
Project Report
on

Deep Learning based Hand Gesture
Recognition of Sattriya Dance

Single-Hand Gestures
Submitted in partial fulfillment of the requirements for the award of

degree of Bachelor of Technology in Electrical Engineering of
Assam Science and Technology University

Session: 2022

by

Siddhant Kumar Das (180610003079)
Rishabh Lahkar (180610003070)
Aryamaan Bora (180610003021)
Antariksha K (180610003018)

Ayanmani Das (180610003024)

Under the guidance of

Dr. Amrita Ganguly
Professor

Department of Electrical & Instrumentation Engineering
Assam Engineering College

Department of Electrical & Instrumentation Engineering

Assam Engineering College, Jalukbari, Guwahati, 781013

ABSTRACT

Sattriya Dance or Sattriya Nritriya is a type of Indian classical dance that dates back to
the 15th century A.D.. Mahapurusha Sankaradev, a revered Assamese saint and reformer,
founded it. The Sattras or Vaishnava monasteries nurtured and preserved the dancing form
as it developed over time. Recognition of hand gestures is developing into an excellent
tool for numerous applications. Thus, this project aims to use the technological prowess
of Hand Gesture Recognition models in recognizing single hand gestures also known as
‘Asamyukta Hastas’ in Sanskrit where ‘asamyukta’ means single and ‘hastas’ mean hand
gesture, of Sattriya Dance. A dataset containing ‘Asamyukta Hastas’ of the Sattriya Dance
was created with the help of a Sattriya Dancer. Using this dataset, a pretrained recognition
model was trained to recognize the gestures in real-time. A web application was developed
for real-time use which implements the whole model and makes it easily accessible.

ii

Certificate From the Supervisor

This is to certify that the project entitled “Deep Learning based Hand Gesture Recognition
of Sattriya Dance Single-Hand Gestures” has been carried out and presented by

Siddhant Kumar Das (180610003079)
Rishabh Lahkar (180610003070)
Aryamaan Bora (180610003021)
Antariksha K (180610003018)

Ayanmani Das (180610003024)

students of B.Tech 8th Semester (Electrical Engineering), Assam Engineering College,
under my supervision and guidance in a manner satisfactory to warrant its acceptance as a
prerequisite for the award of the degree of Bachelor of Technology in Electrical Engineer-
ing of the Assam Science and Technology University.

Further, the report has not been submitted/ reproduced in any form for the award of any
other degree/ diploma.

Date: 30 June, 2022
Place: Guwahati

Dr. Amrita Ganguly
Professor,

Dept. of Electrical & Instrumentation Engineering
Assam Engineering College

Guwahati - 781013

iii

Certificate From the Head of Department

This is to certify that the project entitled “Deep Learning based Hand Gesture Recognition
of Sattriya Dance Single-Hand Gestures” has been been submitted by following students
of B.Tech 8th Semester students:

Siddhant Kumar Das (180610003079)
Rishabh Lahkar (180610003070)
Aryamaan Bora (180610003021)
Antariksha K (180610003018)

Ayanmani Das (180610003024)

in partial fulfillment of requirements for the award of the degree of Bachelor of Tech-
nology in Electrical Engineering of Assam Science and Technology University.

Date: 30 June, 2022
Place: Guwahati

Dr. Damodar Agarwal
Head of the Department,

Dept. of Electrical & Instrumentation Engineering
Assam Engineering College

Guwahati - 781013

iv

ACKNOWLEDGEMENT

It gives us immense pleasure in bringing out this synopsis of the project entitled ‘Deep
Learning based Hand Gesture Recognition of Sattriya Dance Single-Hand Gestures’.

Firstly, we would like to express our sincere gratitude to our supervisor Dr. Amrita
Ganguly, Department of Electrical Engineering, Assam Engineering College, Guwahati
for her invaluable suggestions and constant support throughout the entire duration of the
project work. She encouraged us to work on this project. We are also grateful to our college
for giving us the opportunity to work with them and providing us the necessary resources
for the project.

We would also like to thank Aparna Kalita, our batchmate who helped us with the
creation of Sattriya Dataset and all those who helped us to complete this project. We are
immensely grateful to all involved in this project as without their inspiration and valuable
suggestions it would not have been possible to develop the project within the prescribed
time.

v

Contents

1 Introduction 1

2 Literature Review 3

3 Methodology 6
3.1 Semantic Segmentation of Hand Region 6

3.1.1 Overview . 6
3.1.2 Dataset . 7

3.1.2.1 Data Pre-processing . 8
3.1.3 Network Architecture . 8

3.1.3.1 Encoder . 9
3.1.3.2 Skip Connections . 10
3.1.3.3 Module for increasing the receptive field 12
3.1.3.4 Decoder . 12

3.1.4 Training . 13
3.2 Hand Gesture Recognition of Sattriya Dance Single Hand Gestures 16

3.2.1 Overview . 16
3.2.2 Dataset . 16
3.2.3 Network Architecture . 18
3.2.4 Training . 19

3.3 Web application deployment of Deep Learning model 19

4 Results 22
4.1 Training of the networks . 22
4.2 Results of Hand Segmentation Task . 23
4.3 Results of Hand Gesture Recognition Task 27

vi

5 Conclusion and Suggestions 31
5.1 Limitations . 32
5.2 Future Scope . 32

Bibliography 33

vii

List of Figures

1.1 Sattriya Dance . 2

3.1 Two stage hand gesture recognition model for recognition of single hand
Sattriya dance hand gestures . 7

3.2 OUHANDS dataset sample . 8
3.3 Network Architecture . 9
3.4 MobileNetV2 Architecture . 10
3.5 Convolutional Block Attention Module (CBAM) 11
3.6 CAM . 11
3.7 SAM . 12
3.8 ASPP . 13
3.9 Decoder Block . 14
3.10 Dataset Creation Block Diagram . 17
3.11 Sattriya dataset sample . 17
3.12 Streamlit . 20
3.13 WebRTC . 20
3.14 Streamlit’s execution model . 21
3.15 Web Application . 21

4.1 Training Plots . 23
4.2 Example Segmentations on OUHANDS Test Set (a) Input Images (b) Ground

Truth Segmentation Mask (c)Mobilenetv2 Linknet (d)Deeplabv3+ (e)Mobilenetv2
Linknet + CBAM (f) Mobilenetv2 Linknet + ASPP 26

4.3 Confusion matrix on Ouhands testset . 28
4.4 Confusion matrix on Sattriya testset . 29

viii

List of Tables

3.1 Structure of recognition stage CNNs . 18

4.1 Convergence of Training IoU Score and Loss of the proposed methods . . . 23
4.2 Performance of models with or without ImageNet pretrained encoders . . . 24
4.3 Performance of different proposed methods 24
4.4 Performance comparison with other segmentation methods 25
4.5 Parameters and GFLOPS comparison of the methods 27
4.6 Recognition performance comparison of the methods 28
4.7 Classification Report . 29
4.8 Classification Report . 30

ix

List of Abbreviations

HGR Hand Gesture Recognition

HCI Human Computer Interaction

RGB-D Red Green Blue Depth

TPU Tensor Processing Unit

GPU Graphics Processing Unit

CPU Central Processing Unit

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

ResNet Residual Network

ASPP Atrous Spatial Pyramid Pooling

AG Attention Gate

CBAM Convolutional Block Attention Module

IEEE Institute of Electrical and Electronics Engineers

ISBI International Symposium on Biomedical Imaging

LSTM Long Short Term Memory

CAM Channel Attention Model

SAM Spatial Attention Model

GAP Global Average Pooling

GMP Global Max Pooling

x

RELU Rectified Linear Unit

IoU Intersection Over Union

mIoU Mean Intersection Over Union

WebRTC Web Real Time Communication

JS Javascript

FLOPS Floating Point Ops Per Second

xi

Chapter 1

Introduction

Sattriya Dance or Sattriya Nritya is a major Indian Classical Dance form introduced in
the 15th century A.D. by the great Vaishnava Saint of Assam, Mahapurusha Shankardeva.
It was used as a medium of propagation of the Vaishnava faith in the region. The Sat-
tras or Vaishnava monasteries have nourished and preserved this dance form for ages,
which has given it a unique flair making it a gem of Assamese culture. In Karuna Borah’s
book ’Sattriya Nrittyar Rup Darshan’[1] it was stated that single-hand gestures and double-
hand gestures are used to perform Sattriya dance. The single-hand gestures are known as
‘Asamyukta hastas’ and doublehand gestures are divided into two parts: ‘samyukta hastas’
and ‘hastas nrittya’. Like normal hand gestures[2], Sattriya hand gestures are expressive
and meaningful. Interaction between the dancers is achieved by the hand gestures.

With the increasing popularity of the internet and smartphones, it would be easy to
identify hand gestures of the Sattriya dance using computers and smartphones. As no sig-
nificant work was done in this field , it was necessary to apply contemporary technologies
to identify this dance form. This would help popularise Sattriya Dance internationally and
raise awareness of the rich and vibrant culture of Assam while also preserving it. A suit-
able method to recognise hand gesture is by using hand gesture recognition models which
are based on Deep Learning Models as hand gestures are an integral part of the dance. An
RGB camera input is captured, processed by the model, and then the hand action is recog-
nized. This was implemented by developing a hand gesture recognition model which could
segment hand region from any image after which recognition was done. The model was
initially trained on the Ouhands dataset[3] which is a standard dataset for HGR.

Due to the lack of a Sattriya single hand dataset, we developed our own by taking nu-
merous pictures of different hand gestures made by a skilled Sattriya dancer. Using this
dataset, we trained our pretrained HGR model to recognise the different gestures. The

1

Figure 1.1: Sattriya Dance

model could recognise with a good degree of accuracy. To make this project easily ac-
cessible, a cloud-based web application was developed in which the HGR model is stored
on a cloud server. The web application uses the camera available on the device and thus
recognises the hand gestures. The project work has been documented in the upcoming
sections.

2

Chapter 2

Literature Review

The problem of Hand Gesture Recognition (HGR) is as old as Human Computer Interaction
(HCI) Systems themselves. It is one of the most challenging tasks related to HCI. Due
to differences in illumination, background, shadows, differences in ethnicities, etc. the
task becomes even more complicated. Hand gestures have a wide use case. They are
used to convey extra information during conversations, like when pointing at an object, the
index finger is used, and also, they help add structure and emphasis to the words being
spoken, by blind, deaf, and dumb people as a means of communication. Using gestures
can help increase the amount of information being transmitted by 60%. The secret behind
communicating effectively is to use more hand gestures.

From [4], Bhuyan et al showed the raw data acquisition of hand gestures as either
sensor-based or vision based. Vision based gestures [5] have become more popular due to
the limitations of sensor-based approaches, like requirement of gloves, which are expensive
devices. The gestures have been obtained by the use of special cameras. It also has to be
noted that the majority of problems related to hand gesture segmentation, like variations
in illumination, background, occlusion, etc. can be solved by the use of depth cameras for
capturing image RGB-D data. But, the feasibility and cost [6] of depth cameras make them
a rather unpopular choice.

Before the era of deep neural networks, classical machine learning techniques like Sup-
port Vector Machines [7], k-Nearest Neighbours [8], Artificial Neural Networks [9], etc.
were mainly used for image classification and recognition. Also, [10], [11], [12], use a
variety of methods to capture RGB-D data, i.e., depth information.

With the advancement of powerful graphics processing units [13], and recently Tensor
Processing Units (TPUs) [14], deep neural networks have been the standard for image and
video related problems. [13] was also the first paper that showed the enormous advantages

3

of using GPUs over multicore CPUs. The GPUs parallel processing capabilities reduce the
time taken to train deep neural networks significantly. In some instances, they outperform
CPUs massively (almost 50-100 times faster).

In 2012, the error rate of the ImageNet Classification Challenge dropped significantly.
This was mainly due to the use of deep neural networks. AlexNet [15] was the first model
which incorporated deep neural networks in this challenge. Furthermore, in [16], residual
networks are introduced. These differ from plain networks. These ResNets, for short have
shortcut skip connections connecting different layers. The ResNets perform much better
than the networks without skip connections. They are easily optimizable and have a far
lower error rate. In [17], DeepLab network is introduced. The authors have used Atrous
Spatial Pyramid Pooling (ASPP) to increase the receptive field of the network.

In Dadashzadeh et al [18]. proposed a hand gesture recognition model incorporating
[16] and [17]. The network consists of two streams, the first called the shape stream and
the second called the appearance stream. The input to the shape stream is the segmentation
map, which had been extracted in the previous stage using ResNet and ASPP. The streams
are subsequently fused to recognize the gesture.

Next, the encoder-decoder module is introduced in [19]. The network is called UNet.
The encoder module is a contracting path to capture context, while the decoder module is
a symmetric expanding path for enabling precise localization. This model outperformed
the state-of-the-art in the ISBI Challenge. In [20], Attention Gates (AG) were introduced.
These gates were easily integrated into the UNet architecture, creating Attention UNet. The
advantage of using AGs were that it helped suppress irrelevant information while highlight-
ing important parts of an image. It also increased the sensitivity of the model and prediction
accuracy.

To tackle the problem of dynamic gesture recognition, MobileNetV2 is introduced in
[21]. It uses depthwise separable convolution, residual connections with linear bottlenecks,
and an inverted residual structure. These novelties make MobileNetV2 an effective option
for use in scenarios where resources are limited.

For efficient semantic segmentation in real-time, LinkNet [22], was developed. In
LinkNet, the spatial information from the encoder to the decoder is directly bypassed. This
reduces the processing time of the network, and at the same time increases accuracy.

Furthermore, attention can also be added to these networks. The Convolution Block
Attention Module (CBAM) [23], has been developed for this exact purpose. It consists of
two modules. The Channel Attention Module which focuses on ‘what’ is important in an

4

image, while The Spatial Attention Module, focuses on ‘where’ the important part of an
image is. These two modules combine together to determine what information to suppress
and highlight. The CBAM module is a lightweight module which can be integrated into
standard deep neural networks.

Another class of Neural Networks is Recurrent Neural Networks (RNN) [24]. In RNNs,
there are feedforward paths using which the outputs of previous operations can be fed into
future operations as input. Even though [24] is not the original RNN paper, it shows the
mathematical background behind RNN using signal processing. But, RNNs suffer from
a recency bias, where it gives more accurate results for recent information (short term)
than older information (long term). To solve this issue another algorithm is derived called
the Long Short Term Memory (LSTM) Algorithm [24]. LSTMs can work for long term
memory predictions with far greater accuracy than standard RNNs. This is achieved by
using special units which are used to enforce constant error flow throughout the network.
The problem of vanishing and exploding gradients is also solved by this algorithm.

5

Chapter 3

Methodology

The structure of the hand gesture recognition model for recognition of single hand sattriya
dance hand gestures is shown in (Fig. 3.1). The pipeline consists of two stages employing
three deep CNN networks for two separate tasks. The first stage of the gesture recognition
pipeline is semantic segmentation of the hand region from the RGB input image captured
by the camera (Section 3.1). The output mask obtained from the segmentation model is
passed as an input to the second stage of the gesture recognition pipeline. The second stage
is composed of two streams, one for the input RGB image and one for the segmentation
map from the first stage. Each of the streams consists of a deep CNN which is converged
in a fully-connected layer and a softmax classifier. The output obtained is the classification
label of the gesture demonstrated by the user. The training of the network is done in a
stage-wise manner.

3.1 Semantic Segmentation of Hand Region

3.1.1 Overview

The task of segmenting regions of interest (hand postures) from a given RGB input frame
using deep neural network methods can be categorized into three extensive steps.

• Step 1: Collection and preprocessing of dataset.

• Step 2: Design and training of semantic segmentation deep learning model.

• Step 3: Proposed deep learning model statistical evaluation and output generation.

6

Figure 3.1: Two stage hand gesture recognition model for recognition of single hand Sat-
triya dance hand gestures

3.1.2 Dataset

The dataset used in the first stage of the work i.e., the segmentation task is the “OUHANDS”
dataset. The dataset is a publicly available collection of static hand posture images captured
while a user is demonstrating gesture commands to a hand-held device [3]. The authors
used “The Intel RealSense F200” camera to collect the dataset samples. The dataset con-
sists of 3150 hand samples (2150 training samples and 1000 test samples) along with
their corresponding binary mask. The resolution for all the images is 640*480 pixels. The
OUHANDS dataset comprises of 10 unique hand postures demonstrated by 23 people. The
dataset is captured in Human Computer Interaction (HCI)–like settings, such as handheld
camera position, uncontrolled backgrounds, variation in illumination, hand-face obstruc-
tion with different hand shapes and sizes. This makes this dataset conducive for training
and testing Human Computer Interaction (HCI) methods.

7

Figure 3.2: OUHANDS dataset sample

3.1.2.1 Data Pre-processing

The dataset samples were originally of the size 640*480 pixels. This was resized into
320*320 pixels for training the semantic segmentation model. The ground truth data which
were the segmentation masks were binary thresholded before feeding into the models.

3.1.3 Network Architecture

The network comprises of a U-shaped decoupled encoder-decoder structure similar to the
architecture of U-NET [19], The network consists of the encoding or contracting path,
the decoding or expanding path and there is a section of layers that link the two paths to
minimize loss of spatial information during the decoding stage. The architecture of the
proposed model for segmenting hand regions is represented in Fig 2. The encoder is the
narrowing contracting path of the architecture which encodes the input features from the
given RGB frame. Lightweight MobileNetV2 [21] feature extraction model was employed
to modify the encoder. The feature extractor was pre-trained on ImageNet in order to ben-
efit from regularization induced by transfer learning. The decoder is the expanding path
of the architecture whose goal is to project the extracted lower dimensional features by the
encoder into a higher resolution spatial dimension pixel space by multiple upscaling oper-
ations. The pixel resolution of the final output map is (320 X 320), identical to the original
input RGB image. The decoder architecture was adopted from LinkNet [22] network archi-
tecture which utilizes the skip connections in an efficient manner conducive for real time

8

application. The skip connections in the proposed model architecture links the encoder and
decoder at four points.

Figure 3.3: Network Architecture

3.1.3.1 Encoder

To encode the semantic information from the given hand pose image, the model employs
the MobileNetV2 [21] model for contextual feature extraction. The architecture for Mo-
bileNetV2 feature extraction model is shown in Figure 3.4.

For end-to-end segmentation tasks, the fully connected layers of the architecture are
omitted. MobileNetV2 uses depth-separable convolution, residual links with linear bottle-
necks, and an inverted residual structure.

Depth-separable convolution is used extensively in real-time tasks for two reasons

• (i) Compared to the classic convolution, fewer parameters need to be tuned, mini-
mizing the likelihood of overfitting the model.

9

Figure 3.4: MobileNetV2 Architecture

• (ii) Fewer calculations are performed, making them computationally efficient and
more conducive for real-time applications.

Depthwise convolution constitutes convolution blocks called “inverted residual blocks”
in MobileNetV2. There are three layers in each block. The first layer in each block is
a 1×1 convolution layer with the ReLU6 activation function, which expands the number
of feature channels. The second layer is a 3x3 depthwise convolution layer. The third 1x1
convolution layer compresses the network back to the original number of channels. Inverted
residual blocks squeeze the layers where skip connections are linked, degrading network
performance. To overcome this, the authors introduced the linear bottleneck architecture,
where the last convolution of a residual block has a linear output before adding it to the
initial activations.

The input to the encoder is a RGB image with (320 X 320 X 3) dimensions. Feature
maps are extracted by the encoder blocks and are repeatedly downsampled during the pro-
cess. The highest level feature map obtained during the encoding stage is of the dimension
(10 X 10 X 1280).

3.1.3.2 Skip Connections

Skip connections link the higher level layer from the deeper part of the architecture to the
lower level layer of the decoder for fine-grained feature re-usability during the up-scaling
operations. The deeper layers of the network from the encoder have rich feature informa-
tion. Skip connections make the model more robust by combining these rich feature maps
to the decoder blocks for effective localization. In the proposed model the skip connec-
tions are modified by incorporating Convolutional Block Attention Module (CBAM). The
architecture of CBAM is shown in Fig 3.5. Applying an attention block before in the skip

10

connection allows for the network to put more weight on the features of the skip connection
that will be relevant for adaptive feature refinement. As CBAM is a lightweight and general
module it can be integrated into the network seamlessly with negligible overheads.

Figure 3.5: Convolutional Block Attention Module (CBAM)

CBAM contains two sequential sub-modules called the Channel Attention Module
(CAM) and the Spatial Attention Module (SAM). Channel Attention Module decomposes
the input tensor into 2 subsequent vectors of dimensionality (c × 1 × 1). One of these vec-
tors is generated by Global Average Pooling (GAP) while the other vector is generated by
Global Max Pooling (GMP). Average pooling is mainly used for aggregating spatial infor-
mation, whereas max pooling preserves much richer contextual information in the form of
edges of the object within the image which thus leads to finer channel attention. Simply
put, average pooling has a smoothing effect while max pooling has a much sharper effect,
but preserves natural edges of the objects more precisely.

Figure 3.6: CAM

Spatial Attention Module (SAM) is a three-fold sequential operation. The first part of it
is called the Channel Pool, where the Input Tensor of dimensions (c × h × w) is decomposed
to 2 channels, i.e. (2 × h × w), where each of the 2 channels represent Max Pooling and
Average Pooling across the channels. This serves as the input to the convolution layer
which outputs a 1-channel feature map, i.e., the dimension of the output is (1 × h × w).

11

Thus, this convolution layer is a spatial dimension preserving convolution and uses padding
to do the same. The output is then passed to a Sigmoid Activation layer. Sigmoid, being
a probabilistic activation, will map all the values to a range between 0 and 1. This Spatial
Attention mask is then applied to all the feature maps in the input tensor using a simple
element-wise product.

Figure 3.7: SAM

3.1.3.3 Module for increasing the receptive field

Contextual information has been shown to be extremely important for semantic segmenta-
tion tasks. The model takes advantage of a spatial pyramid pooling module to capture and
aggregate multi-scale contextual information. Different scales of contextual information
are combined using an Atrous Spatial Pyramid Pooling (ASPP) [17] module as shown
in Fig 3.8. This kind of module has been employed successfully in the state-of-the art
DeepLabv3+ for semantic segmentation. The ASPP module blends representations at dif-
ferent levels of convolutional features and thus enlarges the receptive field without sacrific-
ing spatial resolution. The ASPP module used in this work has five levels, an image pooling
layer, one 1 X 1 convolution and three 3 X 3 convolutions with atrous rates of 6, 12 and 18
respectively (all with 64 filters). The resulting five feature maps are concatenated together
and the concatenated output is fed to 1 X 1 convolution. This module is incorporated at the
bottom of the network architecture and acts as the bridge between encoder and decoder.

3.1.3.4 Decoder

In the decoder, the expanding mechanism of the Link-NET [22] architecture is employed.
Link-NET is a fully convolutional network, structured in a U-shape similar to the U-NET.
The Link-NET varies from the U-NET by the mechanism by which it links each encoder
with its corresponding decoder block through the skip connections. Unlike U-NET, the de-
coder of the Link-NET does not concatenate the feature map extracted from the lower level

12

Figure 3.8: ASPP

encoder path and the higher level feature map from the deeper layers. The feature maps
are added directly (through a convolutional layer) to reduce the computational parame-
ters. The decoder produces segmentation maps at full resolution. The expanding structure
constitutes four decoder blocks stacked together each linked to its corresponding encoder
block through a summing point and skip connection. The decoder block structure is shown
in fig 4. Each block has three layers. First layer is a (1 X 1) convolution layer with batch
normalization and RELU activation. Second layer is an upsampling layer which upsamples
the feature map using bilinear interpolation. It is then followed by a two convolution layers.
The final decoder block of the expansion path is followed by (3 X 3) convolution layer with
the sigmoid activation which outputs the required (320 X 320 X 1) segmentation mask of
region of interest (hand postures).

3.1.4 Training

The training data was used to train six different models. Each of the six models was sub-
jected to identical training. Images having a resolution of 640 x 480 pixels were included
in the training data which were then scaled to a dimension of 320 X 320 pixels and fed into
the network to train the model. While experimenting with various batch sizes, it was exper-
imentally determined that batch size of 16 provided the optimal learning pattern. ”Adam”
was used as the optimizer to train the deep learning model. According to [25], the method

13

Figure 3.9: Decoder Block

is ”computationally efficient, has little memory requirement, invariant to diagonal rescaling
of gradients, and is well suited for problems that are large in terms of data/parameters”.

The set argument values for the optimizer used for training the models :

• Learning Rate: 0.001

• Exponential Decay Rate for the 1st moment estimates (β1) : 0.9

• Exponential Decay Rate for the 2nd moment estimates (β2): 0.999

• Epsilon value, ϵ : 1e-4

All the models were trained for 500 epochs.

• Loss Function : After experimenting with many loss functions it was decided to use
the dice coefficient loss [26] for the task of semantic segmentation.

D =
2
∑N

i yixi∑N
i y2i +

∑N
i x2

i

(3.1)

Here, yi and xi are a representation of pixel values of corresponding predicted mask
and the ground truth mask, respectively. The values of yi and xi are either 0 or 1. The
denominator in the dice loss equation represents the sum of total pixels from both
the predicted mask and the ground truth mask. The numerator is a representation
of successfully predicted pixels, since the sum only advances when yi and xi match
(both of value 1). If two masks completely overlap or the predicted output is accurate,

14

the Dice Coefficient gets its maximum value to 1. Otherwise, the Dice coefficient
starts to decrease, getting to its minimum value to 0 if the two masks don ‘t overlap
at all or the predicted output is totally inaccurate.

• Intersection Over Union metric (IoU) : To quantitatively evaluate the model per-
formance, the IoU metric commonly known as the Jaccard Index is used. It is a
commonly used metric for evaluating segmentation performance. It measures the
percentage overlap between the ground truth mask and the predicted mask. The
value of the IoU score is in the range of 1 to 0. A good prediction will result in a
higher IoU score whereas a poor prediction will result in a lower IoU score. In math-
ematical terms, it is defined as the number of pixels that are common between the
ground truth mask and predicted mask divided by the total number of pixels present
in both of the masks,

IoU =
(GroundTruthMaskPixels)

⋂
(PredictedMaskPixels)

(GroundTruthMaskPixels)
⋃
(PredictedMaskPixels)

(3.2)

Mean IoU is the average IoU score of all the individual image segmentation in the
dataset. This is used to evaluate and compare the various models.

• F1-score : F1 score also known as F score or F-measure, is the weighted average
of precision and recall. It can also be interpreted as harmonic mean of the precision
and recall where it can reach a best value of 1 and worst value of 0. If the value
is 1 then it shows perfect precision and recall. If either of them is 0 then it shows
the lowest possible value i.e., 0. It is primarily used to compare the performance of
two classifiers. For example, we have two classifiers A and B. If the classifier A has
higher recall and B has higher precision, then the F1 score can be used to determine
which of them produces better results.

f1− Score = 2(P ∗R)/(P +R) (3.3)

Where, P is for precision and R is for recall.

For deep-learning implementations, Keras and Tensorflow frameworks were used. The
system was configured with the NVIDIA P100 GPU.

15

3.2 Hand Gesture Recognition of Sattriya Dance Single
Hand Gestures

In this stage of the recognition model pipeline, the hand gesture labels are predicted using
a fusion of two CNNs.

3.2.1 Overview

The task of recognising hand gestures and predicting the labels

• Step 1: Creation of Sattriya Single Hand Dataset.

• Step 2: Design and training of recognition deep CNNs.

• Step 3: Deep learning model statistical evaluation and output generation.

3.2.2 Dataset

For the second stage, recognition of Sattriya Hand Gestures there were no publicly available
datasets for use, a dataset had to be created to train and test the model. A 12.0 MP OnePlus
mobile device camera - OnePlus GM1901 f/1.8 1/25 4.74mm ISO2000 was used to capture
the images of the gestures. A total of 1100 images of 10 gestures were captured. For
the training set, each gesture has 20 images each of 5 subjects, i.e., a total of 100 images
per gesture. The test set is made up of 100 random images from the same 5 subjects,
each containing 10 photos of each gesture. The photos were taken with a monochromatic
background. Before the labelling of the images, the images were cropped and resized to
a fixed dimension of 640x480 pixels (4:3 Aspect Ratio). The dataset includes images of
the particular hand gestures that are shown by the dancers to depict the various stories of
folklore. The images were accordingly labelled with their respective meanings using a
labelling tool known as ImageJ.

16

Figure 3.10: Dataset Creation Block Diagram

Figure 3.11: Sattriya dataset sample

17

3.2.3 Network Architecture

In the second stage of the hand gesture recognition model, the gesture labels are predicted
using a fusion of two CNNs. As shown in 3.1, this stage consists of two separate CNNs
with the same architecture where each network exploits the shape-based and appearance-
based information respectively, conveyed by the hand segmentation map from the previous
stage and the RGB image for robust hand gesture recognition.

The detailed structure of the CNN is represented in Table 3.1

Table 3.1: Structure of recognition stage CNNs

Layer Type Output Shape
input 320 × 320 × 3
conv1 convolution 318 × 318 × 16
pool1 max-pooling 106 × 106 × 16
conv2 convolution 104 × 104 × 32
pool2 max-pooling 34 × 34 × 32
conv3 convolution 32 × 32 × 64
pool3 max-pooling 10 × 10 × 64
conv4 convolution 8 × 8 × 128
pool4 max-pooling 128

dropout1 dropout 128
fc1 fully connected 64

dropout2 dropout 64
fc2 fully connected 64

Appearance stream and shape stream, both CNNs have identical architecture, except
that the shape stream CNN uses a one-channel input image. This is followed by a (3X3)
convolution operation. The convolution operation is followed by a max pooling operation
which downscales the feature map into (106 * 106 * 16) spatial resolution. The activation
function used to fire the neurons is RELU. Similar convolution max-pooling operations
are carried out as depicted in Table 3.1. This is followed by a global average pooling and
dropout. The neurons are finally converged in two fully-connected layers at the end of the
network.

A fusion function is then deployed to fuse the outputs of the last fully-connected layer
of each network in an element-wise summation manner. Let fS ϵ Rd and fA ϵ Rd be the

18

outputs of the last fully connected layers (fc2) from the first (shape stream) and second
(appearance stream) CNN respectively. The output of the fusion function is

fi(sum) = fS
i + fA

i (3.4)

where 1 ≤ i ≤ d and fi(sum) ϵRd , and d is the number of the neurons (64 for fc2). The
feature vector fi(sum) is then fed into a softmax classifier for joint supervised learning.

3.2.4 Training

Adam was used as the optimizer to train the deep learning model. According to [25],
the method is ”computationally efficient, has little memory requirement, invariant to di-
agonal rescaling of gradients, and is well suited for problems that are large in terms of
data/parameters”.

The set argument values for the optimizer used for training the models :

• Learning Rate: 0.001

• Exponential Decay Rate for the 1st moment estimates (β1) : 0.9

• Exponential Decay Rate for the 2nd moment estimates (β2): 0.999

• Epsilon value,ϵ : 1e-4

Loss Function : After experimenting with many loss functions it was decided to use the
binary cross entropy loss [26] for the task of recognition of gestures and prediction of
labels.

Loss = −(y log(p) + (1− y) log(1− p)) (3.5)

3.3 Web application deployment of Deep Learning model

A web based application has been developed for real time implementation of the hand
gesture recognition model for recognition of Single Hand Sattriya Dance Hand Gestures,
which can process frames taking video input directly from readily available devices of the
user such as webcams or smartphones. The application is built using Streamlit WebRTC.

WebRTC : WebRTC (Web Real-Time Communication) (fig3.12) enables web servers
and clients, including web browsers, to send and receive video, audio, and arbitrary data

19

streams over the network with low latency.WebRTC extends Streamlit’s powerful capabil-
ities to transmit video, audio, and arbitrary data streams between frontend and backend
processes, like browser JavaScript and server-side Python.

It is now supported by major browsers like Chrome, Firefox, and Safari, and its specs
are open and standardized. Browser-based real-time video chat apps like Google Meet are
common examples of WebRTC usage.

Figure 3.12: Streamlit

Figure 3.13: WebRTC

Streamlit : Streamlit (fig 3.13) is an open-source python framework for building web
apps for Machine Learning and Data Science. Web apps can be deployed easily using
Streamlit. Streamlit makes it seamless to work on the interactive loop of coding and view-
ing results in the web app.

• Upon each execution, the Python script is executed from top to bottom

• Each execution of the Python script renders the frontend view, sending data from
Python to JS as arguments to the component.

• The frontend triggers the next execution sending data from JS to Python as a compo-
nent value.

20

Figure 3.14: Streamlit’s execution model

Figure 3.15: Web Application

21

Chapter 4

Results

4.1 Training of the networks

Evaluation of the models during the training phase was based on the convergence of the
Intersection Over Union score. Table 4.1 summarizes the convergence of the proposed
methods during the training. It is observed that the three proposed methods had a similar
rate of convergence of the IoU score. With a low IoU score at the first epoch, the IoU
score increased rapidly in all the three methods with the base method reaching the highest
score of 0.6819 after 10 epochs, followed by Proposed MobileNetv2 LinkNet+ASPP and
Proposed MobileNetv2 LinkNet+CBAM with IoU score of 0.6750 and 0.5043 respectively.
The rate of convergence of all the methods decreases significantly after 100 epochs. After
500 epochs of training, Proposed MobileNetv2 LinkNet+ASPP achieved the highest IoU
score of 0.9841 among the three. The dice coefficient loss function decreases at a high rate
initially but the rate slows down at higher epochs. After 300 epochs, the rate of conver-
gence of the loss function reduces greatly and by the end of the 500 epochs, the Proposed
MobileNetv2 LinkNet+CBAM recorded the lowest loss function value (0.0078) followed
by Proposed MobileNetv2 LinkNet+ASPP (0.0080) and Proposed MobileNetv2 LinkNet
(0.0081). The Training and Validation IoU score and Loss function plot is shown in fig 4.1
along with the training accuracy plot.

22

Table 4.1: Convergence of Training IoU Score and Loss of the proposed methods

Epoch MobileNetv2 LinkNet MobileNetv2 LinkNet+ASPP MobileNetv2 LinkNet+CBAM
Training IoU Training Loss Training IoU Training Loss Training IoU Training Loss

1 0.2045 0.6600 0.1947 0.6548 0.2127 0.6772
10 0.6819 0.1897 0.6750 0.1946 0.5043 0.3307
30 0.9200 0.0417 0.9192 0.0421 0.8681 0.0707
50 0.9566 0.0222 0.9560 0.0225 0.9421 0.0298

100 0.9710 0.0147 0.9707 0.0149 0.9692 0.0156
200 0.9759 0.0122 0.9759 0.0122 0.9756 0.0123
300 0.9787 0.0108 0.9795 0.0104 0.9792 0.0105
400 0.9813 0.0094 0.9823 0.0090 0.9823 0.0089
500 0.9839 0.0081 0.9841 0.0080 0.9832 0.0078

Figure 4.1: Training Plots

4.2 Results of Hand Segmentation Task

For quantitative comparison of the accuracy of the proposed methods, mIoU (Mean Inter-
section Over Union), commonly known as the Jaccard Index was measured on the Ouhands
Test dataset. In the beginning, the efficacy of using a pretrained mobiletNetV2[21] encoder
to a non-pretrained mobiletNetV2[21] encoder is compared. Two of the proposed methods
were trained with ImageNet[15] pretrained weights and were compared with their non-
pretrained versions in Table 4.2. It can be seen that the mIoU percentage of the two pre-
trained methods has a significant difference (14.42% and 13.36%) from the non-pretrained

23

methods. Thus, the ImageNet pretrained mobiletnetv2 encoder was proceeded to be used
in the proposed model.

Table 4.2: Performance of models with or without ImageNet pretrained encoders

Model mIOU
Non-pretrained Mobilenetv2 Linknet + ASPP 70.57%.
Non-pretrained Mobilenetv2 Linknet + CBAM 71.33%.
ImageNet Pretrained Mobilenetv2 Linknet + ASPP 84.89%.
ImageNet Pretrained Mobilenetv2 Linknet + CBAM 84.49%.

The segmentation performance of the proposed methods were then evaluated, with and
without the two modules, ASPP [17] and CBAM [23], and also a combination of both the
modules in Table 4.3. It is observed that using either the CBAM or ASPP modules along
with the base proposed method has resulted in better performance compared to the base
proposed method, with the ASPP module being slightly better than the CBAM module
along with an increase in the total parameters by 2 million. The combination of both
the ASPP and CBAM module on the other hand has lesser mIOU than using each of the
modules individually with the base method. In conclusion, Mobilenetv2 Linknet + CBAM
is the best method with a balance between segmentation accuracy and model size.

Table 4.3: Performance of different proposed methods

Model Total Parameters mIOU
Mobilenetv2 Linknet 4,146,617 83.57%.
Mobilenetv2 Linknet + CBAM 4,247,471 84.49%.
Mobilenetv2 Linknet + ASPP 6,155,193 84.89%.
Mobilenetv2 Linknet + ASPP + CBAM 6,256,047 84.33%.

For the demonstration of the performance of the proposed model, the difference be-
tween the proposed models and other segmentation models are compared and analysed.
The original architecture of three state of the art segmentation models, HGR-Net [18],
U-Net [19] and Google’s Deeplabv3+ [17] (with ResNet-50 feature extractor) have been
implemented. In Table 4.4, it is observed that the proposed methods are much superior
compared to HGR-Net and U-Net. When compared with Deeplabv3+, it can be seen that

24

Table 4.4: Performance comparison with other segmentation methods

Model Total Parameters mIOU
HGR-Net[18] 279,633 72.06%.
U-Net[19] 31,055,297 77.82%.
Deeplabv3+[17] 11,852,353 83.87%.
Mobilenetv2 Linknet * 4,146,617 83.57%.
Mobilenetv2 Linknet + CBAM * 4,247,471 84.49%.
Mobilenetv2 Linknet + ASPP * 6,155,193 84.89%.

* : Proposed models

the proposed methods with significantly lesser parameters have a slightly better mIOU per-
centage. A qualitative comparison of the segmentation result on the OUHANDS dataset
are illustrated in figure 4.2. It shows that the segmentation methods perform efficiently in
different environments i.e., in different backgrounds and different lighting conditions.

25

Figure 4.2: Example Segmentations on OUHANDS Test Set (a) Input Images (b) Ground
Truth Segmentation Mask (c)Mobilenetv2 Linknet (d)Deeplabv3+ (e)Mobilenetv2 Linknet
+ CBAM (f) Mobilenetv2 Linknet + ASPP

26

The parameters and FLOPs of the proposed methods are further compared with those
of other state-of-the-art methods in Table 4.5. HGR-Net has the lowest number of model
parameters, but at the same time, experimentation has shown it has the lowest segmenta-
tion accuracy compared to all other experimented methods. The number of parameters of
the proposed methods is significantly less than that of UNet and Deeplabv3+. According
to the experimentation results, the segmentation performance of the proposed methods is
comparatively better than the other three. Among them, the Mobilenetv2 Linknet + CBAM
gives better segmentation at a lower computation cost.

Table 4.5: Parameters and GFLOPS comparison of the methods

Model Total Parameters GFLOPS
HGR-Net 279,633 30
U-Net 31,055,297 2410
Deeplabv3+ 11,852,353 519
Mobilenetv2 Linknet* 4,146,617 87.8
Mobilenetv2 Linknet + CBAM* 4,247,471 101
Mobilenetv2 Linknet + ASPP* 6,155,193 88.2

* : Proposed models

4.3 Results of Hand Gesture Recognition Task

The Hand Gesture Recognition task is achieved by the 2-stream network model as used in
the HGR-Net Model. After stage 1, which is the segmentation task, the image is passed to
the classification stage.

The proposed models are now evaluated for the task of hand gesture recognition. The
f1-score metric is used for evaluating the networks. The base model is first evaluated on
the Ouhands Test Dataset. As desired optimum results were obtained from the evaluation,
it was decided to proceed to test the models now on the Sattriya Test Dataset. Table 4.6
compares the performance of different models on the Sattriya Test Dataset. As observed
when channel attention modules are attached to the base model, the f1-score significantly
increases to above 0.9 with MobileNetv2 Linknet Aspp having the highest f1-score of 0.95.
Mobilenetv2 Linknet record the lowest f1-score but it is also has the lowest number of
parameters. Performance of Mobilnetv2 Linknet + ASPP and MobileNetV2 + CBAM is

27

better than state-of-the-art DeeplabV3+ model, also the parameters of each of them account
for only 36.89% and 52.72% respectively of the parameters of DeeplabV3+.

Table 4.6: Recognition performance comparison of the methods

Model Total Parameters f1-score
Deeplabv3+ 12,049,515 0.9081
Mobilenetv2 Linknet* 4,343,779 0.8717
Mobilenetv2 Linknet + CBAM* 4,444,633 0.9172
Mobilenetv2 Linknet + ASPP* 6,352,427 0.9502

* : Proposed models

Figure 4.3 and 4.4 shows the confusion matrix of the MobileNetV2 Linknet + CBAM
network in terms of recognition accuracy on Ouhands and Sattriya testset respectively. The
column and row indices denote the predicted results and the target classes,respectively.

Figure 4.3: Confusion matrix on Ouhands testset

28

Figure 4.4: Confusion matrix on Sattriya testset

1. Recognition Model Evaluation with MobileNetV2 Linknet + CBAM Network (On
Ouhands Test Set)

Table 4.7: Classification Report

Class Number Precision Recall f1-score
0 0.87 0.81 0.84
1 0.86 0.88 0.87
2 0.69 0.71 0.70
3 0.68 0.75 0.71
4 0.90 0.64 0.75
5 0.80 0.65 0.72
6 0.70 0.71 0.71
7 0.86 0.59 0.70
8 0.72 0.87 0.79
9 0.58 0.86 0.69

Accuracy 0.75
Macro Avg 0.77 0.75 0.75

Weighted Avg 0.77 0.75 0.75

29

2. Recognition Model Evaluation with MobileNetV2 Linknet + CBAM Network (On
Sattriya Test Set)

Table 4.8: Classification Report

Class Number Precision Recall f1-score
0 1.00 0.70 0.82
1 1.00 0.70 0.82
2 0.83 1.00 0.91
3 0.77 1.00 0.87
4 0.91 1.00 0.95
5 1.00 1.00 1.00
6 0.91 1.00 0.95
7 0.91 1.00 0.95
8 1.00 1.00 1.00
9 1.00 0.80 0.89

Accuracy 0.92
Macro Avg 0.93 0.92 0.92

Weighted Avg 0.93 0.92 0.92

Observing table 4.8 be concluded that the model can be efficiently used to segment and
recognize the hand gestures of the dancers to interpret the various meanings of the ancient
dance form.

30

Chapter 5

Conclusion and Suggestions

Real-Time Performance of semantic segmentation in mobile devices is greatly restricted
by the limited processing power of the hardware installed in such devices, used extensively
in the field of hand gesture recognition systems. Existing work in this field involves a
trade-off between segmentation accuracy and speed, the latter being more important for
real-time application. Thus, there is a requirement for a model that can maintain a good
balance between speed and accuracy for optimum performance. The model proposed in
this project adopts a Mobilenetv2 backbone pre-trained on the ImageNet dataset and the
decoder architecture of LinkNet using lateral skip-connections to reduce model parameters
and computation cost. Additionally, experimentation was done by implementing two dif-
ferent modules with the base proposed method (Mobilenetv2 Linknet), an ASPP module
and a CBAM module to improve segmentation accuracy without any significant increase in
the number of model parameters. To verify the overall efficacy of the methods, they were
compared with various state-of-the-art models on the OUHANDS benchmark dataset and it
was confirmed that the proposed model, Mobilenetv2 Linknet + CBAM with 4.25 million
parameters and 88.2 G floating-point operations, strikes the best balance between accuracy
and speed, achieving a mean IOU of 84.49%.

Cultural art forms are a way to inform other people about one’s culture. It is also the
way that other people can have respect, gain knowledge, and give importance to a culture’s
traditions and norms. To help people learn about the beautiful dance form, Sattriya Nritya,
the proposed models has been implemented to recognise and interpret the different gestures
that the dancers make to depict a story. The models were trained on a self-made dataset
of 1100 images. As of now, the proposed model, Mobilenetv2 Linknet + CBAM, can
successfully recognise 10 hand gestures of the Sattriya dance form with an accuracy of

31

95%. Further collection of data will help enable us to make a complete database of the
entire dance form.

5.1 Limitations

The main limitations of the study involve the ability to segment video data and the amount
and variety of data available on different types of hand gestures. Temporal information
needs to be considered for the model to perform efficiently on video data. The model is not
able to properly segment two hand gestures at the same time. It was also observed that the
skin colour of the hand affects the segmentation performance of the model. The collection
of more data will help enhance the performance of the model, thereby addressing these
limitations.

5.2 Future Scope

The proposed model focuses on semantic segmentation of hand postures which is a pre-
requisite for real-time recognition of hand gestures in complex environment using RGB
cameras. The project can be extended to build a classification model with low computa-
tional complexity conducive for real time application which can classify and recognise the
hand gestures given by the user. Also future research can be carried out to reduce the model
parameters and achieve a trade off between accuracy and model size which will make it
more feasible to employ in real time application which can run on embedded devices.

32

Bibliography

[1] K Borah. Sattriya nrityar rup darshan. Grantha-Sanskriti. Tarazan, Jorhat, 2009.

[2] Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
37(3):311–324, 2007.

[3] Matti Matilainen, Pekka Sangi, Jukka Holappa, and Olli Silvén. Ouhands database
for hand detection and pose recognition. In 2016 Sixth International Conference on

Image Processing Theory, Tools and Applications (IPTA), pages 1–5. IEEE, 2016.

[4] Debajit Sarma and MK Bhuyan. Methods, databases and recent advancement of
vision-based hand gesture recognition for hci systems: A review. SN Computer Sci-

ence, 2(6):1–40, 2021.

[5] Chung-Ju Liao, Shun-Feng Su, and Ming-Chang Chen. Vision-based hand gesture
recognition system for a dynamic and complicated environment. In 2015 IEEE In-

ternational Conference on Systems, Man, and Cybernetics, pages 2891–2895. IEEE,
2015.

[6] Abhishek B Jani, Nishith A Kotak, and Anil K Roy. Sensor based hand gesture
recognition system for english alphabets used in sign language of deaf-mute people.
In 2018 IEEE SENSORS, pages 1–4. IEEE, 2018.

[7] Phat Nguyen Huu and Tan Phung Ngoc. Hand gesture recognition algorithm using
svm and hog model for control of robotic system. Journal of Robotics, 2021, 2021.

[8] Malek Z Alksasbeh, Ahmad H Al-Omari, BA Alqaralleh, Tamer Abukhalil, Anas
Abukarki, Ibrahim Alkore Alshalabi, and Amal Alkaseasbeh. Smart hand gestures
recognition using k-nn based algorithm for video annotation purposes. Indonesian

Journal of Electrical Engineering and Computer Science, 21(1):242–252, 2021.

33

[9] Phat Nguyen Huu, Quang Tran Minh, et al. An ann-based gesture recognition algo-
rithm for smart-home applications. KSII Transactions on Internet and Information

Systems (TIIS), 14(5):1967–1983, 2020.

[10] Yi Li. Hand gesture recognition using kinect. In 2012 IEEE International Conference

on Computer Science and Automation Engineering, pages 196–199. IEEE, 2012.

[11] Giulio Marin, Fabio Dominio, and Pietro Zanuttigh. Hand gesture recognition with
leap motion and kinect devices. In 2014 IEEE International conference on image

processing (ICIP), pages 1565–1569. IEEE, 2014.

[12] Di Wu, Fan Zhu, and Ling Shao. One shot learning gesture recognition from rgbd
images. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, pages 7–12. IEEE, 2012.

[13] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised
learning using graphics processors. In Proceedings of the 26th annual international

conference on machine learning, pages 873–880, 2009.

[14] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation for and
evaluation of the first tensor processing unit. ieee Micro, 38(3):10–19, 2018.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing

systems, 25, 2012.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis

and machine intelligence, 40(4):834–848, 2017.

[18] Amirhossein Dadashzadeh, Alireza Tavakoli Targhi, Maryam Tahmasbi, and Majid
Mirmehdi. Hgr-net: a fusion network for hand gesture segmentation and recognition.
IET Comput. Vis., 13(8):700–707, 2019.

34

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[20] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazu-
nari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz,
et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint

arXiv:1804.03999, 2018.

[21] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[22] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder represen-
tations for efficient semantic segmentation. In 2017 IEEE Visual Communications

and Image Processing (VCIP), pages 1–4. IEEE, 2017.

[23] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Con-
volutional block attention module. In Proceedings of the European conference on

computer vision (ECCV), pages 3–19, 2018.

[24] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[26] Shruti Jadon. A survey of loss functions for semantic segmentation. In 2020 IEEE

Conference on Computational Intelligence in Bioinformatics and Computational Bi-

ology (CIBCB). IEEE, oct 2020.

35

