is
placed over the subgrade. Subgrade is prepared in accordance with the soil conditions.

From a mathematical modelling point of view this structure is studied as single components
or as a group of components as a subsystem.The vehicle itself is modelled by Discrete
Elements Methods (DEM). The track is modelled as a Timoshenko beam or Euler-Bernoulli
beam resting on discrete support. Analysis of the track is generally carried out by Finite
Element Methods (FEM) technique. Rail-pads are generally modelled as mass-less spring-
dampers. Sleepers are modelled as rigid elements connected by spring dampers in some
cases while in some cases they are modelled as continuous distribution of mass. Ballasts are
sometimes modelled as vibrating mass connected by spring-damper in both horizontal and
vertical directions. Sometimes again ballasts are modelled as continuous dampers. Generally
FEM technique is used for analysis. These are described in detail in the next paragraph.

In 1926, Timoshenko published "Method of analysis of statistical and dynamical stresses
in rail ", which is one milestone literature in railway structure especially the rail [7]. Grassie
et al. in their work presented the shortcomings of the existing models and proposed a new
model to overcome these shortcomings. The Euler beam model of the railway track resting
on a continuous uniform, damped elastic foundation is not sufficient in the frequency range
of 50-1500 Hz. A new continuous model was developed where rail-pads and ballast were
considered as continuous dampers; sleepers were considered as continuous distribution of
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Fig. 1.2 Schematic of railway structure.
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mass. The shear and rotational inertia were incorporated by considering the track as a
Timoshenko beam rather than a Euler beam. The wheel was represented by a concentrated
mass in contact with the rail through a linearized Hertzian spring. The model was utilized
to understand the contact force on the track especially with corrugation [8]. Knothe et
al. in their review work emphasized the fact that the modelling of railway structure is to
solve practical problems. The problems can be classified into problems of vehicle dynamics,
problems involving components of the bogie and unsprung mass, deterioration of wheel
and rail surfaces, deterioration of track components and noise. To study these problems
the railway system can be subdivided into five subsystems viz. i) the vehicle, including the
car body, bogie and wheel-set ii) wheel rail contact and representation of excitation iii) the
rail iv) the fastening system, including the rail fastening itself and the rail pad and v) the
sleeper. The remaining components are the sleeper support including the ballast and the
substrate. These subsystems can be modelled individually to study deep into the structures.
Solutions of these models can be achieved in either frequency or time-domain techniques
[9]. In the work of Dong et al., railway track was modelled with Finite Elements Methods
(FEM). The rail was considered as long and represented by a Timoshenko beam on discrete
pad-tie-ballast supports.The model developed considered a lot of factors such as loss of
wheel-rail contact, rail lift-off from the tie and tie lift-off from the ballast etc. The model
also considered the impact loads due to wheel flats [10]. Luo et al. presented a FEM model
to study the ballast dynamics of a ballasted railway track, where the rail was modelled as a
Timoshenko beam. The outcome of the study may be divided into three parts, viz. dynamics
of the ballast due to slow moving, intermediate and fast moving trains. The results also
indicate that the propagation of the vibration wave goes deep in the vertical direction , while
the same gets attenuated in the horizontal direction [11]. Ferreira. et. al. suggested that
the railway track modelling can be classified mainly in three categories, viz. microscopic,
deterioration and macroscopic models. While microscopic models are aimed at detailed
engineering analysis , macroscopic models are utilized for decision making in operation
and maintenance. Deterioration models sit somewhere in between the microscopic and
macroscopic models and are useful in condition monitoring, analyzing current engineering
status and judging future life and maintenance schedule. While microscopic and deterioration
models study the single track or single track components ; macroscopic models are used
for multi-component, multi-segment analysis. Macroscopic models are fully utilized for
network analysis, maintenance planning, investment appraisal etc [12]. Dahlberg in his work
suggested that the railway system could be described in three main parts: the train system,
track system and the sub-structure. The train or the vehicle itself is a complex dynamic
system whereas the track system with the rail, rail-pads and the sleepers is another complex
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system. The sub-structure consists of the ballast and the subgrade. When one dynamic system
interacts with another dynamic system, the dynamic effects in the compound system become
pronounced. If the train is a fast moving one, then these effects are even greater. These
interactions produce oscillations and vibrations that decrease the ride comfort and develop
the settlements of the track. Settlement of a track is loss of the track level and or alignment.
Generally these settlements are not uniform throughout the track although they are exposed to
the same kind of loading. Therefore the settlements must be dependent on the track and sub-
structure system rather than the loading by the train system. Hence modelling these systems
and understanding is necessary to understand these settlements better. Dahlberg described
theoretical modelling of track and sub-structure systems in different contexts such as static
and dynamic loading, time-domain and frequency-domain modelling and also modelling of
the track under track settlements [13]. Zhai et al. modelled ballast vibration considering the
load transmission from sleeper to ballast. Shear stiffness and shear damping of the ballast
were also considered in the model [14]. In the paper by El Kacimi et al. modelling was
based on 3D FEM. The rail was considered as a 3D beam-column element in this model. A
quarter train model was considered which was connected to the track based on the nonlinear
Hertzian contact theory. The main aim of this model was to study the ground induced
vibration due to passage of the train vehicles [15]. Azoh et al. mentioned that the vibration
is inevitable in structural dynamics. Railway system is a complex structure which can be
mainly classified as the vehicle and the track system. For modelling of the vehicle, Discrete
Elements Method (DEM) is used whereas for the modelling of the track, Finite Elements
Method (FEM) is used. The track is placed over the sleepers with rail-pads in between. The
rail-pads are modelled as mass-less spring-dampers connected between the track and the
sleepers. Subgrade provides a damping and stiffness effect. Authors modelled the sleepers
as rigid elements connected by spring damper while the ballast was modelled as separate
vibrating mass connected by spring-damper coupled together vertically and horizontally.
The wheel-rail contact was modelled by massless springs. The vehicle was considered as a
harmonic load vertically applied on the track structure and the dynamic effects of the train
track components were studied during starting and steady state response [16]. Zygiene
et al. developed a mathematical model of wheel-track considering the wheel-flat. For rail
dynamics FEM was employed and linear, nonlinear, elastic and damping discrete elements
were considered for the modelling [17]. Thompson et al. modelled the system keeping the
noise in mind. Wheel and rail surface roughness is the major source of noise from railways.
Authors had developed a mathematical model for better understanding of this phenomenon.
The model revealed that the vibrations of both the wheel and rail are significant from a
noise point of view [18]. For electrified rail track, Hill et al. presented a finite element
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Fig. 1.3 Classification of condition monitoring of railway structure.

method that had been applied to establish the validity of the analytical models, and a practical
method was described for the measurement of the mutual impedance between the individual
rails [19]. Again, Berova presented a method for Audio Frequency Jointless Track Circuits
(AFJTC) [20]. Cantieni discussed Forced Vibration Testing (FVT) and Ambient Vibration
Testing (AVT) as the two methods used to identify the dynamic characteristics of a structure
experimentally. While in FVT, the structure is excited with an artificial excitation, the AVT
depends on natural excitation such as winds or seismic micro-tremors. The excitation and
response is converted to frequency domain to understand the dynamics of the structure [21].
System identification in frequency-domain, obtained using arbitrary signals was developed
by Pintelon et al. [22]. While de los Santos et al. talked about the convolution method with
variable kernel where a moving vertical excitation produces deflection of the track so that
the response to this excitation could be found out, Oyama et al. investigated railway track
surface irregularities and an all-integer linear programming (AILP) optimization model was
developed to obtain an optimal schedule of multiple tie tamper (MTT) operation [23], [24].
A summary of these works are presented in the table 1.1.

Condition monitoring of railway structure is mainly carried out in terms of Fault Detection
and Identification (FDI). Condition monitoring of railway structure can be classified into in-
workshop and in-service monitoring; again in-service monitoring is classified into on-board
and wayside monitoring.

In on-board condition monitoring techniques, different sensors such as accelerometers,
thermocouples, strain sensors etc. are mounted on different components of the structure
such as axle, bearing, suspension systems etc. In wayside monitoring , all the detection
devices are installed along the side track or the rail. There has been a lot of work done
in condition monitoring of railway structures. Bencat utilized vibration from railway train
track interaction to understand the ground vibration and soil characteristics [25]. Signal
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Table 1.1 Summary of previous works on mathematical modelling of railway system

Sl.No. Component Modelling technique Goal Reference

1 Vehicle Discrete Element Method
(DEM), Harmonic load ver-
tically applied on the track
structure

Maintenance [16]

2 Track FEM, AFJTC, Timoshenko
beam, Euler-Bernoulli
beam

Maintenance, Devel-
opment of software
tools, Wheel-flat
problem, High
frequency response

[16], [10],
[20], [8]

3 Rail-pad Mass-less spring dampers,
continuous dampers

Maintenance, High
frequency response

[16], [8]

4 Sleepers Rigid elements connected
by spring dampers, contin-
uous distribution of mass

Maintenance, high
frequency response

[16], [8]

5 Ballast Vibrating mass connected
by spring dampers both
in vertical and horizon-
tal directions, continuous
dampers,FEM, Five param-
eters vibration model

Maintenance, High
frequency response,
Vibration propaga-
tion

[16], [8],
[11], [14]

6 Subgrade Damping and stiffness Maintenance [16]
7 Wheel-rail

contact
Mass-less spring, Wheel as
concentrated mass in con-
tact with the track with
springs

Maintenance, High
frequency response

[16], [8]

8 Train sys-
tem (the car,
secondary
suspension,
bogie,
primary
suspension,
wheel)

Modelled as one complex
dynamic system

To understand track
settlements

[13]

9 Track sys-
tem (rail,
rail-pads
and the
sleepers)

Modelled as one complex
dynamic system

To understand track
settlements

[13]

10 Sub-
structure
(Ballast and
subgrade)

Modelled as one complex
dynamic system

To understand track
settlements

[13]
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processing techniques were utilized by Bracciali et al. to detect and classify wheel defects.
While high energy analysis allowed the detection of wheel corrugation, cepstrum analysis
was used to detect wheel-flat precisely. They also pointed out that velocity of the trains
had a strong influence on the peak amplitudes [26]. Steets et al. commented that wayside
condition monitoring devices can prevent incidents such as derailment of the train off the
track due to degraded health of the components by raising alarms at appropriate times. Their
paper summarizes the freight car failure detection devices which were available in service
[27]. Suhairy presented a work on prediction of ground vibration from railways . Wave
propagation due to the movement of trains not only affects the structures such as buildings,
but also the human body. In this paper , an empirical formula was developed to predict
the ground vibrations from the railways. It was also mentioned that the Z-direction (i.e
perpendicular to the ground) is the most significant compared to the other two directions
viz. X-axis(perpendicular to the track and parallel to the ground) and Y-axis(parallel to
the ground). It was also mentioned that heavy, long and slow trains such as freight trains
behave as a line source rather than a point source and generate low frequency vibrations
which causes more problems to the human body rather than the fast moving short trains
[28]. Combination of field measurements, experimental modal analysis and finite element
methods were utilized by Kaewunruen et al. for the study of the dynamic characteristics
of a railway track and its components [29]. The same authors studied the track system
components and stated that track system components can be classified into superstructure and
substructure. While superstructure is the visible part such as the rail, rail-pads, sleepers and
fastening system, the substructure consists of ballast, sub ballast and subgrade. The dynamic
testing of these components lead to a dynamic model which gives a better insight into the
rail track behavior [30]. Chong et al. also discussed wayside condition monitoring which is
a dominant condition monitoring technique for railway structures while advanced integrated
sensor methods are used for advanced train health and operation management [31]. Vibration
behavior of timber sleepers vs concrete sleepers and also good ballast vs degraded ballast was
studied by Sadeghi et al., modal analysis of the track system were also carried out for better
understanding [32]. Liu et al. studied the derailment causes of railway vehicles track-wise
and speed wise. Generally, tracks are classified as main, yard and siding tracks. While in
the main track component failures such as broken wheel or bearing failure caused most
derailment, in the yard and siding tracks, human factors such as improper use of switches
caused the damage. Speed-wise a broken rail or weld was the main cause of derailment in all
the speed range while the second cause for derailment varied with speeds. For speed below
10mph, human factor was predominant, above 25mph, equipment failures caused the damage
[33]. Ngigi et al. reviewed the condition monitoring techniques for railway system dynamics.
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Condition monitoring in terms of Fault Detection and Identification (FDI) was carried out by
advanced filtering, system identification and signal analysis method [4]. Consensus Principal
Components Analysis (CPCA) was used for Fault Detection and Identification (FDI) of
railway vehicle suspension systems by Wei et al. [34]. Inexpensive sensor system was
deployed in the axle bearing box to capture acoustic emission and vibration. Analysis of these
signals provided information related to wheel and axle bearing defects [35]. Time-frequency
slice technique was utilized to detect fault from wheel-rail vibration signals by Yuejian et
al. [36]. Alemi et al. studied the different condition monitoring approaches for identifying
wheel-defects. The importance of in-workshop inspection for periodic maintenance was
emphasized and also further development of wayside monitoring was stressed so that the
transition from diagnostic to prognostic approach is possible [37]. Ground Penetrating Radar
(GPR) data was used for the health monitoring of railway ballast conditions [38]. Li et
al. reviewed the present condition monitoring techniques for railway structure that can be
classified into signal-based and model-based techniques. While signal-based methods suffer
from the shortcomings of the requirement of a pre-existing database with all the faults, the
model-based methods demand linearization which introduces error [39]. Statistical analysis
based methods were implemented for condition monitoring of railway vehicle suspension
systems by Melnik et al. [40]. Health monitoring of electrical components in railway
structure was discussed by Tobon-Mejia et al. [41]. Atamuradov et al. used time-domain
features to construct a health indicator. A support vector machine classifier was used for fault
detection [42].

Apart from railways there are another three areas where condition monitoring techniques
are used extensively viz. bearing health monitoring, rotating machines health monitoring
and health monitoring of large structures. Studying the techniques used in these areas are
important as a new development in the field of condition monitoring can be used for the
improvement of condition monitoring techniques of the railway structures. Few notable
works in these areas are discussed here. Extracting time-domain features, power spectral
density, statistical measures and training ANN, SVM etc. is a common practice in fault
detection; fuzzy classifiers, fuzzy support vector data are also common [43], [44], [45], [46],
[47]. Motor current analysis is utilized along with the vibration for condition monitoring of
induction motors [48], [49]. Modal analysis and principal component analysis are carried
out for structure health monitoring [50], [51], [52]. Feature extraction and vibration
signature analysis for fault detection is also widely used [53]. Advanced signal processing
techniques such as wavelet, empirical wavelet transform, Hilbert-Huang transform, improved
spectral kurtosis, generalized frequency response, energy kurtosis, orthogonal Hilbert-Huang
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transform, multivariate statistical signal processing etc. are common in literature for condition
monitoring approaches [54], [55], [56], [57], [58], [59], [60], [61]. Statistical analysis is
another popular method and RMS based probability density function is also used for fault
detection [62], [63], [64]. The recent trend is towards deep learning, k-mean clustering
approach etc [65] [66].

Objective of the work The objective of this work is to collect vibration signals of a railway
track while a train is under motion over the track; process this signal to extract information
of the train and track and thereby quantify the quality of a few trains and estimate the health
of the track by its mathematical modelling. This is achieved by using a data acquisition
system designed with an Arduino based embedded system with a laptop. The embedded
system utilized, composed of Arduino microcontroller development boards, 3-D vibration
sensors ADXL335 and MPU6050.While ADXL335 provides 3D acceleration, MPU6050
provides 3D acceleration and 3D gyroscope signals. The sensors are attached to the rail
track to capture different signals. Using these vibration data, the mathematical model of the
track is developed and some limiting conditions are found out. Advanced signal processing
techniques in both time-domain and frequency-domain are carried out for the condition
monitoring of the railway structure. A sensor based system is developed to achieve the
objectives of modelling, diagnosis and monitoring.

Main contribution of the work The main contribution of the work is as follows:

• A mathematical model of the railway track is developed. With the help of this mathe-
matical model, limiting conditions for specific trains and the particular track are found
out.

• A 3D vibration sensor (ADXL335) based embedded system has been developed for
capturing vibration of a railway track while a train is under motion. Vibration signals
captured by this system are analysed in both time-domain and frequency-domain.
These signals are used to find out safety of the train and also the general condition of
the railway vehicle.

• The same signals are analyzed with advanced signal processing techniques such as
Wavelet transform and Wigner-Ville transform for condition monitoring of the trains.
Wheel-flat, in particular is detected by this method.

• Another embedded system with MPU6050 IMU sensor and Arduino Uno development
board is developed to capture 3-axis vibration and the gyroscope signals. These signals
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are appropriately correlated and statistical measures are derived to quantify the quality
of different trains.

The organization of the thesis

• Chapter 1: This emphasizes the importance of condition monitoring for structures
and machines. Importance of vibration signals as a health indicator is also discussed.
Literature review in this field is provided.

• Chapter 2: This chapter discusses a simple method to model a railway track. Limiting
conditions of a specific train and track are discussed.

• Chapter 3: In this chapter an embedded system consisting of ADXL335 and Arduino
Uno development board is discussed. The vibration signals captured are analysed in
both time-domain and frequency-domain. While time-domain analysis offers critical
information related to the safety measure of a train, frequency-domain analysis provides
information related to the condition of different components of a train.

• Chapter 4: This chapter discusses advanced signal processing techniques for the
vibration signal analysis; wheel-flat fault is detected with these techniques.

• Chapter 5: This chapter discusses statistical treatment of the vibration signals.

• Chapter 6: This chapter provides a brief summary of the research work done and future
scope of the work is also discussed.





2
Development of a mathematical model for a

railway track using a gray-box modelling
technique

Mathematical model of a system provides the relationship between the input and the output
variables.There are different methods of modelling a system viz. utilizing system dynamics,
black box modelling and gray-box modelling. In literature there are many works that describe
modelling of a railway track using the system dynamics of a track or interaction between
track and train wheel. In standard black-box modelling most of the time standard test signals
such as impulse and step are used to model a system. In this chapter we discuss a simple
method that uses “system subjected to a pulse input” to model a system. This approach is
very helpful especially in modelling of a railway track as the track may be subjected to an
impulse, step or any signal(i.e. pulse of variable length) in between depending on the speed
of the train.
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2.1 Introduction

Mathematical modelling of a system helps in understanding the dynamics of the system
better. Modelling of a railway track has been a fascinating area for researchers since a long
time. Modelling of a railway track as an electrical transmission lines system was done by
few researchers such as Hill et. el. , Berova etc. [19], [20].One of the earliest models of
a railway track was presented by Timoshenko, where the rail was considered as an infinite
uniform Euler beam [7]. Again according to Grassie et.al., railway track can be modelled as
a track resting on a simple elastic support, track resting on a continuous, two-layer support
and track resting on discrete supports [8]. Another popular approach for rail track modelling
is by finite element model [10] , [15], [18], [11].Mathematically modelling a railway track
is an age old practice to calculate the stress pattern of different components. It helped in
anticipating and estimating the service periods and specific values of life-spans of different
components. Aim of mathematical models may be different from situations to situations.
Few models aimed at studying particular problems or phenomena while few may aim at
the validity of models at different frequencies.To model train and track interaction utilizing
dynamic behavior, Knothe et. el. considered five subsystems as shown in fig 2.1 [9]. In this
way it is needed to model different subsystems separately. Many researchers model the rail
as Bernoulli-beam.In some cases the rail is modelled as a series of interconnected plates.Rail
fastening system along with the rail-pads are modelled. Rail-pads are generally modelled
as spring and viscous dampers.Sleepers are modelled as a Timoshenko beam of variable
thickness. Although ballast can be modelled as a viscous damper it possesses non-linear
parameters for different loads. In all these modelling one major problem is finding out values
of different parameters. However in laboratory experiments it is possible to find out these
values.Track is generally modelled as

• Track resting on a simple elastic support

• Track resting on a continuous, two-layer support and

• Track resting on discrete supports

as described by Grassie [8]. Track resting on a simple elastic support can be represented
as shown in fig. 2.2.

Santos et. al. in their paper proposed the concept of the convolution kernel [23]. The rail
was exposed to a vertical excitation that moves along the rail. The response was described
by means of a point of deflection. This deflection was obtained by a convolution integral.
The convolution kernel is the impulse response of the track, which depends on time and
the excitation location. To model a railway track mainly two types of dynamic models are
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found in the literature; they are: distributed sleeper model and discrete sleeper model [23],
[8]. The distributed sleeper model is shown in fig. 2.3 and discrete model is shown in fig.
2.4 [8]. As described by Santos et al. for the convolution method with variable kernel, the
point deflection of the rail, y(t) is calculated by means of the convolution product of the rail
impulse response(the convolution kernel) by the excitation force y1(t) =

R t
0 h12(t − τ)F2(τ).

Where y1(t) is the deflection at point 1, h12(t) describes the deflection at point 1 on the
rail due to a unit impulse force F2 applied to another point 2. As described by Dahlberg,
theoretical modelling of railway track and sub-structure can be done as modelling for static
loading and modelling for dynamic loading [13]. For static loading modelling either the
track structure is represented by a beam on an elastic foundation wherein the substructure
is represented as a spring-damper system or the track structure is modelled in detail by
using a finite-element model.For dynamic loading, modelling techniques are classified as
frequency-domain and time-domain modelling. Frequency domain method is like inserting
an irregular strip between rail and the wheel and then the strip is forced to move between
the wheel and the rail so that the strip will excite both the wheel and the rail. Displacements
of the track and the vehicle are calculated by the numerical integration method for time
domain modelling. The track can be modelled by finite elements and the vehicle is modelled
by using a mass spring damper system. Ferreira et al. in their paper they have categorized
mathematical modelling of the railway track in three main categories [12]. In one end they
mentioned a microscopic model that deals with the forces on specific track components
such as rail, sleeper and ballast etc. These models are used for design purposes based on
engineering judgment or empirical evidence. On the other hand there are macro models
that are used for maintenance and planning. These models involve a higher level of details
such as track force analysis. Between these two models there exist another level of models
that are concerned with the components deterioration based on the microscopic models.
Tatsuo Oyama et. al.in their work proposed an optimal railway track maintenance strategy by
developing discrete optimization mathematical programming models [24]. They measured
track surface irregularities transitions and thereby proposed a probabilistic degradation model
by logistic distribution. Based on this they predicted track maintenance operation effects
and thereby designing probabilistic restoration model and finally optimal track maintenance
schedule is found out by designing optimal track maintenance scheduling model by an
all-integer linear programming model.

For system identification of structures two methods are available viz. Forced Vibration
Testing (FVT) and Ambient Vibration Testing (AVT) [21]. Many works based on FVT can
be seen for the dynamics analysis of bridges [52], [50], and a few for railway vehicle and
track analysis [32], [67], [68]. This paper presents a mathematical model for railway track



20
Development of a mathematical model for a railway track using a gray-box modelling

technique

system using gray-box technique. For this purpose, a second order LTI system has been
considered and using pulse input the output is derived. The output obtained is utilized to
relate with the experimental vibration data captured from the field experimentation on train
belong to North-East Frontier Railway (NFR) of India.The model is authenticated using
both experimental and theoretical data.The criteria for model validation has been used as the
nearness of experimental and theoretical data. The key contributions to the railway track
modelling is summarized in the table 2.1.

2.2 Modelling of Railway track system

A second order LTI model has been adopted to develop a model of a railway track system.
A pulse signal is applied to the second order LTI model and its output response has been
determined. However it has been reported that the frequency above 50Hz represents the
characteristic vibration of the track and below 50Hz represents the characteristic vibration of
a train (consisting of bogie and engine) [69]. The scheme for the development of the railway
track system depicted in the fig. 2.5. System identification technique is applied to find out
the system; the identified system would replace the general second order LTI system.The
vibration obtained would contain properties of both the train and the track. Therefore the
signal needed to be filtered properly to detect vibrations only from the railway track. The
following assumptions are made to suit the real time scenario for the development of a
mathematical model for the railway track system.

• As one sensor is connected on the fishplate of the track, the train will input a pulse to
the track at that point.

• The pulse starts at t = 0sec and ends at t = T sec

• Length of the pulse(T ) will depend on the speed of the train.

• The track system can be considered as a second order underdamped (ζ < 1) LTI system.
(It can be considered as a 2nd order system as the most commonly found model of a
railway track is “an infinite Euler beam on Continuous support [8]”) Again it is an
underdamped system as the ballast (working as a viscous damper) supposed to absorb
energy.

Mathematical derivations Laplace Transform of a pulse is given by A[1
s − e−sT

s ], where
A is the magnitude of the pulse, T is the length of the pulse. A second order LTI system
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Table 2.1 Key contributions to the railway track modelling

Sl.
no.

Author Year Moelling tech-
nique

Summary of the key findings

1 Timoshenko 1926 An infinite uni-
form Euler beam

Different statistical and dynamic stress pat-
terns on rail are analysed

2 Grassie et.
el.

1982 Track resting on a
simple elastic sup-
port, track resting
on a continuous,
two-layer support
and track resting
on discrete sup-
ports

Study to calculate both the response of the
track alone and the contact force between
a moving wheel and the rail.

3 Thompson 1991 Finite element Study of the source of noise in railways
4 Hill et. el. 1993 Transmission

lines system
Different impedances and admittances for
a single-track, power-rail electrified rail-
way are obtained

5 Dong et. el. 1994 Finite element The dynamic interactions between the rail-
way vehicle and track is studied

6 Santos et.
el.

1995 Convolution ker-
nel

Study of the loading pattern on the railway
track

7 Luo et. el. 1996 Finite element Study of the dynamic response of railway
ballast excited by forces from the moving
train at different speeds

8 Berova 1997 Transmission
lines system

The work described the investigation of
railway track circuit performance with the
help of mathematical modelling

9 Knothe et.
el.

2007 Considered five
subsystems to
understand the dy-
namic behaviour
of the railway
train and track
system.

Study of the sufficiently high frequencies
that becomes significant frequencies for
the track’s dynamic behavior.

10 Kacimi et.
el.

2013 3D finite element Study of the ground induced vibration due
to the passage of a single high speed train
locomotive
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Fig. 2.1 Five subsystems of the vehicle/track system.

Fig. 2.2 Track resting on a simple support.
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Fig. 2.3 Distributed sleeper model

Fig. 2.4 Discrete sleeper model
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Fig. 2.5 Scheme adopted for development of model for railway track system
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in Laplace domain can be represented as ω2
n

s2+2ζ ωns+ω2
n
, where ζ = damping ratio and ωn =

natural f requency of the system. Therefore the output of a second order LTI system
subjected to a pulse input in Laplace domain can be represented as the multiplication of the
input and the system transfer function.

C(s) = A[
1
s
− e−sT

s
][

ω2
n

s2 +2ζ ωns+ω2
n
] (2.1)

The work reported in this paper utilized gray-box modelling technique to develop a
mathematical model for railway track system. These three parameters namely damping
ratio ζ , natural frequency ωn and length of the input pulse T plays vital role in the model
development process. Eq. (2.1) can be simplified and represented as

C(s) = A[
1
s
− e−sT

s
][

ω2
n

s2 +2ζ ωns+ω2
n
]
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= A[T
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s2 +2ζ ωns+ω2
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+
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2
s

ω2
n

s2 +2ζ ωns+ω2
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]

(neglecting the higher order terms)

(2.2)

Now taking the inverse Laplace Transform of Eq. (2.2) we have,

C(t) = AT
ωnp
1−ζ 2

e−ζ ωnt sin(ωn

q
1−ζ 2t)

−A
T 2

2
ω2

np
1−ζ 2

e−ζ ωnt sin(ωn

q
1−ζ 2t −θ)

(where, θ = cos−1ζ andζ < 1)

(2.3)
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2.2.1 Determination of peak time tp

As first peak of the curve (c(t)) will be a maxima (either local or global) ; the derivative of
the curve equated to zero should yield the peak condition i.e.

d
dt

c(t) = 0 (2.4)

Putting the values of c(t) in Eq. (2.4) and simplifying we obtain,

A.T.
ω2

n
ωd

d
dt
[e−ζ ωnt{sin(ωdt)− T

2
ωnsin(ωdt −θ)}] = 0

=⇒ e−ζ ωnt{ωdcos(ωdt)− T
2

ωnωdcos(ωdt −θ)

−ζ ωnsin(ωdt)+
T
2

ζ ω2
n sin(ωdt −θ)}= 0

=⇒ ωdcos(ωdt)−ζ ωnsin(ωdt)− T
2

ωnωdcos(ωdt −θ)

+
T
2

ζ ω2
n sin(ωdt −θ) = 0

=⇒ ωn

q
1−ζ 2cos(ωdt)−ζ ωnsin(ωdt)

− T
2

ωnωn

q
1−ζ 2cos(ωdt −θ)+

T
2

ζ ω2
n sin(ωdt −θ) = 0

(2.5)

Again cos(θ) = ζ and sin(θ) =
p

1−ζ 2. Therefore, Eq. (2.5) can be written as

ωnsin(θ)cos(ωdt)− cos(θ)ωnsin(ωdt)

− T
2

ω2
n sin(θ)cos(ωdt −θ)+

T
2

ζ ω2
n sin(ωdt −θ) = 0

=⇒ −ωn{sin(ωdt −θ)}− T
2

ω2
n{sin(θ − (ωdt −θ))}= 0

=⇒ T
2

ωn{sin(ωdt −2θ)}= sin(ωdt −θ)

Taking ωdt −θ = X ;
it is found that T

2 ωn{sin(X −θ)}= sin(X)
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∴ T
2

ωn{sin(X)cos(θ)− cos(X)sin(θ)}= sin(X)

{T
2

ωncos(θ)−1}sin(X) = cos(X)sin(θ)

{T
2

ωncos(θ)−1}tan(X) = sin(θ)

=⇒ tan(X) =
sin(θ)

T
2 ωncos(θ)−1

=⇒ X = tan−1{ sin(θ)
T
2 ωncos(θ)−1

}

=⇒ ωdt −θ = tan−1{
p

1−ζ 2

T
2 ζ ωn −1

}

=⇒ t =
1

ωd
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+θ}

Hence the peak time tp is

tp =
1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+ cos−1ζ} (2.6)

where T = pulse width, ζ = damping ratio and ωn = natural f requency of the system.

2.2.2 Calculation of Rise Time tr

At rise time(tr) the output is exactly equal to the input i.e c(tr) = A, in this case.

c(tr) = A.T
ωnp
1−ζ 2

.e−ζ .ωntr sin(ωn

q
1−ζ 2tr)−

A.
T 2

2
ω2

np
1−ζ 2

.e−ζ .ωntr sin(ωn

q
1−ζ 2tr −θ) = A

=⇒ T
ωnp
1−ζ 2

.e−ζ .ωntr sin(ωn

q
1−ζ 2tr)−

T 2

2
ω2

np
1−ζ 2

.e−ζ .ωntr sin(ωn

q
1−ζ 2tr −θ) = 1
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=⇒ T
ω2

n
ωd

.e−αtr(sin(ωdtr)−
T
2

ωnsin(ωdtr −θ)) = 1 (2.7)

where α = ζ .ωn = damping f actor and ωd =ωn
p

1−ζ 2 = damped natural f requency

=⇒ sin(ωdtr)−
T
2

ωnsin(ωdtr −θ) =
ωd

T ω2
n

eαtr (2.8)

Assuming a fast system, tr will be small.

∴ ωdtr −
T
2

ωn(ωdtr −θ) =
ωd

T ω2
n
{1+αtr}

=⇒ tr{ωd −
T
2

ωnωd −α
ωd

T ω2
n
}= ωd

T ω2
n
− T

2
ωnθ

=⇒ tr =
ωn

p
1−ζ 2 − T 2

2 ω3
n cos−1ζ

T ω3
n

p
1−ζ 2{1− T

2 ωn}−ζ ω2
n

p
1−ζ 2

(2.9)

2.2.3 Calculation of Delay Time td

At delay time(td) the output is exactly equal to the half of the input i.e c(td) = 0.5A, in this
case.

Following the procedure for calculation of Rise time , we get delay time as

td =
0.5ωn

p
1−ζ 2 − T 2

2 ω3
n cos−1ζ

T ω3
n

p
1−ζ 2{1− T

2 ωn}−0.5ζ ω2
n

p
1−ζ 2

(2.10)

Now there are three equations - (2.6), (2.9) and (2.10) and three unknowns; they are
damping ratio ζ , natural frequency ωn and the pulse length T . So plugging in values of
peak time tp delay time td and rise time tr from experimentally obtained data it is possible to
solve the three equations to determine the parameters ζ ,ωn and T .
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Fig. 2.6 Block diagram for extracting vibration signals from the railway track

2.3 Experimental Results and validation of the model

MPU6050, an Inertial Measurement Unit (IMU) is interfaced to the Arduino Uno micro-
controller based embedded system. The MPU6050 combines a 3-axis gyroscope, a 3-axis
accelerometer and a Digital Motion Processor (DMP) to process the collected measurements.
IMUs are widely used in various applications due to its low cost and easy implementations.
MPU6050 is a Micro-Electro-Mechanical Systems (MEMS) sensor connected to the I2C
module of the microcontroller. In this configuration, the microcontroller works as a master
while the sensor is the slave. Master generates the start-conditions, sends the address of
the slave device, reads data from the slave device and then generates the stop conditions
[70]. The accelerometer and the gyroscope of the MPU6050 are user-programmable with
gyroscope full range of ±2500 /s, ±5000 /s, ±10000 /s, and ±20000 /s while the accelerometer
full scale range of ±2g, ±4g, ±8g, and ±16g. Moreover, the MPU6050 contains 6 16-bit
analog-to-digital converters (ADCs) for digitizing the outputs. The Arduino Uno based
embedded system with the MPU6050 as the sensor system is used to record 3-D vibrations
of the railway track, while a train is under motion over the track. A laptop is used to pull and
store vibration data captured by the embedded system through its USB port. The scheme for
data collection is as shown in fig. 2.6

The North East Frontier Railway (NFR) authority , Maligaon, Assam, India provided
facility to carry out the experiments on railway track under the supervision of their authorized
persons in accordance to their rule. The NF Railway authority permitted the capture of
vibrations of a railway track located at Chandmari, Guwahati, Assam, India. The experimental
setup used for the purpose of capturing vibration signals of railway track at Chandmari is
shown in fig. 2.7. The MPU6050 sensor was firmly attached on the fishplate of the joint of
two railway tracks as advised by NF Railway authority. Figure 2.8 shows the orientation of
the sensor axis with reference to the railway track. The orientation of the sensor is made
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Fig. 2.7 Experimental set-up for capturing 3-D vibration signals from railway tracks.

in such a way that the X-axis is parallel to the railway track, Y-axis is perpendicular to the
railway track and the Z-axis is perpendicular to the ground.

Figure 2.9 shows raw and filtered signals for Rajdhani Express collected by the scheme.
The filtered signal along with the key parameters are presented in fig. 2.11.
The baseline is considered as zero level value as the vibration signal generated by the

wheel has been recorded by the sensor, where there is a possibility of recording of the
vibration data by the sensor may start at a negative value.Therefore rise time and delay time
is calculated considering the time taken from some initial negative value (-0.0175) to reach 0
of the output. Also only the first peak is considered, because as the vibration is produced by
the first wheel , the vibration due to the second wheel will appear before the vibration due to
the first wheel dies down i.e settling down.

Accordingly, the delay time td is calculated as 0.2527 sec, rise time tr as 0.467 sec and
peak time tp as 1 sec.This clearly justifies our assumption of a fast system i.e delay time td
and rise time tr are small compared to 1. Now there are three equations for delay time td ,
rise time tr and peak time tp with three unknowns pulse length T , natural frequency ωn and

damping ratio ζ . Solving these equations the system can be modelled as ω2
n

s2+2ζ ωns+ω2
n

, where
s is the Laplace variable,ωn is the natural frequency and ζ is the damping ratio. Values of ωn

and ζ can be put by solving the equations (2.6), (2.9) and (2.10).
Again, vibration data of another train, the Kamrup Express is considered for further

analysis.The filtered vibration signal and the key parameters are shown in figures 2.12 and
2.13.
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Fig. 2.8 The orientation of the MPU6050 sensor axis with reference to the railway track

Fig. 2.9 Vibration signal of Z axis of Rajdhani Express
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Fig. 2.10 Filtered Vibration signal of Z axis of Rajdhani Express

Fig. 2.11 Filtered Vibration signal of Z axis of Rajdhani Express with Key Parameters

Fig. 2.12 Filtered Vibration signal of Z axis of Kamrup Express
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Fig. 2.13 Filtered Vibration signal of Z axis of Kamrup Express with Key Parameters

2.4 Discussion

It has been observed from the equations (2.6), (2.9) and (2.10), the expressions for delay
time td , rise time tr and peak time tp contain the term T (pulse length). This pulse length
is inversely proportional to the speed of the train. For slow moving train pulse length will
be very long (ideally step input) and for a fast moving train the pulse length will be short
(ideally impulse input).

From equation (2.6), equation for peak time tp

tp =
1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+ cos−1ζ}

From experimental data of Rajdhani as well as Kamrup Express, it is found that, tp = 1,

∴ 1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+ cos−1ζ}= 1

or
1

ωd
{tan−1(

sin(θ)
T
2 α −1

)+θ}= 1

=⇒ sin(θ)
T
2 α −1

= tan(ωd −θ)

=⇒ T
2

α −1 =
sin(θ)

tan(ωd −θ)
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=⇒ T =
2

ζ ωn
{ sin(θ)

tan(ωd −θ)
+1} (2.11)

Eq. (2.11) is the general expression for the pulse length (T) of the train running on the
railway track located at Chandmari, Guwahati, Assam, India, when considered the vibration
produced by the Rajdhani Express.

Now, to determine the condition for the speed limit of a train it is necessary to consider a
step function for slow moving trains, whereas an impulse is considered for a fast moving
train. The expression for peak time is given by [71]

tp =
π

ωn
p

1−ζ 2

Comparing with the equation (2.6), we have

tp =
1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+ cos−1ζ}

=
π

ωn
p

1−ζ 2

=⇒ tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+θ = π

=⇒ tan−1(
sin(θ)

T
2 ζ ωn −1

)+θ = π

=⇒ T
2

ζ ωn −1 =
sin(θ)

tan(π −θ)

=⇒ T =
2

ζ ωn
{ sin(θ)

tan(π −θ)
+1} (2.12)

Equation (2.12) is the expression for the track under condition when the train moves very
slow i.e step input. To find the limiting value we can compare equations (2.11) and (2.12).
Comparing these two equations we find that ωd = π .

∴ ωn

q
1−ζ 2 = π (2.13)
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Therefore when the concerned train i.e Rajdhani Express runs over the track at the
Chandmari railway track very slowly, this condition (ωn

p
1−ζ 2 = π) must be maintained.

For a fast moving train, input is considered as an impulse. A second order system
subjected to an impulse input , the expression for peak time is given by [71]

tp =
θ

ωn
p

1−ζ 2 (2.14)

Comparing with the equation (2.6), we have

tp =
1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+ cos−1ζ}

=
θ

ωn
p

1−ζ 2

or
1

ωn
p

1−ζ 2
{tan−1(

p
1−ζ 2

T
2 ζ ωn −1

)+θ}

=
θ

ωn
p

1−ζ 2

=⇒ tan−1(

p
1−ζ 2

T
2 ζ ωn −1

) = 0

=⇒ sin(θ) = 0

=⇒
q

1−ζ 2 = 0

=⇒ ζ = 1 (2.15)

Hence this condition (ζ = 1) must be satisfied for fast moving train. By intuition also we
can say that when the system is subjected to an impulse input, damping should be high, in
this case it should be atleast 1.

2.5 Conclusion

This chapter proposes a simple yet powerful method to model a railway track. It has been
shown that a track can be modelled as a second order LTI system.Further, the limiting
condition for a specific train (Rajdhani Express) has been demonstrated, when it is running



36
Development of a mathematical model for a railway track using a gray-box modelling

technique

over the track. It is also found that if the train is fast moving the damping ratio should be
high ; at least critically damped (ζ = 1) and when the train is moving slow the condition to
be maintained is ωn

p
1−ζ 2 = π .



3
Condition monitoring of NFR trains with
measurements from a single wayside 3D

vibration sensor

This chapter discusses the development of a simple one sensor based system to achieve
condition monitoring of NFR (Northeast Frontier Railway, India) trains. Vibration of a
railway track under train in motion provides important information about the train.To capture
the vibration of a track under train in motion, vibration sensor ADXL335 is selected, as it is
a reliable vibration sensor. Moreover ADXL335 shows insignificant effect of temperature
on its measurements.Therefore it is considered to be suitable for measurement of vibration
of a railway track under train in motion, because the temperature experienced by the sensor
would vary during the train in motion as well as due to change in weather condition. To
capture and store vibration data, an embedded system has been developed using an Arduino
Uno board. ADXL335 sensor is interfaced to the Arduino Uno board and software has been
developed to capture 3D vibration of a railway track under train in motion. The captured data
is transferred and stored in a laptop which is interfaced to the Arduino Uno board through
USB port.The vibration data stored in the laptop is utilized to analyse the condition of the
train using signal processing techniques. Time-domain and frequency-domain analysis of the
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vibration signals captured by ADXL335 installed in a railway track have been carried out
to determine the condition of a train in motion. It has been observed that the time-domain
analysis can provide information about slip and derailment tendency of a train, whereas
frequency domain analysis can provide conditions of different components of a train.

3.1 Introduction

A large population in India, is dependent on trains for their commute.A large number of trains
ply regularly to and from their respective destinations.Although many health monitoring
systems are available,they are costly.The condition monitoring system of rolling stock
infrastructure of Indian railways is not developed yet.The Indian railways intends to install
"On Board Condition Monitoring System"(OBCMS) and working on it since 2015. It is
a huge project that requires to install the sensors on 250,000 wagons, 50,000 coaches and
10,000 locomotives at a cost of Rs. 1.13 billion [72–74]. The major problems with On Board
Condition Monitoring System are -(i) huge number of sensors will lead to a complex sensor
network, (ii) installation of sensors at different positions of the wagons will lead alternation
of the wagons especially in the suspension, axle and bearing systems,(iii)data communication
will be difficult as the sensors will be in constant motion; utilizing internet is again difficult
as the signal strength fluctuates a lot in the railway routes,(iv) Huge cost, (v) Would require a
lot of time for alteration of the existing structures and then installing the sensors.

Most of these problems can be easily bypassed by shifting the focus from "on board
monitoring systems" to "Wayside (track-side) health monitoring systems". Utilising wayside
health monitoring following convenience can be achieved-(i) number of sensors drastically
reduced , as once installed, one system can be utilised to monitor any number of trains that
runs over the track, (ii) no need to change any existing infrastructure of wagon or the track as
the sensor can be nicely fitted into existing structure, mostly on the fishplate of the track, (iii)
data communication complexity reduces as the sensors are stationary, (iv) time and cost both
reduces as the number of sensors required reduces drastically.

Traditionally track-side health monitoring systems are used for wheel-impact load detec-
tion, continuous monitoring of wheel profile, bogie performance etc [39].Derailment of trains
is one of the major causes of accidents in Indian Railways. These accidents are caused due to
poor mechanical condition of either the train's moving system (Locomotive, Wagon) or the
improper condition of railway track ( Railway track, fish plate , sleeper etc.). Therefore, it is
necessary to develop a reliable on-line monitoring system to determine operating condition
of railway track and the train to collect information about their operating conditions.Study
shows that from 2009 to 2015 there were 803 railway accidents in India. These accidents
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killed 620 people and 1855 people were injured. Out of these 803 accidents, 47% were due
to the derailment of the trains [75]. The causes of derailment are different for low speed
derailment and high speed derailment. According to Liu, below 10 mph major causes of
derailment are improper train handling, braking operations and improper use of switches.
Whereas, above 25 mph major causes of derailment are bearing failure, broken wheel, axle
and journal defects [33]. Hence, it becomes necessary to monitor the condition of the trains
and tracks, especially for fast moving trains. When a train moves on a rail, it creates a
dynamic force pattern on the ground and it depends on soil composition of the ground, rail
track condition and moving system of the train [28]. Nature of vibration of a rail track could
offer important information for on line condition monitoring of a train’s moving system
and/or the improper condition of a railway track. Wheel defects such as eccentric wheels,
unbalanced wheel, wheel flats etc., creates variation on track support systems due to irregular
placing of sleepers which are in turn placed upon irregular support of stone ballast are well
known faults and contribute to the stress field present in the ground below and beside the
train. Azoh also mentioned that Rail irregularities, wheel defects and variation stiffness due
to the discrete support of rail are the origin of vibration induced by train [16]. Again, many
other parameters like power output, fuel efficiency etc, also produce interactive force between
the wheel and the rail and these interactive forces varies on the velocity of the railway vehicle
[[17], [69]].In recent years, the fault diagnosis of railways has been a major thrust area of
research. Faults such as tread flat leads to periodic jumping of the vehicle over the track as
the wheel (tread flat) makes impact on the track [36]. This will further enhance the damage
of the wheel. Hence it becomes a necessity to detect this fault at the earliest. While most
of the literature describe application of Hilbert-Huang Transform (HHT) to detect this fault
[[56], [59]], again, some work prefer Frequency Slice Wavelet Transform [36].

In this work, a simple time-domain and frequency-domain based method has been
investigated to determine condition of a train using the measurements of a railway track
vibrations(3D), under train in motion.The precise selection of sensor for measurement of
vibration ensures error free measurements, which is an important criteria for sensor based
measurement system[76], [77]. For this purpose, ADXL335 sensor is used to capture the
3-D vibration of a railway track.The real time data from ADXL335 sensor is captured by
Arduino 328 Uno microcontroller based embedded system. The real time data captured by
the embedded system are transferred to a laptop for storage and analysis. The real time
3-D vibration signals and speed of a train are used for quantifying the defects/faults of a
train. For this purpose, the real time vibration signals of railway track are analysed using
signal processing techniques, where, the power components for selected frequency band
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Fig. 3.1 Block diagram for extracting vibration signals from the railway track

are determined. Again, vibrations of two directions (X-Z and Y-Z) are co-related and these
correlated signals are used to determine the power components for selected frequency.

3.2 Scheme for capturing vibration of a railway track us-
ing ADXL335 sensor:

The functional block diagram adopted for condition monitoring for trainś moving system
and/or the improper condition of railway track is depicted in fig. 4.1.

A 3-axis accelerometer ADXL335 is interfaced to the Arduino Uno microcontroller based
embedded system to record 3-D vibration of railway track, while moving a train over it. A
laptop is used to pull and store vibration data captured by the embedded system through
its USB port. The ADXL335 is a small, thin, low power, complete 3-axis accelerometer
with signal conditioned voltage outputs. The product measures acceleration with a minimum
full-scale range of ±3 g. ADXL335 has been designed with an innovative temperature
compensation circuit, as a result, there is no quantization error or non monotonic behavior of
the sensor. The temperature hysteresis is very low (typically less than 3 mg over the −25°C
to +70°C temperature range), therefore the sensor is convenient for outdoor application where
temperature variation is significant due to weather condition as well as temperature variation
of the track will occur during the train in motion due to the frictional effect. It can measure
the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration
resulting from motion, shock, or vibration. The sensor is fixed to the fishplate of the track as
advised by the NFRA authority.

The North East Frontier Railway (NFR) authority , Maligaon, Assam, India provided
facility to carry out the experiments on railway track under the supervision of their authorised
persons in accordance to their rule. The NF Railway authority permitted the capture of
vibrations of a railway track located at Chandmari, Guwahati, Assam, India. The experimental
setup used for the purpose of capturing vibration signals of railway track at Chandmari is
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Fig. 3.2 Experimental set-up for capturing 3-D vibration signals from railway track.

shown in fig. 4.2. The ADXL335 sensor was firmly attached on the fishplate of the joint of
two railway tracks as advised by NF Railway authority. Fig. 4.3 shows the orientation of the
sensor axis with reference to the railway track. The orientation of the sensor is made in such
a way that the X-axis is parallel to the railway track, Y-axis is perpendicular to the railway
track and the Z-axis is perpendicular to the ground.

NFR authority advised to carry out the studies on five different trains, they are —(i)
Kamrup express (ii) Kopili express, (iii) Kolongpar express, (iv) Rajdhani express and (v)
Rajendra Nagar Capital express. Because, these five trains represent five different categories
of trains with different allowable speeds and can be classified into 5 different grades, based
on their operational performance.

3.3 Information about the trains:

Kamrup express (KA-Exp) is one of the major trains of NFRA that connects Howrah (West
Bengal) and Dibrugarh(Assam). It covers 1582 km with an average speed of 42 kmph ( 26
mph). As explained by Xiang Liu et.al as the speed of the train increases the derailment due
to equipment failure increases compared to derailment due to other factors like human and
track conditions. As the speed of this train is high ( 26 mph) it is very important to analyse
the health of this train to avoid accidents due to equipment failure. This train is recently
awarded an ISO certificate that quantifies it to be of a very good quality train. Kopili express
(KO-Exp) is a fast train that runs within Assam and connects Nagaon and Guwahati and
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Fig. 3.3 The orientation of the ADXL335 sensor axis with reference to the railway track
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completes 116 km run at an average speed of 43 kmph. As explained above health analysis
of this train is very necessary owing to its speed. Kolongpar express (KLP-Exp) connects
Mairabari of Assam to Guwahati. It covers 160 km at an average speed of 32 kmph. Rajdhani
express (RJ-Exp) (Dibrugarh) is one of the premier trains of NFRA and it covers 2434 km at
an average speed of 65 kmph. There was an incident of derailment of this train on 25 June
2014 in Chhapra, Bihar that killed four people and injured eight. Condition monitoring of
this kind of high speed train is of utmost importance as small hitch in the equipment can
magnify due to speed and may result in fatal accidents. Rajendra Nagar Capital express
(RJN-Exp) connects Patna, Bihar to Guwahati, Assam. It covers 949 km at an average speed
of 42 kmph.

3.4 Experimental results and analysis:

Figure 3.4 shows the vibration(acceleration) vs time graph for Kamrup Express. Horizontal
axis represents the time in second and Vertical axis represents the vibration data from
the sensor after proper signal conditioning in all the 3-axes. Various information from
these waveforms can be extracted.Figures from 3.5 to 3.8 shows vibration(acceleration) vs
time characteristics of Kopili, Kolongpar, Rajdhani and Rajendra Nagar Capital Express
respectively.

3.4.1 Information from time-domain analysis:

Analysis of vibration signals in time domain is mostly focussed on Principal Component
Analysis (PCA), and it’s variants [51], [60]. Another popular method of analysing time
domain data is Kurtosis analysis [54]. Apart from these another method is to create time-
domain features to be further analysed by Artificial Intelligence, Machine learning etc. [42],
[65].Compared to the techniques present in the literature, here a fairly simple technique is
used to interpret X and Y axis vibration. X-axis and Y-axis vibrations are very important to
analyse specially for railways from a safety point of view. As uneven or non-periodical vibra-
tion in the X-axis can be a measure of relative slip between the train and track. Similarly an
uneven or non-periodical vibration in the Y-axis can be a measure of tendency of derailment.
To quantify these, the following algorithm is proposed:

1. RMS value of the vibration in the direction of x-axis for a fixed period of time (say ıt
seconds) are calculated.

2. If (|x(t)|− r.m.s value o f the vibration)≥ threshold, it is a instant of slip, threshold
to be determined empirically.
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(a) Vibration Vs Time of Kamrup Express: X-Axis

(b) Vibration Vs Time of Kamrup Express: Y-Axis

(c) Vibration Vs Time of Kamrup Express: Z-Axis

Fig. 3.4 Vibration Vs Time of Kamrup Express
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(a) Vibration Vs Time of Kopili Express: X-Axis

(b) Vibration Vs Time of Kopili Express: Y-Axis

(c) Vibration Vs Time of Kopili Express: Z-Axis

Fig. 3.5 Vibration Vs Time of Kopili Express
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(a) Vibration Vs Time of Kolongpar Express: X-Axis

(b) Vibration Vs Time of Kolongpar Express: Y-Axis

(c) Vibration Vs Time of Kolongpar Express: Z-Axis

Fig. 3.6 Vibration Vs Time of Kolongpar Express
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(a) Vibration Vs Time of Rajdhani Express: X-Axis

(b) Vibration Vs Time of Rajdhani Express: Y-Axis

(c) Vibration Vs Time of Rajdhani Express: Z-Axis

Fig. 3.7 Vibration Vs Time of Rajdhani Express
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(a) Vibration Vs Time of Rajendra Express: X-Axis

(b) Vibration Vs Time of Rajendra Express: Y-Axis

(c) Vibration Vs Time of Rajendra Express: Z-Axis

Fig. 3.8 Vibration Vs Time of Rajendra Express
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Table 3.1 Slip tendency and derailment tendency

Sl.No. Train Average Speed
of the train
(kmph)

Instant of slips Instants of
derailment
tendency

1 Kamrup Express 42 2 0
2 Kopili Express 43 0 2
3 Kolongpar Express 32 2 2
4 Rajdhani Express 65 0 0
5 Rajendra Nagar Capital Ex-

press
42 0 4

3. Similar algorithm could be used for determining derailment tendency in the y-axis
direction.

Here the threshold taken is 5 times the r.m.s value, time considered is 30 sec and
accordingly the result is as shown in the table 3.1.Root Mean Square (r.m.s.) value of an
a.c. signal is the effective value of the signal. Therefore, r.m.s. value can also be considered
as the steady state value, of a decaying sinusoid. Extending this to a rapidly varying signal
such as vibration, r.m.s. value can be considered as the steady state value of the signal. Here
the vibration signals of the x-axis and y-axis are considered. The r.m.s. values of these two
vibration signals can be considered as the steady state values of these two signals. If there
is an instant where the instantaneous magnitude is more than 5 times the r.m.s value, then
this instantaneous magnitude of the signal can be considered as an impulse. This can be
explained with the help of the figure 3.9.Here a pulse of width T and height 1/T is considered
such that the area under the pulse is unity. Keeping the area of the pulse constant, if the
width is reduced to half , the height rises to 2/T. Similarly reducing the width to one fourth,
height rises to 4 times the original height. Any more rise in the height can be viewed as
an impulse as the width would be further reduced. In the present analysis, the time scale
is in seconds. Therefore if an pulse of width 1 sec and height 1 r.m.s value, is considered
and above arguments are applied,4 times the r.m.s value is associated with 0.25 seconds so
that the area is unity.Thus 5 times the r.m.s value at any given instant can be considered as
an impulse. In the analysis of x-axis and y-axis vibration, these impulses may be seen as
unwanted occurrences and therefore may be considered as instants of slips and derailment
tendencies respectively.

It has been observed from table 3.1,that although the Rajdhani express possesses the
highest average speed, still its slip and derailment tendencies are zero whereas Kolongpar
express possess least average speed but it has some tendencies of slip and derailment. From
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Fig. 3.9 Concept of an impulse
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Table 3.2 Power w.r.t Frequency analysis: X-axis

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.0191959 0.0275451 0.0235695 0.0289769 0.0123937
2 KO-Exp 0.0193217 0.0264800 0.0085777 0.0280528 0.0153028
3 KLP-Exp 0.0074484 0.0013602 0.0031284 0.0015782 0.0020494
4 RJ-Exp 0.0150945 0.0356127 0.0285931 0.0288910 0.0154726
5 RJN-Exp 0.0117320 0.0106172 0.0124066 0.0157163 0.0269102

derailment tendency column, it can be said that Kamrup and Rajdhani are the safest while
Rajendra Nagar Capital express is the least safe among the five. Hence the experimental
result matches with the observed conditions of the trains that is discussed in section IV.

3.4.2 Information from frequency domain analysis:

In literature it is mentioned that the different frequency bands have different information
regarding the components of the train-track system [69]. The total average power of a train
calculated over a frequency range of the vibration signal can be expressed as:

p =
f2

∑
f1

|c2
k | (3.1)

Where Ck is the coefficient of the Fourier Transform and f1 and f2 are start and end
frequencies respectively.

Tables from 3.2 to 3.4 summarize power of different trains for different frequency bands.
For the unit of power , it is noted that the signal captured is voltage. It is assumed that the
signal is passed through a 1Ω resistor (as standard in signals and systems textbooks [78]);
therefore the unit of power in this case is watt.

Total power of the trains: Total power p can be calculated as:

p =
q

p2
x + p2

y + p2
z (3.2)
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Table 3.3 Power w.r.t Frequency analysis Y-axis:

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.0283628 0.0250795 0.0355176 0.0224921 0.0205089
2 KO-Exp 0.0102689 0.0145361 0.0170792 0.0096148 0.0056743
3 KLP-Exp 0.0001830 0.0007241 0.0006482 0.0004964 0.0018521
4 RJ-Exp 0.0217776 0.0155402 0.0181767 0.0129091 0.0216623
5 RJN-Exp 0.0041240 0.0030603 0.0023146 0.0065929 0.0055731

Table 3.4 Power w.r.t Frequency analysis Z-axis:

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.0804690 0.0842628 0.0727922 0.0877441 0.0774075
2 KO-Exp 0.0657289 0.0303902 0.0328026 0.0272098 0.0272171
3 KLP-Exp 0.0143683 0.0109733 0.0222704 0.0146527 0.0374704
4 RJ-Exp 0.0835180 0.1052653 0.1698987 0.1506657 0.1210481
5 RJN-Exp 0.0351622 0.0320230 0.0297571 0.0480538 0.0708138

Table 3.5 Total Power from Frequency analysis

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.0874539 0.0921300 0.0843548 0.0951030 0.0810317
2 KO-Exp 0.0692753 0.0428492 0.0379643 0.0402464 0.0317356
3 KLP-Exp 0.0161852 0.0110810 0.0224984 0.0147458 0.0375720
4 RJ-Exp 0.0876205 0.1122076 0.1732441 0.1539529 0.1239407
5 RJN-Exp 0.0372964 0.0338757 0.0323228 0.0509866 0.0759593
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Table 3.6 Power calculations of different trains along X-Z directions

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.1547204 0.1602695 0.1543397 0.1575361 0.1623435
2 KO-Exp 0.0978272 0.0964842 0.0968943 0.0922040 0.0925974
3 KLP-Exp 0.0549084 0.0565561 0.0499748 0.0537572 0.0513343
4 RJ-Exp 0.1686879 0.1681257 0.1830112 0.2034626 0.1973378
5 RJN-Exp 0.0920142 0.0939117 0.0910631 0.0935497 0.1009353

Table 3.7 Power calculations of different trains along Y-Z directions are tabulated below:

Sl No Train Equivalent Power (watt)

frequency
band (0-10
Hz)

frequency
band
(11-20 Hz)

frequency
band
(21-30 Hz)

frequency
band
(31-40 Hz)

frequency
band
(41-50 Hz)

1 KA-Exp 0.1472782 0.1463560 0.1779980 0.1481666 0.1681321
2 KO-Exp 0.0755703 0.0797833 0.0797560 0.0749607 0.0774284
3 KLP-Exp 0.0294609 0.0315399 0.0274707 0.0309160 0.0293441
4 RJ-Exp 0.1957497 0.1865890 0.2091912 0.1951999 0.2305419
5 RJN-Exp 0.0786349 0.0789375 0.0880515 0.0848541 0.0817337

For power contents in combined direction we find correlation in the two directions by the
following formula:

rxy(k) =
∞

∑
−∞

x(n)y(n) (3.3)

The Fourier Transform of rxy(k) from the Wiener Khintchine theorem is given by

sxy( f ) =
∞

∑
−∞

rxy(k)e(− j2πk f ) (3.4)

which is the required cross Power Spectral Density. Thus the power contents in X,Y,Z and
YZ and ZX directions are calculated. Figure 3.10 shows the cross power spectrum of Kamrup
Express.Similar cross PSD profiles are obtained for the other trains. Power calculation of
different trains along X and Z directions are tabulated in 3.6. Power calculation of different
trains along Y and Z directions are tabulated in 3.7
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(a) Power Vs Frequency of Kamrup Express: Y-Z Axes correlation

(b) Power Vs Frequency of Kamrup Express: X-Z Axes correlation

Fig. 3.10 Cross Power Spectrum Density for Kamrup Express
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Fig. 3.11 Total power of different trains at different frequency bands

To monitor the condition or health of the train, essentially the health of different compo-
nents of the train is needed to find out. Here a few important components of the train —bogie
and locomotive are considered. Major components which are very essential from a safety
point of view are wheel, primary suspension, secondary suspension, unsprung mass and
axle. Vibrations at different frequencies carry information regarding different components
of the train-track system. The information regarding the suspension between the car body
and bogie also known as secondary suspension can be obtained by the vibration resonance
below 10 Hz. Vibrations below 5 Hz can be interpreted to obtain information regarding
the wheels of the train. Primary suspension i.e. the suspension between bogie and wheel
is a very important component of the system and the information regarding this can be
obtained by vibrations of frequency between 10 to 30 Hz. Above 50 Hz the rail response and
ground vibration becomes independent of each other [69]. Between 30 to 40 Hz equivalent
wheel-gearbox-axle-propulsion motor mass i.e. unsprung mass information can be extracted.

As discussed above Rajdhani express is of premier category and Kamrup express is an
ISO certified train. These two trains are at better health compared to the other three. This can
be confirmed by data tabulated in Table 3.5 for which we can visualize data as given in figure
3.11 . Different shades of gray represents different trains as indicated in the side of the figure.

Frequency band 0-10 Hz represents energy due to wheel and secondary suspension. Here
as can be seen from the figure 3.11, energy from Kamrup express and Rajdhani express is
high compared to the other three trains viz. Kopili, Kolongpar and Rajendra Nagar. This
can be interpreted as wheel and secondary suspension i.e. suspension between car body and
bogie in good condition. More energy from the secondary suspension can be interpreted
as more vibrations from the secondary suspension and hence less vibration of the car body
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and increased passenger comfort. Information regarding the suspension between bogie and
wheel is obtained from an energy band of 10-30 Hz. As seen from the figure-3.11, here
also Rajdhani and Kamrup express shows a very high energy dissipation compared to the
other three. This can be interpreted as the primary suspension of these two trains are better
equipped to handle uneven track conditions. Because of this, these trains are much more
stable even at higher speeds compared to the other three. Information regarding the unsprung
mass i.e. equivalent wheel-gearbox-axle-propulsion motor mass can be obtained from the
frequency band 30-40 Hz. This frequency band also shows a similar trend of Rajdhani and
Kamrup being better than the other three trains.

3.5 Discussion

It has been observed that with a simple 3D vibration sensor system preliminary condition
monitoring of trains is possible. In countries like India, where there are huge numbers of
local trains (covering distances within a city) ply daily, this system can be easily implemented
because installing sophisticated on board monitoring systems would demand a lot of time
and money.

3.6 Conclusion

In this chapter a 3D vibration sensor based embedded system has been developed for capturing
vibration of a railway track during train in motion. The 3D vibration sensor ADXL335 has
been used for the purpose of capturing vibration of a railway track. Arduino Uno board has
been used as the core of the embedded system to interface ADXL335 for capturing vibration
data on real time basis and to transfer the same to a laptop through USB port. The stored
vibration signals are analysed using signal processing techniques namely time-domain and
frequency-domain analysis. It has been observed that the time-domain analysis offers critical
information related to the safety measure of a train in terms of slip and derailment tendencies.
Whereas frequency-domain analysis provides information related to the condition of different
components of a train such as wheel and suspension system.



4
Linear and Quadratic Time-Frequency

Analysis of Vibration for Fault Detection
and Identification of NFR Trains

This chapter discusses a simple sensor based system that detects and identifies faults of a
train. Four different trains are considered for analysis as suggested by the North-East Frontier
Railway(NFR) authorities. For this purpose, an embedded system containing ADXL335
sensor is used to capture the vibration of a railway track during movement of a train over
the track. The embedded system transfers the captured signals from ADXL335 to a laptop.
These signals are processed using linear time-frequency transform(Wavelet transform) in
conjunction with quadratic time-frequency transform(Wigner-Ville transform)to find out
if there are any faults and thereby quantify the quality of the moving trains. Wheel-flat
fault is detected for one train with the wheel position and the bogie number. This is a low
cost technique as the method involves only one ADXL335 sensor, an Arduino development
board and the software used for the analysis is python which is an open source and platform
independent software.
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4.1 Introduction

Derailment of trains is a common issue in India. According to Factly report, from 2009
to 2015, there were 803 railway accidents in India. Out of these 803 accidents, 47% were
due to the derailment of the trains [75]. Wheel-set defects are most likely to cause these
accidents, compared to the faults of other components of the vehicle [31]. Although several
work had been done in condition monitoring, fault detection and identification of train
and tracks, improvement in the wayside condition monitoring is required by implementing
appropriate signal analysis methodologies [[35], [37]]. In recent years, the fault diagnosis
of railways has been a major thrust area of research. Faults such as tread flat leads to the
periodic jumping of the vehicle over the track, as the wheel (tread flat) makes impact on the
track [36]. This further enhances the damage of the wheel. Hence it becomes a necessity
to detect this fault at the earliest. While most of the literature describes the applications of
the Hilbert-Huang Transform (HHT) to detect this fault [56], [59], some work preferred
Frequency Slice Wavelet Transform [36]. In a notable work by Papaelias et.al., presence of
the wheel damage and its severity is detected by simple time-domain features, such as Root
Mean Square (RMS) value and frequency-domain technique, such as Fast Fourier Transform
(FFT) [35]. Similarly Bracciali et. al. used the energy and the cepstrum analysis of the
vibration signal for wheel flat detection. The system used by them detects the occurrence
of the wheel-flat in a bogie but unable to detect the exact defective wheel [26]. Different
preferred methods are observed for fault detection in signal analysis in different domains.
In time-domain, Wei et. al. had reported the use of one promising method known as
Consensus Principle Component Analysis (CPCA). CPCA was adopted by them for their
work in fault detection of rail vehicle suspension systems [34]. Principal Component Pursuit
(PCP) is another popular method for fault detection [51]. Along with the time-domain
analysis, another popular method is Multivariate Statistical Process Control (MSPC). Jin et.
al. compared various MSPC based models for detecting abnormality in bearings by analysing
the vibration signal produced by the bearings [60]. In another method, time-domain features
such as RMS value, crest factor, impact factor, kurtosis etc. are used as the input to some
classifier and thereby used for fault detection [42], [65]. In frequency domain method,
Power Spectral Density (PSD) is preferred, as it helps in determining patterns and thereby
the faults. Frequency domain methods are predominant in system identification and fault
analysis of mechanical structures [[22],[58],[79],[80]]. Again combining the time-domain
features with the frequency can be used as another method such as Kurtogram analysis and
Improved Spectral Kurtosis(ISK) analysis [ [54], [57]]. For stationary signals, individual
time-domain or individual frequency-domain analysis is sufficient for information extraction.
However, when non-stationary signals are analysed, the time-frequency domain is preferable
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for information extraction , especially for fault detection [81]. Wavelet transform in its
different variations and/or in conjunction with other techniques are popular methods for
fault detection, as many literature can be seen following this approach [ [82], [57], [55],
[61]]. Li et. al. had discussed the fault detection and classification of a Medium Voltage
Direct Current (MVDC) Shipboard Power System (SPS) through Wavelet Transform Multi-
Resolution Analysis (WTMRA) technique with Artificial Neural Network(ANN) [82]. The
WT-MRA and Parseval's theorem were used for feature extraction and ANN was used for
classification by Chen et. al. in their experimentation with Fault Detection and Identification
(FDI) of rotating machinery [57]. In their paper, it was described how Improved Spectral
Kurtosis (ISK) in conjunction with Adaptive Redundant Multiwavelet Packet (ARMP) can
be used for FDI. The shortcoming of Kurtosis analysis is that when periodic faults occur,
the Kurtosis analysis becomes less effective and can be mitigated by extracting the sensitive
frequency band, which is generated by incorporating an additional evaluation index to the
spectral kurtosis and multi-wavelet. For de-noising of the vibration signal, Empirical Wavelet
Transform (EWT) is used and then signal processing techniques such as calculating the
Kurtosis value and the envelope spectrum are used for the fault detection [55].

In the present work, a combination of linear and non-linear time-frequency domain anal-
ysis is proposed to detect and identify the faults of a train. One of the remarkable properties
of the wavelet transform is that it can indicate the presence of impulses in a vibration signal.
The wavelet coefficients generated can be classified based on some threshold, and selected as
fault features of a machine. However the problem of selecting the threshold or any other such
criteria that qualifies the wavelet coefficients as fault features remains open [83]. An excel-
lent solution to this problem is provided by Mallat et. al that utilises Lipschitz exponents to
classify the wavelet components [84]. Using the non-linear time-frequency domain analysis
such as Wigner-Ville transform and Cohen's class of time-frequency distribution, a precise
localization of the frequency of these impulses in the time-domain can be achieved [85].
Analysis of these locations of impulses and their duration in time-scale are indications of
faults in the system. Once this is computed the faults may be detected by simply visualizing
the 3D representation of the time-frequency course of the amplitude spectrum. For the
wavelet transform analysis, selection of the wavelet is done on the work presented in [86].
Schukin et al. presented the selection of “impulse" wavelet as the optimized wavelet to detect
impulses. Wavelet transform would detect the presence of all the impulses generated by
faults. Wigner-Ville transform would confirm whether these impulses are due to the train
vibration or noise as well as the presence of wheel-flat and their position.

For data acquisition purpose, a single ADXL335 based embedded system is designed.
ADXL335 sensor is used to capture the 3D vibrations of a railway track. The real time data
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from ADXL335 sensor is captured by an Arduino 328 Uno microcontroller board. The data
captured by the system and transferred to a laptop for storage and analysis. Compared to the
existing literature, the present work

• uses optimized wavelet to find impulses and

• uses Wigner-Ville transform to confirm whether these impulses are due to the train
vibrations or noises and find the presence of wheel-flat fault precisely at the bogie
number and the wheel position.

4.2 Theoretical background

In this section a brief review of the Wavelet transform optimized for local extrema detec-
tion(presence of impulses in the vibration signal) and Wigner-Ville transform for localization
of the faults are presented.

4.2.1 Wavelet transform optimized for local extrema detection

The foundation work of extrema detection is from the classical paper by Mallat et. al. while
the optimization of the wavelet is from the paper by Schukin et. al.

Let us consider a wavelet θ(t). θ(t) is double differentiable and satisfy
R ∞
−∞ θ(t) = 1, t is

the time. Two other wavelets may be derived, from this wavelet as :

Ψa(t) =
dθ(t)

dt
;
Z ∞

−∞
Ψa(t) = 0 (4.1)

Ψb(t) =
d2θ(t)

dt2 ;
Z ∞

−∞
Ψb(t) = 0 (4.2)

If the function ξp(t) represents 1
pξ ( t

p), then the wavelet transform of a signal f (t) with
scaling-factor p and time t , computed with the above mentioned wavelets (4.1) and (4.2) can
be represented as:

W a
p f (t) = f (t)∗Ψa

p(t) (4.3)
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W b
p f (t) = f (t)∗Ψb

p(t) (4.4)

where “*" represents the convolution.
Now it can be derived that

W a
p f (t) = f (t)∗ (p

dθp

dt
)(t) = p

d
dt
( f (t)∗θp)(t) (4.5)

and

W b
p f (t) = f (t)∗ (p2 d2θp

dt2 )(t) = p2 d2

dt2 ( f (t)∗θp)(t) (4.6)

The Wavelet Transform(WT) W a
p f (t) represents the first derivative of the signal f(t)

smoothed with a scale factor p i.e it can indicate the presence of local extrema in the wavelet
surface and Wavelet Transform W b

p f (t) represents the second derivative of the signal f (t)
smoothed with a scale factor p that can dictate the local maxima or minima on the wavelet
surface.

Second order systems are very common and higher order systems may be suitably
assumed to follow the characteristics of a second order system by virtue of its dominant
poles. A second order system subjected to an impulse at t0 would produce a response of the
form

f (t) = A0e−ξ ωn(t−t0)sin(ωd(t − t0)) (4.7)

Where, A0 is the initial amplitude, ξ is the damping ratio, ωn is the natural frequency and
ωd is the damped frequency of oscillation such that ωd = ωn

p
1−ξ 2.The mother wavelet

selected is the ‘impulse’ based on the paper [86] and is given by Ψ(t) = e2π jω0t−2π|t|. ω0 is
the carrier frequency of the wavelet. From the above representation

Ψa
p f (t) = p

d
dt
( f (t)∗θp)(t) (4.8)

Notations represent the meanings as discussed above. Here, f is the output from the
system containing impulse at t0 i.e f (t) = A0e−ξ ωn(t−t0)sin(ωd(t − t0)) and θ is the wavelet
i.e θ(t) = e2π jω0t−2π|t|. To compute the convolution , the two functions are multiplied in the
Laplace domain which led to the following result:
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A0eξ ωnt0

p(s+ 2π
p ( jω0 −1))

[cos(ωdt0)
ωd

(s+ξ ωn)2 +ω2
d
−

sin(ωdt0)
s+ξ ωn

(s+ξ ωn)2 +ω2
d
]

In the above representation s is the Laplace variable and also the |t| of the θ(t) is relaxed
to t as the reflected version of the signal is needed for the convolution. To complete the
wavelet transform , this result is to be differentiated i.e multiplying with s in the Laplace
domain and multiplying with the scale-factor p. Accordingly, the following result is obtained
:

sA0eξ ωnt0

s+ 2π
p ( jω0 −1)

[cos(ωdt0)
ωd

(s+ξ ωn)2 +ω2
d
−

sin(ωdt0)
s+ξ ωn

(s+ξ ωn)2 +ω2
d
]

This equation may be equated to 0 to obtain the local extrema in the wavelet surface that
would represent a singularity or impulse in this case.

sA0eξ ωnt0

s+ 2π
p ( jω0 −1)

[cos(ωdt0)
ωd

(s+ξ ωn)2 +ω2
d
−

sin(ωdt0)
s+ξ ωn

(s+ξ ωn)2 +ω2
d
] = 0

=⇒ tan(ωdt0) =
ωd

s+ξ ωn
(4.9)

Eq. (4.9) shows that at point of singularity time domain information in the form of t0 and
frequency domain information in the form of s is available. Also the damped frequency of
oscillation ωd and rate of attenuation ξ ωn are present. While t0 would give presence of an
impulse at that instant , the damped frequency of oscillation ωd and rate of attenuation ξ ωn

would give its progression. The term s+ξ ωn is very important as it shows that ξ ωn, the rate
of attenuation in the frequency domain while preserving the time information of impulse
occurrence at t0.
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4.2.2 Wigner-Ville transform for localization of impulses

The Wigner-Ville transform of a signal f (t) is defined as

WV Tf (t,ω) =
Z ∞

−∞
f (t +

τ
2
) f̄ (t − τ

2
)e− jωτdτ (4.10)

where f̄ represents the complex conjugate of f and ω represents frequency. A second
order system subjected to an impulse at t0 would produce a response of the form f (t) =
A0e−ξ ωn(t−t0)sin(ωd(t − t0)). And f is considered accordingly. Therefore the Wigner-Ville
transform of f is

WV Tf (t,ω) =
Z ∞

−∞
A0e−ξ ωn(t−t0+ τ

2 )sin(ωd(t − t0 +
τ
2
))

(−A0e−ξ ωn(t−t0+ τ
2 )sin(ωd(t − t0 +

τ
2
))e− jωτdτ

(4.11)

Since sin(ωt) can be considered as the imaginary part of e jωt the conjugate part of the
Wigner-Ville transform is simply taken as the negative of the f . Also since the time t will only
progress in the positive direction from t0, the limit can be changed from 0 to ∞. Continuing
the computations

WV Tf (t,ω) =
Z ∞

0
(−A2

0
2

e−2ξ ωn(t−t0)(cos(ωdτ)−

cos(ωd(t − t0))))e− jωτdτ
(4.12)

=
A2

0
2

e−2ξ ωn(t−t0){cos(ωd(t − t0))
jω

−π(δ (ω +ωd)+δ (ω −ωd))}

Eq. (12) clearly shows that information in both time and frequency domain is preserved
as it can be seen that the presence of the impulse in the frequency domain indicated at
π(δ (ω +ωd)+δ (ω −ωd)) and its progression in time domain indicated by (t − t0).
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Fig. 4.1 Block diagram representation of the scheme to capture vibration signals generated
by a train while in motion over a track.

4.3 Capturing of the vibration signal generated by a train
running over a track, using an ADXL335 sensor

The functional block diagram adopted for data acquisition is depicted in fig. 4.1.
ADXL335, a 3-axis accelerometer is interfaced to the Arduino Uno development board to

record vibration of trains running over a track. A laptop is used to pull and store vibration data
captured by the embedded system through its USB port. ADXL335 measures acceleration
with a full-scale range of ±3 g. It can measure the static acceleration of gravity in tilt-sensing
applications, as well as dynamic acceleration resulting from motion, shock, or vibration. The
sensor is fixed to the fish-plate of the track as advised by the NFR authority.

The NFR authority , Maligaon, Assam, India provided a facility to carry out the ex-
periments on a live railway track under the supervision of their authorised personnels in
accordance with their guidelines. The NFR authority permitted us to capture vibrations of the
railway track located at Chandmari, Guwahati, Assam, India. The experimental set-up used
for the purpose of capturing vibration signals of the railway track at Chandmari is shown
in fig. 4.2. The ADXL335 sensor was firmly attached on the fish-plate of the joint of two
railway tracks as advised by NFR authority. Fig. 4.3 shows the orientation of the sensor
axes with reference to the railway track. The orientation of the sensor is made in such a way
that the X-axis is parallel to the railway track, Y-axis is perpendicular to the railway track,
parallel to the ground and the Z-axis is perpendicular to the ground.

NFR authority advised us to carry out the studies on four different trains, they are —(i)
Rajdhani Express (ii) Kamrup Express (iii) Kolongpar Express and (iv) Kopili Express,
as these four trains represent four different categories of trains with different allowable
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Fig. 4.2 Experimental set-up for capturing vibration signals from the railway track.

Fig. 4.3 The orientation of the ADXL335 sensor axes with the reference to the railway track.
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speeds.The Rajdhani Express is one of the premium trains in the NFR and enjoys the best
of maintenance thereby maintaining excellent health, whereas Kamrup Express is an ISO
certified train and enjoys relatively good health whereas the trains like Kolongpar Express
and Kopili Express are of average health.

4.4 Experimental results and analysis:

Vibration signals were captured at 200 samples/s for 30 sec as the range of frequency under
study is 0-50 Hz. Since, the signal was sampled at 200 samples/s, thus the high frequency
noise was easily eliminated. The major concern for the noise is due to the sensor. ADXL335
introduces Gaussian white noise but intensity is very low. The noise is proportional to
the square root of the accelerometer bandwidth and in the range of µg√

Hz
. Thus this can

be neglected, when vibration due to large structure such as train moving over a track is
considered. Moreover lower frequency components are of interest as information regarding
the train is availed through the low frequencies. Hence, an external filter was avoided in the
scheme. Below 50 Hz, the health condition of different parts of the vehicle can be captured
[40]. Major components which are very essential from a safety point of view are wheel,
primary suspension, secondary suspension, unsprung mass and axle. Vibrations at different
frequencies carry information regarding different components of the train-track system.
The information regarding the suspension between the car body and bogie also known as
secondary suspension can be obtained by the vibration resonance below 10 Hz. Vibrations
below 5 Hz can be interpreted to obtain information regarding the wheels of the train. Primary
suspension i.e. the suspension between bogie and wheel is a very important component of
the system and the information regarding this can be obtained by vibrations of frequency
between 10 to 30 Hz. Between 30 to 40 Hz equivalent wheel-gearbox-axle-propulsion motor
mass i.e. unsprung mass information can be extracted [69].

From the experiments, it was found that Z-axis vibrations were more prominent as
compared to the X or the Y-axis vibrations; so for analysis only Z-axis vibrations are
considered. Wavelet transform applied to the X, Y and Z-axis vibration signals of Kamrup
Express is shown in fig. 4.4. As seen from the fig. 4.4, the Z-axis vibration is more prominent
compared to the other two axes.

At first, the Rajdhani Express was considered for analysis. The z-axis vibration of the
Rajdhani Express is as shown in fig. 4.5.
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(a)

(b)

(c)

Fig. 4.4 (a) Wavelet Transform applied to X-axis vibration signal of Kamrup Express with
p=2. (b) Wavelet Transform applied to Y-axis vibration signal of Kamrup Express with p=2.
(c) Wavelet Transform applied to Y-axis vibration signal of Kamrup Express with p=2.
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Fig. 4.5 Vibration(Acceleration) of Rajdhani Express in Z-axis.

4.4.1 Information from wavelet transform

Wavelet Transform is applied to the vibration signal as discussed in the section II A. To
capture various impulses at various frequencies different values of scaling-factor p is used.
The spectrum in fig. 4.6a is limited to 15 s due to the value of p. If the value of p is low, the
spectrum is compressed in the both time and frequency axes. The spectrum shown in fig. 4.6a
is with the p value equal to 2. However, with higher p values such as p=6 and 8, the spectrum
spreads for the entire time-scale. It is found that to capture impulses in the frequency range
of 0-50 Hz, the p value from 2-6 is useful. With p=2, as shown in fig. 4.6 (a), short bursts of
energies can be seen in the frequency range of 0-6 Hz in 0-8 s and again in frequency range
of 0-6 Hz but in 10-14 s. Therefore it can be inferred that there are low frequency impulses
in these time periods. With p=4, impulses present in higher frequencies (0-26 Hz in this
case) can be seen. However the burst of energies seem to be continuous and spread out in
time i.e although there are impulses it may be because of the random noise. The spreading
of spectrum in time-axis increases with the increasing values of p as can be seen from fig.
4.6 (c) and (d) with p=6 and p=8 respectively. With p=8 the wavelet transform spreads out
in both time and frequency. The impulses due to faults are expected to be sudden bursts of
energy repeated periodically and not to spread out in time. This trend seems to be evident
with p=2 while with higher values of p it becomes difficult to distinguish between noise and
the impulses generated by the faults of the train. Therefore some confirmatory measures are
required to firmly ascertain about the presence of the faults. Hence, Wigner-Ville transform
is applied for further processing.
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(a)

(b)

(c)

(d)

Fig. 4.6 (a) Wavelet Transform applied to vibration signal of Rajdhani Express with p=2. (b)
Wavelet Transform applied to vibration signal of Rajdhani Express with p=4. (c) Wavelet
Transform applied to vibration signal of Rajdhani Express with p=6. (d) Wavelet Transform
applied to vibration signal of Rajdhani Express with p=8.
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Fig. 4.7 Wigner-Ville transform applied to vibration signal of Rajdhani Express.

4.4.2 Information from Wigner-Ville transform

Wigner-Ville transform is shown in fig. 4.7. It is seen that although there are repeated
patterns of energy in the lower frequency range of 0-5 Hz in wavelet transform , the energy
distribution is more or less continuous in Wigner-Ville transform. Therefore this distribution
of energy may be because of noise and not necessarily due to faults.

Similar procedure is carried out for the rest of the trains viz. Kamrup Express, Kolongpar
Express and Kopili Express. They showed the similar characteristics in the wavelet transform,
however in some cases, especially in Wigner-Ville transform some peculiar spectrum can
be noticed. In the case of Kolongpar express there is a greater concentrated burst of energy
only at 5.5 s which can be seen in fig. 4.10. Since this concentrated energy in the lower
frequency i.e. below 5 Hz, this is a wheel-flat fault. In the case of Kopili Express, although
the spectrum is short compared to that of Rajdhani or Kamrup, there is no such sudden burst
of energy as Kolongpar Express. This is shown in fig. 4.11 and this train can be classified
as in better health compared to Kolongpar Express. Similarly no wheel-flat is detected for
Kamrup express as shown in fig. 4.9.

Referring to the fig. 4.8, the sensor is activated when the first wheel crosses the fish-plate
where the sensor is connected. The length of a bogie is 23.56 m. In case of Kolongpar
express the sudden burst of energy is at 5.5 s. The average speed of Kolongpar express is 32
kmph. The distance covered by the train in 5.5 s is 44.88 m. Adding length of the Centre
Buffer Coupler 1.067m, the occurrence of the burst of energy is at 1.82th (44.88/24.627)
bogie. As the number is 1.82, the occurrence is at the second bogie, again since it is greater
than 1.5, the occurrence is towards the end of the bogie. Therefore the last wheel of the 2nd
bogie of the Kolongpar Express is suffering from wheel-flat. No Wheel-flat is detected for
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Fig. 4.8 Wheel-flat detection by calculating the distance and occurrence of the burst of
energy.

Table 4.1 Detection of wheel-flat.

Sl No Train Avg. speed
(kmph)

No. of bo-
gies

Wheel-flat location

1 Rajdhani Exp. 65 18 No wheel-flat
detected

2 Kamrup Exp. 42 12 No wheel-flat
detected

3 Kopili Exp. 43 9 No wheel-flat
detected

4 Kolongpar
Exp.

32 8 Last wheel of 2nd bo-
gie

rest of the trains. These along with some details of the trains such as average speed and no.
of bogies(on the day of experiment) are summarized in table 4.1.

4.5 Discussion

From experiments, it is found that to capture impulses with wavelet transform in the frequency
range of 0-50 Hz, the scaling factor p ranging from 2 to 6 are useful and accordingly applied
to 4 different trains. They show similar trends of short impulses at low frequency range of
0-10 Hz with p=2. The spectrum spreads out as the p value increases. Since the wavelet
used is optimized to capture impulses, it has captured a lot of impulses which may be also
due to the random noise. As a confirmatory measure, Wigner-Ville transform is used. For
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Fig. 4.9 Wigner-Ville transform applied to vibration signal of Kamrup Express.

Fig. 4.10 Wigner-Ville transform applied to vibration signal of Kolongpar Express.
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Fig. 4.11 Wigner-Ville transform applied to vibration signal of Kopili Express.

Rajdhani Express and Kamrup Express an uniform spectrum is noticed, therefore the impulses
indicated by the wavelet may be because of the noise. However there is a sudden burst of
energy for Kolongpar Express indicating wheel-flat type of fault. Wigner-Ville transform
did not catch any high frequency energy. Therefore although wavelet transform indicated
presence of impulses at different frequencies it could not be confirmed by the Wigner-Ville
transform and this may be the further direction to this particular research. Wheel-flat fault
for Kolongpar Express with wheel position and bogie number is also detected. Although it
seems that the Wigner-Ville transform alone is sufficient to detect the wheel-flat fault, there is
a major disadvantage of Wigner-Ville transform that it produces cross-frequency components
(unfiltered).To observe the cross-frequency components in Wigner-Ville transform, fig. 4.7
and fig. 4.6 can be considered. As can be seen in fig. 4.6 (a), the spectrum has started dying
from 15 s onwards, whereas in fig. 4.7, there are prominent spectrum components between
15 s to 20 s. This is a cross-frequency component that Wigner-Ville transform has produced.
Again Wigner-Ville transform in this analysis had not caught frequency components above
3 Hz. Hence, with only Wigner-Ville transform a lot of information regarding the vehicle
especially that of Primary and Secondary suspensions will be missed. The information
regarding the primary suspension can be obtained from 10-30 Hz band while the information
regarding the secondary suspension can be obtained from 5-10 Hz band [67]. Therefore,
analysis in both linear and non-linear time-frequency is required. Hence, it is proposed to
detect the impulses first with linear time-frequency transform like Wavelet transform and
then to confirm the presence with the quadratic time-frequency transform like Wigner-Ville
transform.
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4.6 Conclusion

Four trains of NFR viz. Rajdhani Express, Kamrup Express, Kolongpar Express and Kopili
Express are analysed for fault detection. For this purpose, vibration generated by the train
when running over a track is captured by ADXL335 vibration sensor connected to the fish-
plate of the track. The development board used was Arduino Uno. The captured vibration
signals were analysed with linear time-frequency technique wavelet transform and quadratic
time-frequency technique Wigner-Ville transform. Wavelet transform captures the impulses
present whereas the Wigner-ville transform confirms whether they are due to vibration of
the train or due to random noise. Also Wigner-Ville transform captured the wheel-flat of the
trains. It can be concluded that although wavelet transform is most widely used for detecting
impulses in the vibration signals, the smoothing factor p affects the results over different
frequency ranges. With increasing p, the spectrum spreads in both time and frequency
domain and therefore, it is difficult to detect impulses. With lower value of p, it is difficult to
catch the higher frequency impulses. Again Wigner-Ville transform produces cross terms,
therefore all the energy distribution is not reliable. Moreover the noise present tends to
produce a continuous spectrum especially in the wavelet transform. However combining
these two techniques, conclusions can be drawn about presence of impulses in the signals as
well as wheel-flats and thereby detect different faults. As final comments, it is worthwhile to
mention that the data acquisition had been carried out in a limited time frame, as allowed by
the NFR authority. The data acquisition had to be carried out on a live environment while a
train moves over a track. As such the data acquisition could be carried out for only a limited
number of times. To generalise this work, more data acquisition is needed. However the
work presented here proves to be useful for fault detection and can be extended in further
research for robust detection of any number of faults in the train vehicles. However, it is
to be noted that the technique described is quite inexpensive and the method is capable of
approximating the state of the health of a train vehicle. This method can be used as a first
step towards health monitoring of trains in countries like India, where a huge number of
trains (including local, metro, intercity, long distance etc.) ply regularly. By simply installing
one sensor based system on a track, the health of all the trains running over that track can be
monitored. This is of immense potential.



5
Health Monitoring of a few Passenger
Trains Using Statistical Measures and

Graph Signal Processing

Health monitoring is an important activity for proper maintenance of a structure and it’s
been an active research topic among the researchers. Vibration analysis is one of the prime
methods to estimate the health of a structure or a system. This chapter presented here
describes an approach for estimating the health condition of a train by extracting statistical
measures and Graph Signal Processing(GSP) of vibration signals generated by a train under
motion and captured by an Inertial Measurement Unit (IMU) MPU6050. These signals
are the characteristics of a train and were captured during the movement of the train over
a track. While statistical treatment provided a relative health estimation among the trains,
GSP provided an absolute health estimation of the trains when compared against a standard
database.
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5.1 Introduction

Railway safety is a major concern, especially in a country like India, where a large number
of trains ply daily. Periodical maintenance of the railway vehicles becomes easier if they
can be categorised. By proper maintenance, best health of the railway vehicle and the track
can be ensured. This would reduce the risk of accident, mainly due to the derailment which
mostly occurs due to the bad conditions of the track or the bad conditions of the major vehicle
components such as the wheels and the suspension systems. The best way to ensure the
health of a mechanical system is to ensure that there is no fault. Most of the faults can be
detected and isolated by analysing the signature vibration signals generated by the system.
Vibration analysis has been the mainstay of fault diagnosis [87], [88].Traditional way of
detecting fault is to analyse statistical indicators such as Root Mean Square (RMS), Crest
Factor (CF), Kurtosis etc. Many authors had applied these techniques to find fault in a
mechanical system, especially that of the bearings [89], [62], [63]. These time-domain
features are very helpful, when one needs to track a particular machine for degradation.
However, for comparing two systems, based on the time-domain features obtained from
the vibration signal, these features need some improvement. Higher order features such as
skewness, kurtosis, entropy etc. are calculated from probability distribution. As the vibration
signals generated by trains under motion over a track are random in nature, they do not fit
any particular probability distribution. To calculate these higher order features, Empirical
Cumulative Distribution Function(ECDF) can be utilized. In most of the cases these ECDFs
are quite similar, although the original vibration signals from which these ECDFs are obtained
are different. This makes characterizing the systems based on these features become difficult
and improving these features become desirable. Condition monitoring , characterization or
classification of systems depends on the features it generates. Better features enable one
to carry out these tasks easily. Features selection is a process that requires care, however
once selected, the features should be distinctive and sharp enough so that the classification or
characterization can be done easily. Again the difference between two lower order features
such as mean or rms value, generated by the similar systems such as two similar trains are
quite small. Hence it is necessary to improve upon the features so that the next task of
classifying or quantifying the similar systems becomes easier. Again many authors describe
these features as the input to an artificial intelligent system for condition monitoring [43],
[45], [47]. Improving upon these features would make the learning process faster. Sensor
fusion, as it is known for combining data of different sensors for improving features has been
discussed by few authors [90], [91].

The Indian railways tracks are fixed on precast RCC Sleeper using fishplate. Therefore,
this type of railway track not only vibrates when a train moves over it, the angular motion
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of the track is also experienced. Therefore, it is necessary to capture both vibrations and
angular velocities of a track to quantify the quality of trains. The work reported in this paper,
an MPU6050 was used to capture the acceleration and the angular velocity of a railway track
while a train in motion. Arduino Uno development board was used to interface MPU6050 and
a laptop through the USB port for capturing MPU6050 signals while a train was in motion.
The acceleration and the angular velocity of a train were analysed in time-domain, where the
angular velocity and the vibration (represented as velocity derived from acceleration) were
correlated. Analyses were carried out to find the proper combination of signals that to be
correlated for better extraction of the features of a train while under motion. The time-domain
features viz. skewness, RMS, kurtosis, mean, standard deviation, variance, crest factor, form
factor, peak to peak value and entropy of the accelerometer signal, the gyroscope signal and
the correlated signals were calculated. Based on these features, three trains of the North-East
Frontier Railway (NFR) had been categorized.

While these statistical parameters provided a nice way of classifying and comparing
the trains amongst each-other, it was relative. So it was desired to have some kind of
quantification of the train health in terms of some absolute numbers. The statistical parameters
of the vibration signals generated by the trains were compared with statistical parameters
of a railway vibration database by means of a graph. The ten statistical parameters Mean,
Std. Dev, RMS, Variance, peak to peak value, crest factor, form factor, skewness, kurtosis
and Entropy of the database were considered as the nodes of the graph. To utilise the GSP
technique the graph was supplied with the vibration signal of the database and the different
trains. The average value of the statistical parameters constitute the signal on the graph that to
be processed. The Graph Fourier transform was used to quantify the trains which confirmed
the quantification done by correlating the 3D vibration and gyroscope signals. The major
contribution of this work can be summarized as , improvement of time domain statistical
features by correlation, using these features for quantification of the health of different trains,
representing a vibration signal by a graph with these parameters as the nodes of the graph
and finally using this graph to process vibration signals for quantification of the health of the
trains.

5.2 MPU6050 measuremts of the different trains under study

A simple Arduino based system has been configured to capture the vibration and the angular
velocity of a train, which is generated when the train moves over a railway track. The
sensor MPU6050 is interfaced to an Arduino Uno card to capture vibration and the angular
velocity of a railway track. It is necessary to adapt proper placement arrangement of a
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(a) Schematic of the data acquisition system

(b) Orientation of the sensor MPU6050 as placed on
the railway track.

Fig. 5.1 Vibration signal acquisition and sensor orientation

sensor to enhance the durability and functioning of the sensor [77]. The MPU6050 sensor
was placed on the wayside of the track’s fishplate to ensure consistent performance and
protect it from possible impact due to environmental changes. MPU6050 is an integrated
6-axis motion tracking device that combines a 3-axis gyroscope, 3-axis accelerometer along
with a Digital Motion Processor. It has in-built analogue-to-digital converters (ADC), with
operating software that takes care signal processing of the captured signals and to deliver
digital output signals with lowest possible noise. The sensor is one of the most reliable
one as it passes through a number of tests before its release. Moreover its robust nature to
noise and temperature stability makes the sensor very desirable. For capturing the signals by
Arduino Uno card, a library programme developed by Mr. Jeff Rowberg is used. This library
manipulates the Digital Motion Processor (DMP) and provides “Real world Acceleration”
along with other data values. Combination of this programme and the lowest noise offered
by the MPU6050 eliminates traditional difficulties of sensing such as noise, extracting the
true values from the raw data etc. Arduino based system has a software platform that allows
incorporation of in-built software prototype for data acquisition from MPU6050 sensor and
store the data (vibration and the angular velocity) in the Laptop. The function block diagram
of the measurement scheme is shown in Fig.5.1 (a). Fig. 5.1 (b) shows the orientation of the
sensor MPU6050, when placed on the track.
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5.3 Time-Domain Features

The lower order features such as RMS, mean, standard deviation, variance etc extracted
from the captured vibration and the angular velocity from MPU6050 over a period of time
are used to quantify the quality of a train. As such, if one wants to compare the condition
of a particular train over a period of time, these features can be of great help. Further,
these features can be used to determine the quality of a train on an online basis. Again, the
vibration signals generated by the train and the extracted lower order features can be stored
for a particular train over a period of time and these features could be utilized for determining
qualitative deterioration of the train for the period under investigation. For example, an
increase in RMS value is an indication of increasing faults [46]. Some time-domain features
such as form factor and crest factor are independent of the size but dependent on the shape of
the signal. Therefore these features are useful for comparing two similar systems. However
these features are not good enough for critical analysis, as these features will vary quickly
with the variations in mean, RMS or standard deviation. Since the built of the trains, their
operating range, speed etc. will be different; these will affect the shape of the vibration
signals and effectively change these features. To overcome these limitations, features such as
skewness, kurtosis and entropy are utilized. These features are derived from the moments of
the signal, that constitute the probability density function (PDF) of the signal, hence these
features are relatively independent of the factors such as built of the train, speed, operating
range etc.

5.3.1 Definitions and mathematical formulae of the time-domain fea-
tures considered

If x(n) is a signal series, the statistical features considered in this work and their mathematical
formulae are listed in tab 5.1

5.4 Experimental results and analysis

The authority of NFR permitted the experiments on a limited number of trains. In this study
three trains are considered, viz. Kamrup Express, Rajdhani Express and Kolongpar Express.
The experiments were carried out for a restricted period of time under constant supervision
of security and administrative persons of NFR. Kamrup Express is one of the important
trains of NFR that connects Howrah (West Bengal) and Dibrugarh(Assam). Rajdhani express
(Dibrugarh) is one of the premier trains of NFR and it covers 2434 km at an average speed of
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Table 5.1 Time-domain features

Sl No Features Formula Remarks

1 Mean µ = ∑N
n=1 x(n)

N n = 1,2,3, ....,N are the data
points

2 Std. Dev σ =

q
∑N

n=1(x(n)−µ)2

N−1 n = 1,2,3, ....,N are the data
points [92]

3 RMS Xrms =

q
∑N

n=1 x(n)2

N n = 1,2,3, ....,N are the data
points [92], [53]

4 Variance ν = ∑N
n=1(x(n)−µ)2

N−1
5 Peak to

Peak value
max(x(n))−min(x(n))

6 Crest
Factor

PositivePeak
RMS [44] Standard deviation divided by

RMS value [53].

7 Form
Factor

SF =

q
1
N ∑N

n=1 x(n)2

1
N ∑N

n=1 |x(n)|
Modification is done in cal-
culating mean by considering
the absolute values of the sig-
nal sequence. [66]

8 Skewness Sk = m3 −3m2m1 +2m3
1 m1 is the first moment coef-

ficient, m2 is the second mo-
ment coefficient and m3 is the
third moment coefficient [49].

9 Kurtosis Ku = m4 − 3m2
2 − 4m3m1 +

12m2m2
1 −6m4

1

where m1 is the first mo-
ment coefficient, m2 is the sec-
ond moment coefficient, m3 is
the third moment coefficient
and m4 is the fourth moment
coefficient[49].

10 Entropy ESh = ∑N
i=1 xilog 1

xi
Shannon entropy is consid-
ered [64]
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Rajdhani Express
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(b) ECDF of the Z-axis vibration (velocity) of the Ra-
jdhani Express
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(c) ECDF of the Gyro roll of the Rajdhani Express.
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(d) ECDF of the Z-axis vibration and Gyro roll corre-
lated signal of the Rajdhani Express.

Fig. 5.2 ECDFs of Rajdhani Express.

65 kmph. Kolongpar express connects Mairabari of Assam to Guwahati. These three trains
were suggested by NFR authority to carry out the experiments as they have different range of
travel distances with different speeds and they come under different category trains according
to NFR classifications.

Six different signals viz. X,Y and Z axes vibration (acceleration from the accelerometer)
and X,Y and Z axes gyroscope signal (angular velocity) for each of the trains were captured
and stored in a laptop. Before analysis, the vibration signal i.e acceleration obtained from
the MPU6050 had to be converted to the velocity, so that the proper correlation between
the accelerometer and the gyroscope signals could be carried out. Again for some features
viz. skewness, kurtosis and entropy Empirical Cumulative Distribution Function (ECDF)
had been calculated. As an example, Fig. 2 shows the ECDFs of Z-axis vibration, Z-axis
vibration in terms of velocity, Gyro roll angle and ECDF of correlated signal of Z-axis
vibration velocity and gyro roll angle, generated by the Rajdhani Express.

Another important aspect at this point was to select the axes to be correlated for proper
meaningful results. As there are 6 different signals , 15 correlations would have been possible,
but might not yield meaningful results. This issue is discussed in the following subsection.
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Fig. 5.3 Gyroscope orientation

For correlation, both the signals must be of the same dimension. Therefore it was necessary
to convert the acceleration signal of the accelerometer to velocity such that it could be
correlated with the angular velocity of the gyroscope. Trapezoidal rule was utilized for
numerical integration to obtain velocity from the acceleration samples.

5.4.1 Selecting proper signals for correlation

The aim of the correlation of various signals is to find out the condition of a train. By
analysing the Z-axis vibration, health of the train can be estimated along with the comfort
level, whereas the X and Y axes analysis should indicate safety of the train [67]. Fig. 5.3
shows the gyroscope orientation when the X-axis of the accelerometer is horizontal and
passing through the center of the ellipse. Analysing this figure , it can be seen that correlating
Gyro roll with the Z-axis of the accelerometer will give better insight into the Z-axis vibration
of the train. Similarly Gyro yaw with X-axis and Gyro pitch with Y-axis should be correlated.

5.4.2 Signal analysis

The vibration signal collected for Rajdhani Express is depicted in the following figures.
Fig. 5.4 shows the 3-axis vibrations in terms of the acceleration due to gravity (g), of the
Rajdhani Express. Fig. 5.5 shows the gyroscope signal obtained from Rajdhani Express. The
acceleration signals thus obtained had been converted to velocity signals using the trapezoidal
rule of numerical integration. The velocity signals thus obtained are shown in Fig. 5.6.The
velocity signals were correlated with the gyro angles as discussed in the previous subsection
and the results obtained are shown in Fig. 5.7. Similar analyses were carried out for the rest
of the trains.
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(a) X-axis vibration of Rajdhani Express
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(b) Y-axis vibration of Rajdhani Express
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(c) Z-axis vibration of Rajdhani Express

Fig. 5.4 The 3-axis vibrations of Rajdhani Express

5.4.3 Calculation of the time-domain features

The time-domain features viz. skewness, RMS, kurtosis, mean, standard deviation, variance,
crest factor, form factor, peak to peak value and entropy were calculated for the vibration
(velocity), the gyroscope and the correlated signals. First of all, Rajdhani express was
considered and the results obtained are tabulated in table 5.2. Similarly the time-domain
features of the Kamrup and the Kolongpar Express were obtained and are tabulated in table
5.3 and table 5.4 respectively. The comparison of the time domain features of the three trains
along the X-Axis and Yaw correlated signal are tabulated in table 5.5. Similarly, comparison
of the time domain features of the three trains along the Y-Axis and Pitch ; Z-Axis and Roll
correlated signals are tabulated in tables 5.6 and 5.7 respectively.

5.5 Graph Signal Processing on the vibration signal

Graph Signal Processing (GSP) is an emerging area of the signal processing technique. In
this work, GSP is used to quantify the health condition of the different trains. The first step
necessary for GSP is to create the proper graph that captures the relationships between the
different nodes.
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(b) Gyroscope Pitch of Rajdhani Express
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(c) Gyroscope Yaw of Rajdhani Express

Fig. 5.5 Gyroscope signal obtained from Rajdhani Express

5.5.1 Mathematical analysis of Graph Signal Processing (GSP)

Preliminaries

A signal is based on some “support". For example an ac voltage is based on its time support.
An image is based on the support of a grid of pixels. These supports may be considered as
unweighted and un-directed graph. For the example of time varying signals , if we proceed
from one hour to next hour , the hours are essentially the same but the signal generated at
those particular time may be different. Similarly, if we hop from one pixel to the other on an
image, the pixels may be considered as nodes of a graph with varying intensities (i.e. the
generated signal). In GSP, we exploit this inherent support of a signal. In GSP, the graph
topology is important. Following terms are very important for further discussion of GSP.

Adjaceny matrix: Given a graph G = (ν ,ε,ω) of N vertices, its adjacency matrix A ∈
RNxN is defined as

Amn =

(
wmn, if(n,m) ∈ ε
0, otherwise
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(a) X-axis vibration in terms of velocity of Rajdhani
Express
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(b) Y-axis vibration in terms of velocity of Rajdhani
Express
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(c) Z-axis vibration in terms of velocity of Rajdhani
Express

Fig. 5.6 Velocity signal obtained from Rajdhani Express

Degree of a node: The degree of a node is essentially the sum of all the weights incident
on it. Given a weighted and undirected graph , the degree of a node i is defined as

deg(i) = ∑
j∈N(i)

wi j

where N(i) is the neighborhood of the node i and wi j is the weight on the edge (i, j) ∈ ε
In terms of the adjacency matrix A,

deg(i) = ∑
j

Ai j = ∑
j

A ji

The degree matrix D ∈ RNxN is a diagonal matrix such that Dii = deg(i)
Laplacian of a graph: Given a graph G with adjacency matrix A and degree matrix D, we

define Laplacian matrix L ∈ RNxN

L = D−A
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Fig. 5.7 Correlated signals obtained from Rajdhani Express

Laplacian quadratic form: The Laplacian quadratic form of signal x = [x0,x1, ...,xN ] is
explicitly given by

xT Lx =
1
2 ∑
(i, j)∈ε

wi j(xi − x j)
2

xT Lx quantifies the local variation of signal , and is very useful in learning graph from smooth
signals.

Learning graph from smooth signals

The Laplacian quadratic form xT Lx captures the variation of the signal over the nodes. This
property can be utilized in learning graph from data. A signal on graph can be considered
as a smooth signal , if the Total Variation (TV) of signal over the nodes is very low.“If the
nodes are related, the signal on the nodes are similar". The Laplacian Quadratic form can be
minimized subjected to certain conditions to obtain the graph from smooth signal.

In this work, we are considering ten statistical parameters (Mean, Std. Dev, RMS,
Variance, X pp (peak to peak value), CF(crest factor), FF(form factor), Sk(skewness),
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Ku(kurtosis) and En (Entropy)) to be the ten nodes of a graph. Since, these nodes are
correlated as they are representing vibration signal, the signal generated on the nodes are
similar and can be considered as smooth signal.

The minimization criteria used here utilizes the properties of the Laplacian

• Symmetric

• Diagonal elements are strictly positive for connected graph

• Off-diagonal elements are non positive.

Graph Fourier Transform (GFT)

Eigenvalues and eigenvectors of the Laplacian:
The eigenvalues and eigenvectors of Laplacian L are denoted by λi and vi. For a non zero

signal x, the Laplacian quadratic form xT Lx > 0 i.e. L is positive semi-definite. Therefore,
all eigenvalues of L are non negative for a non zero signal on a connected graph. These
eigenvalues capture spectral properties of the Laplacian L and analogous to the frequency in
frequency-domain transforms. This forms the basis of the GFT. A constant vector results in
0 eigenvalue (analogous to 0 frequency for dc or constant signal.)

[L1]i = ∑
j∈N(i)

wi j(1−1) = 0

GFT

Given a graph G and a graph signal x ∈RN defined on G, let us consider a normal Graph-Shift
operator S =V ΛV . Columns of V = [v1v2.....vN ] corresponds to the eigenvectors of S. Λ is a
diagonal matrix containing the eigenvalues of S . Now we can define GFT of x as

x̃ =< x,vk >=
N

∑
n=1

x(n)v∗k(n)

In matrix form x̃ =V ∗x
i.e GFT essentially finds the components of the signal x in the directions of v1,v2, ...vN ,

where v1,v2, ...vN are the eigenvectors corresponding to the eigenvalues λ1,λ2, ...,λN

Following steps are executed to create the graph of a vibration signal generated by a train.

• Vibration database created by Neri et al. is considered. The database is available at
https://realvibrations.nipslab.org/ [93].
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0 3.584 3.051 4.326 0 0 0 12.26 0 1.076
3.584 0 1.001 1.024 5.169 0 1.531 0 0 11.24
3.051 1.001 0 1.027 5.468 0 1.569 0 0 7.215
4.326 1.024 1.027 0 4.066 0 1.421 0 0 23.69

0 5.169 5.468 4.066 0 1.597 15.65 0 2.293 0
0 0 0 0 1.597 0 0 6.18 1.161 0
0 1.531 1.569 1.421 15.65 0 0 0 0 0

12.26 0 0 0 0 6.18 0 0 0 20.03
0 0 0 0 2.293 1.161 0 0 0 0

1.076 11.24 7.215 23.69 0 0 0 20.03 0 0




(5.1)

• The statistical parameters under consideration viz. Mean, Std. Dev, RMS, Variance, X
pp (peak to peak value), CF(crest factor), FF(form factor), Sk(skewness), Ku(kurtosis)
and En (Entropy) are calculated. These will represent the ten nodes of the graph.

• Karl Pearson’s correlation coefficient is calculated among the statistical parameters
under consideration.

• The values of these correlation coefficients are the relations among the nodes. However,
for the weight matrix, the reciprocal of the coefficients are considered, because greater
the correlation coefficient, lesser should be the distance between the nodes i.e close to
each-other.

Considering the database of [93], table 5.10 is prepared. The Karl Pearson’s correlation
coefficient is calculated among the statistical parameters which is given by r = ∑(xi−X̄)(yi−Ȳ )

nσxσy
.

The correlation coefficients are tabulated in the tab. 5.9
To construct the graph, the diagonal elements 1 of the correlation coefficient matrix

is replaced with 0 so that there is no self-loop. Further all the negative coefficients are
changed to 0 so that there is no connection between the respective nodes. Again strong
bonding is represented by greater value of the coefficient ; however the greater value of the
weight matrix will put the nodes further apart, therefore the reciprocal of the coefficients
are considered except the 0 values as these are disconnected nodes. Accordingly the weight
matrix is produced as shown in eq. 5.1 as a matrix.

The graph produced by the weight matrix is shown in fig. 5.8. Now the vibration signal
of a train is essentially represented by its key statistical parameters as the nodes of a graph.
For processing of the signal on the graph, first the signal was added to the graph. In this
case, the average values of different statistical parameters were added to the nodes (which
represents the different statistical parameters). The average values of the different parameters
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Table 5.8 Statistical parameters of vibration signals from the database

Sl.
No.

Train Mean Std.
Dev

RMS Variance Xpp CF FF Sk Ku En

1 1-X
axis

−0.000140.04659 0.04659 0.00217 10.66 129.14 −332.2 1.83143 714.22 −78.71

2 1-Y
axis

0.00755 0.03279 0.03364 0.00107 9.3895 154.62 4.45 6.87 2631.4 6362.48

3 1-Z
axis

0.00135 0.09467 0.09468 0.00896 16.28 74.15 69.86 −1.04184355.88 624.33

4 2-X
axis

0.00108 0.029 0.029 0.00084 0.74522 12.55 26.93 0.0079 3.89 1056.04

5 2-Y
axis

0.00532 0.02637 0.0269 0.00069 0.3127 5.6807 5.05 0.04555 0.49859 4844.86

6 2-Z
axis

0.00163 0.06 0.06 0.00369 1.75 13.66 37.22 −0.05 5.69 1168.96

7 3-X
axis

−0.000520.01374 0.01375 0.00018 4.5 199.52 −26.34 12.93 5459.96 −793.64

8 3-Y
axis

0.00658 0.01129 0.013 0.00012 3.85456 153.02 1.99 1.26 5340.04 7716.52

9 3-Z
axis

0.001749 0.02 0.02 0.00041 8.14 173.29 11.68 −13.73 10815.2 1887.44

10 4-X
axis

−0.004530.02296 0.0234 0.000527 0.236091 4.62152 −5.160330.17255 0.58957 −4346.04

11 4-Y
axis

0.005897 0.04437 0.04476 0.001968 0.394034 4.4412 7.5901 0.21835 0.36468 4119.79

12 4-Z
axis

0.02685 0.05042 0.05713 0.00254 0.96874 7.30179 2.12728 1.031339 1.52678 17505.4336

13 5-X
axis

0.000977 0.028476 0.028492 0.00081 0.237102 4.09774 29.15127 0.045615 0.012669 750.82

14 5-Y
axis

0.008541 0.049936 0.050661 0.002493 0.354156 3.862317 5.93098 0.035477 -
0.24211

5786.94

15 5-Z
axis

0.001629 0.040121 0.040154 0.001609 0.343753 3.96625 24.64461 −0.08139−0.093581387.65

16 6-X
axis

−
0.003

0.021622 0.021833 0.000467 2.194618 55.019572−7.200328−0.198194147.89 −
2891

17 6-Y
axis

0.011702 0.024876 0.027491 0.000618 0.890723 18.52427 2.349181 0.078783 3.26317 10438.24

18 6-Z
axis

0.024296 0.100055 0.102962 0.010011 1.100563 6.046116 4.23775 2.054 7.69639 9251.7884

19 7-X
axis

0.001194 0.055285 0.055298 0.003056 0.730966 6.037115 46.2832 0.052352 0.65877 454.93

20 7-Y
axis

0.006863070.035286 0.035947 0.001245 0.398437 5.707265 5.237864 −
0.002

0.265819 3739.76

21 7-Z
axis

0.000331 0.107671 0.107671 0.011593 1.935422 8.338103 325.06 −0.0896 1.352818 304.46
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Table
5.9
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Fig. 5.8 Graph generated from the weight matrix of the statistical parameters.

from the database (Mean = 0.005, Std. Dev = 0.044, RMS = 0.045, Variance = 0.003, Peak
to peak value = 3.458, Crest factor = 53.31, Form factor = -4.24, Skewness = 0.603, kurtosis
= 1191.1, Entropy = 3146.01) were added to the respective nodes and then Graph Fourier
Transform (GFT) is performed which gave the result as shown in fig. 5.9. The GFT of a graph
signal is given by ŝ =U∗s; where, U is the Fourier basis and U* represents the conjugate.

Similar procedure is followed to obtain the GFT of the three trains under consideration
i.e Rajdhani, Kamrup and Kolongpar Express. The signal on the graph is taken as the average
values of the statistical parameters. The average values of the parameters for these three
trains are calculated by considering the vibration signals of the 3-axes viz. X, Y and Z .
Accordingly the signal on the graph for the Rajdhani express is Mean= 0.0021, Std. Dev
=0.004, RMS=0.0046, Variance= 4.09, Peak to peak value=0.0285, Crest factor=7.3, Form
factor = 2.7, Skewness = 4.25, kurtosis=24.59 and Entropy=26.08. The resultant GFT plot
is shown in the fig. 5.10. The signal on Kamrup express is Mean= −0.000967, Std. Dev =
0.0034, RMS = 0.0038, Variance = 6.055, Peak to peak value=0.0228, Crest factor=5.97,
Form factor = −5.34, Skewness = 4.32, kurtosis=21.65 and Entropy = −16.3. The GFT
is shown in fig. 5.11. The signal on Kolongpar express is Mean = 0.000603, Std. Dev
= 0.0017, RMS = 0.0018, Variance = 0.6806, Peak to peak value = 0.0163, Crest factor
= 10.7794, Form factor = 12.4925, Skewness = 6.3796, kurtosis = 66.95 and Entropy =
8.81496666666667.The GFT is shown in fig. 5.12.
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Fig. 5.9 Graph Fourier Transform (GFT) of the graph obtained from the vibration signals of
the database

Fig. 5.10 Graph Fourier Transform (GFT) of the vibration signal on the graph of the Rajdhani
Express.
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Fig. 5.11 Graph Fourier Transform (GFT) of the vibration signal on the graph of the Kamrup
express.

Fig. 5.12 Graph Fourier Transform (GFT) of the vibration signal on the graph of the Kolong-
par express.
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Table 5.10 Quantgification of health condition of the trains in comparison with the database

Eigen
Value

Direction
of the
database
signal

Direction
of the
Rajd-
hani
signal

Direction
of the
Kam-
rup
signal

Direction
of the
Kolong-
par
signal

Value
as-
signed
for Ra-
jdhani

Value
as-
signed
for
Kam-
rup

Value
as-
signed
for Ko-
longpar

0 +ve +ve +ve -ve 1 1 0
1 -ve -ve -ve -ve 1 1 1
2 -ve +ve +ve +ve 0 0 0
3 +ve +ve +ve -ve 1 1 0
4 -ve -ve +ve -ve 1 0 1
5 +ve +ve -ve -ve 1 0 0
6 -ve -ve +ve +ve 1 0 0
7 -ve -ve -ve +ve 1 1 0
8 +ve +ve -ve -ve 1 0 0
9 -ve -ve +ve -ve 1 0 1

For quantification of the health the direction of the signal in each eigen value is considered.
If the direction of a particular eigen value signal of a particular train is the same as that of the
database signal , +1 is considered and otherwise 0. Finally the total is divided by 10 as there
are 10 eigen values. Accordingly we obtain 0.9 for Rajdhani, 0.4 for kamrup and 0.3 for
Kolongpar express. Thus the health of these three trains are quantified in the scale range of
0 to 1.

5.6 Discussion

Change in the vibration signal changes the probability distribution curve. Therefore higher
order features skewness, kurtosis and entropy are good measures to compare relative health
of the trains. For a good health machine, vibration analysis produces a kurtosis of 3 and
skewness of 0 in ideal conditions. Whereas entropy measures the uncertainty or randomness
of the signal [53]. Considering the data in table 5.5, kurtosis of Rajdhani Express is near 3,
followed by Kamrup and Kolongpar Express. Hence we can say that the Rajdhani Express
possesses the best of health followed by Kamrup and Kolongpar Express. Similarly in the
skewness column , Kamrup Express leads with −0.2454 , followed by Rajdhani −0.7259
and Kolongpar with 2.5512. This shows a better stability of the Kamrup express in the
X-direction compared to the other two. Similar analysis can be carried out for the Y-axis
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data shown in table 5.6. It shows that the Rajdhani is in very good health while Kolongpar
is at bottom. To check the randomness Z-axis is considered as this axis should provide the
information about the passenger comfort. To compare entropy is divided by the RMS (as the
trains run at different speeds, magnitude of the vibration would be definitely different and
this would normalize the fact) and we obtain the value for Rajdhani as 1573, for Kamrup
16442 and for Kolongpar 69293. Again the Rajdhani Express is much more comfortable
compared to Kamrup which is relatively comfortable compared to Kolongpar Express. Hence
these three trains can be categorized in three categories as Rajdhani Express as an excellent
train, Kamrup Express is good while Kolongpar Express needs improvement.

Improvement in the time domain features can be easily seen from the comparison tables.
If we consider table 5.2 , it can be seen that skewness is close to 0 and kurtosis is close to 3 for
correlated signals. However if only vibration signals for X,Y and Z axes are considered then
skewness are 4.4484, 6.0905 and 2.2152 respectively while kurtosis are 21.4055, 46.9699 and
5.3917 respectively. Similar improvement can be seen for the other trains also as tabulated in
tables 5.3 and 5.4.

By this it is established that time-domain features can easily be improved with simple
correlations. These improved features were utilized to compare the trains. For quantifying the
quality of the train a novel method employing GSP is described.This technique adds another
dimension to the analysis. First it has been described how a set of vibration signals generated
by a system can be effectively represented using graph with key statistical parameters as
nodes of the graph. Utilizing Graph Fourier Transform (GFT) the health of the three trains
were quantified as 0.9 for Rajdhani, 0.4 for Kamrup and 0.3 for Kolongpar. This outcome
confirms the assumptions of the train health which were made based on the information
available from NFR.

5.7 Conclusion

The work reported in this paper utilizes MPU6050 IMU sensor for capturing acceleration and
angular velocity of a railway track while a train is in motion. The Arduino Uno development
board was used as an interface between a laptop and MPU6050 IMU sensor to facilitate
transfer of IMU signals to the laptop. The IMU signals were stored in the laptop on the
real time basis while the trains were in motion. These captured signals were analysed in
time-domain to extract key features to quantify the category of a train. For this purpose,
vibration in terms of velocity from the accelerometer and angular velocity from the gyroscope
of the MPU6050 are correlated. Selection of the signals to correlate is done in such a way
that it provides meaningful features of a train. It has been found that there are tremendous
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improvements in the time-domain features such as skewness, kurtosis and entropy when
properly correlated in comparison to uncorrelated (accelerometer and gyroscope signals
separately) signals. Also three trains of NFR viz. Rajdhani, Kamrup and Kolongpar Express
are categorized on the basis of the time-domain features, which is tallying with the actual
categorical representation of the train as there quality and performance concerned. Utilizing
GSP, it has been shown how a set of vibration signals from a system can be used to produce a
graph as the statistical parameters as nodes. GFT was utilized for quantification of the health
of the three trains and promising results were obtained. For Rajdhani express a quantification
of 0.9, for Kamrup 0.4 and for Kolongpar 0.3 were obtained which confirms the health
condition of the trains that were available from authority.
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Conclusion

A comprehensive study of the available literature shows that there is a dearth of reliable
and effective condition monitoring systems for railway structure. This opens up a research
area especially in a country like India where a huge quantity of trains operate. Literature
also shows that there have been tremendous developments in on-board condition monitoring
systems. However on-board condition monitoring systems come with their own disadvantages.
In an on-board condition monitoring system, each train has to be mounted with a number
of sensors at different positions. This leads to a lot of modifications into the existing
system, such as minor or major adjustments in the structure so that sensors can be installed,
communication for a large number of sensors inside the train as well as to some monitoring
station. With a huge quantity of equipment, cost also raises quickly. There has been some
work in wayside condition monitoring systems, most of which concentrate in finding a
particular fault. Considering all these, in this work a simple, reliable and effective wayside
monitoring technique is developed. The aim is to develop a simple and cost effective
technique that can be installed with minimum interference to the existing structure. Also
this technique enables one to gauge an overall health of the train and thereby estimating
the first-hand requirement for the maintenance. Also a simple technique for mathematical
modelling of a railway track is developed that enables one to find limiting conditions of any
particular train and track.
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This work can be extended in various ways. A comprehensive database of vibration for
specific trains may be prepared and comparison of vibration signals of a particular train over
the time would give the progressive deterioration of health. For ex. if the vibration signals
of Rajdhani express is compared for few years, the remaining useful life can be predicted.
Another extension may be to install a number of systems repeated at a certain distance. These
systems may be connected to a common monitoring station by wired or wireless connection.
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[25] Ján Benčat. Assessment of ground vibration from passing train. In Third International
Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil
Dynamics., volume II, pages 753–756, April 1995.

[26] A Bracciali and G Cascini. Detection of corrugation and wheelflats of railway wheels
using energy and cepstrum analysis of rail acceleration. Journal of Rail and Rapid
Transit, 1997.

[27] Paul G. Steets and Yan H. Tse. Conrail’s integrated automated wayside inspection. In
Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, 1998.

[28] Sinan AL Suhairy. Prediction of ground vibration from railways. REPORT 2000: 25,
SP Swedish National Testing and Research Institute , Acoustics, 2000.



References 107

[29] Sakdirat Kaewunruen and Alex M. Remennikov. Field trials for dynamic characteristics
of railway track and its components using impact excitation technique. NDT&E
International, 2007.

[30] S Kaewunruen and A M Remennikov. Dynamic properties of railway track and its
components: recent findings and future research direction. Insight, 2010.

[31] See Yenn Chong, Jung-Ryul Lee, and Hye-Jin Shin. A review of health and operation
monitoring technologies for trains. Smart Structures and Systems, 2010.

[32] J. Sadeghi. Field investigation on vibration behavior of railway track systems. Interna-
tional Journal of Civil Engineerng, 2010.

[33] Xiang Liu, M. Rapik Saat, and Christopher P. L. Barkan. Analysis of causes of major
train derailment and their effect on accident rates. Transportation Research Record:
Journal of the Transportation Research Board, 2289(1):154–163, January 2012.

[34] Xiukun Wei, Ying Guo, Limin Jia, and Hai Liu. Fault detection of rail vehicle suspen-
sion system based on cpca. In 2013 Conference on Control and Fault-Tolerant Systems
(SysTol), 2013.

[35] Mayorkinos Papaelias, Arash Amini, Zheng Huang, Patrick Vallely, Daniel Cardoso
Dias, and Spyridon Kerkyras. Online condition monitoring of rolling stock wheels and
axle bearings. Journal of Rail and Rapid Transit, 2016.

[36] Chen Yuejian, Xing Zongyi, Li Jianwei, and Qin Yong. The analysis of wheel-rail
vibration signal based on frequency slice wavelet transform. In 2014 IEEE 17th
International Conference on Intelligent Transportation Systems (ITSC), pages 1312–
1316, 2014.

[37] Alireza Alemi, Francesco Corman, and Gabriel Lodewijks. Condition monitoring
approaches for the detection of railway wheel defects. Journal of Rail and Rapid
Transit, 2016.

[38] F. BENEDETTO, F. TOSTI, and M. (Amir) ALANI. An entropy-based analysis of gpr
data for the assessment of railway ballast conditions. IEEE Transactions on Geoscience
and Remote Sensing, 2017.

[39] Chunsheng Li, Shihui Luo, Colin Cole, and Maksym Spiryagin. An overview: modern
techniques for railway vehicle on-board health monitoring systems. Vehicle System
Dynamics, 2017.

[40] Rafał Melnik and Seweryn Koziak. Rail vehicle suspension condition monitoring
approach and implementation. JOURNAL OF VIBROENGINEERING, 2017.

[41] Diego A Tobon-Mejia, Pierre Dersin, and Gerard Tripot. Challenges and opportunities
in applying vibration based condition monitoring in railways.

[42] Vepa Atamuradov, Kamal Medjaher, Fatih Camci, Pierre Dersin, and Pierre Dersin.
Railway point machine prognostics based on feature fusion and health state assessment.
IEEE Transactions On Instrumentation And Measurement, 2018.



108 References

[43] Issam Abu-Mahfouz. Drilling wear detection and classification using vibration signals
and artificial neural network. International Journal of Machine Tools and Manufacture,
2003.

[44] A. Krishnakumari, A. Elayaperumal, M. Saravanan, and C. Arvindan. Fault diagnostics
of spur gear using decision tree and fuzzy classifier. The International Journal of
Advanced Manufacturing Technology, 2017.

[45] B. SAMANTA and K.R. AL-BALUSHI. Artificial neural network based fault diagnos-
tics of rolling element bearings using time-domain features. Mechanical Systems and
Signal Processing, 2003.

[46] Zhongjie Shen, Zhengjia He, Xuefeng Chen, Chuang Sun, and Zhiwen Liu. A mono-
tonic degradation assessment index of rolling bearings using fuzzy support vector data
description and running time. Sensors, 2012.

[47] B. Sreejith, A.K. Verma, and A. Srividya. Fault diagnosis of rolling element bearing
using time-domain features and neural networks. In 2008 IEEE Region 10 Colloquium
and the Third ICIIS, Kharagpur, INDIA December 8-10., 2008.

[48] N. BESSOUS, S. SBAA, and A. C. MEGHERBI. Mechanical fault detection in rotating
electrical machines using mcsa-fft and mcsa-dwt techniques. Bulletin Of The Polish
Academy Of Sciences : Technical Sciences, 2019.

[49] Bo-Suk Yang and Kwang Jin Kim. Application of dempster–shafer theory in fault
diagnosis of induction motors using vibration and current signals. Mechanical Systems
and Signal Processing, 20(2006):403–420, 2006.

[50] Jan Bien, Paweł Rawa, Jarosław Zwolski, J Krzyzanowski, Waclaw Skoczynski, and
J Szymkowski. System for monitoring of steel railway bridges based on forced vibration
tests. In The Third International Conference on Bridge Maintenance, Safety and
Management.

[51] Yijun Pan, Chunjie Yang, Youxian Sun, Ruqiao An, and Lin Wang. Fault detection
with principal component pursuit method. In Journal of Physics: Conference Series
659 (2015) 012035, 2015.
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