
A MACHINE LEARNING AND IOT BASED

SYSTEM TO PREDICT AND MONITOR FLOOD

Project report submitted

in partial fulfilment of the requirement for the degree of

Bachelor of Technology

By

Arif Ahmed (200610126014)

Avinash Gupta (200610026011)

Arif Ahmed Laskar (200610026006)

Bedatrayee Dey (200610026012)

Under the guidance

of

Dr. Navajit Saikia

Associate Professor

&

Ankur Jyoti Sarmah

Assistant Professor

Dept. of Electronics and Telecommunication Engineering

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

ASSAM ENGINEERING COLLEGE

JALUKBARI- 781013, GUWAHATI

June 2024

ASSAM ENGINEERING COLLEGE, GUWAHATI

CERTIFICATE

This is to certify that the thesis entitled “A Machine Learning and IoT Based System to

Predict and Monitor Flood” submitted by Arif Ahmed (200610126014), Avinash Gupta

(200610026020), Arif Ahmed Laskar (200610026006) and Bedatrayee Dey (200610026012)

in the partial fulfillment of the requirements for the award of Bachelor of Technology degree

in Electronics & Telecommunication Engineering at Assam Engineering College, Jalukbari,

Guwahati, is an authentic work carried out by them under my supervision and guidance. To

the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University/Institute for the award of any Degree or Diploma.

 Signature of Supervisor

 Dr. Navajit Saikia

 Signature of Co-Supervisor

 Ankur Jyoti Sarmah

DECLARATION

We declare that this written submission represents our ideas in our own words and where

others' ideas or words have been included, we have adequately cited and referenced the

original sources. We also declare that we have adhered to all principles of academic honesty

and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in our submission. We understand that any violation of the above will be a cause for

disciplinary action by the Institute and can also evoke penal action from the sources which

have thus not been properly cited or from whom proper permission has not been taken when

needed.

 Name Roll Number Signature

1. Arif Ahmed 200610126014

2. Avinash Gupta 200610026011

3. Arif Ahmed Laskar 200610026006

4. Bedatrayee Dey 200610026012

 ACKNOWLEDGEMENT

We would like to express our profound appreciation to Dr. Navajit Saikia, HOD, Electronics

and Telecommunication Engineering Department, Assam Engineering College, for

providing us with the opportunity to work on the project titled " A Machine Learning and

IoT Based System to Predict and Monitor Flood ".

We would also like to express our sincere appreciation to our esteemed project guides,

Dr. Navajit Saikia, HoD in the Department of ETE and Ankur Jyoti Sarmah, Assistant

Professor in the Department of ETE for their diligent supervision, valuable insights, and

continuous encouragement. Their expertise, guidance, and unwavering support have been

indispensable in navigating the intricacies of this project.

Their collective mentorship and support have been pivotal in enabling us to successfully

execute and accomplish the goals of this project.

Arif Ahmed (200610126014)

Avinash Gupta (200610026011)

Arif Ahmed Laskar (200610026006)

Bedatrayee Dey (200610026012)

ABSTRACT

This project focuses on revolutionizing flood preparedness in the flood-prone districts of

Assam, India, by harnessing the power of machine learning for accurate flood prediction. The

region's vulnerability to annual floods poses significant challenges to the local communities,

agriculture, and infrastructure. Traditional methods of flood prediction often fall short in

providing timely and precise information, necessitating a more advanced and efficient

approach.

The proposed solution leverages historical flood data, meteorological information, and

geographical features to develop a robust machine learning model. Utilizing state-of-the-art

algorithms, the model aims to predict flood occurrences with higher accuracy, enabling

authorities and communities to implement proactive measures for minimizing the impact of

floods. The project also involves the integration of real-time data streams to enhance the

model's responsiveness and adaptability. The proposed solution is enhanced with IoT (Internet

of Things) technology, integration of sensor networks for real-time data collection. An IoT

system which senses the change in water level such as water level across flood-prone areas

would enable continuous monitoring of the key environmental parameter. The sensor would

transmit data wirelessly to a centralized system, providing up-to-date information on factors

influencing flood occurrence.

The implementation will be carried out in collaboration with local authorities and stakeholders,

ensuring that the solution is tailored to the specific needs of the Assam region. The project's

success will not only contribute to the scientific understanding of flood prediction but also have

a tangible impact on the lives of those residing in flood-prone areas. Ultimately, this endeavor

aspires to establish a scalable and sustainable framework for flood prediction using machine

learning, paving the way for improved disaster management strategies in vulnerable regions.

LIST OF FIGURES

Fig. No. Fig. Title Page No.

1. Arduino Uno Board 13

2. PIN Diagram of Arduino Uno Board 13

3. WEMOS 16

4. Pin diagram of WEMOS 17

5. Action of an IoT sensor 21

6. Working of an Ultrasonic Sensor 22

7. NRL24L01 Module 23

8. Working of NRF24L01 24

9. LCD Display 25

10. SIM800L 27

11. Cloud Computing 29

12. Cloud Storage System 31

13. Components of IoT 32

14. Windows App of Arduino 34

15. IoT Setup 36

 37

16. Residual analysis plot 41

17. Graph of actual river level vs predicted river level 41

18. Training dataset of rainfall level (in mm) vs river level (in m)

datasets

42

19. Testing dataset of rainfall level (in mm) vs river level (in m) datasets 42

 CONTENTS Page No.

CERTIFICATE ii

CANDIDATE’S DECLARATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

LIST OF FIGURES vi

CONTENTS vii

Chapter 1 INTRODUCTION

1.1 Introduction 1

1.2 Introduction to the area of work 1

1.3 Present day scenario 2

1.4 Motivation to do the project 2

1.5 Objectives of the Work 2

1.6 Target Specifications 3

1.7 Organization of the project report 3

Chapter 2 LITERATURE REVIEW

 2.1 Introduction 4

 2.2 Review of Relevant Research Papers 4

Chapter 3 METHODOLOGY

 3.1 Introduction 7

 3.2 Detailed Methodology 7

 3.3 Assumptions made 11

 3.4 Circuit layout / one-line / block diagrams 11

 3.5 Component Specifications 12

 3.6 Justification for component selection 38

 3.7 Tools used 38

 3.8 Preliminary result analysis 38

Chapter 4 RESULT ANALYSIS AND DISCUSSION 39

4.1 Introduction 39

4.2 Result Analysis 40

Chapter 5 CONCLUSION 46

1

 CHAPTER 1

 INTRODUCTION

1.1 Introduction

In the northeastern region of India lies Assam, a region of breathtaking beauty and perennial struggle

against the mighty forces of nature. Here, the Brahmaputra River, a life-giving artery, transforms

annually into a formidable adversary—the monsoon floods. While these floods bring fertility to the

fertile plains, they also bear the weight of disruption, displacing lives, ravaging crops, and testing the

resilience of communities. It is within this delicate dance between abundance and adversity that our

project takes root—a machine learning-based prediction system designed to be the vanguard against

the annual inundation in the flood-prone districts of Assam. As we stand at the intersection of

technology and tradition, our mission is to create a predictive tool that transcends the limitations of

existing models. Assam's geography, with its intricate river systems, undulating topography, and a

unique monsoon pattern, demands a tailored approach. The goal is clear: to harness the power of

Machine Learning and Internet of Things, not just to foresee the floods, but to empower communities

with timely and accurate predictions, enabling them to mitigate the impact and adapt to the ebb and

flow of nature.

1.2 Introduction to the area of work

Nestled in the northeastern corner of India, Assam stands as a region of immense natural beauty and

cultural diversity. However, this enchanting landscape is marked by an annual struggle against the

formidable forces of nature, particularly the recurrent menace of floods. Situated along the banks of

the mighty Brahmaputra River, Assam's topography, climate, and hydrology converge to create a

complex environment that is highly susceptible to inundation. This project seeks to bridge the gap

between conventional flood prediction practices and the evolving landscape of technological

innovation, with a specific focus on leveraging machine learning. By marrying the rich data tapestry

of Assam's environmental dynamics with advanced computational algorithms, we aspire to usher in a

new era of flood prediction that is not only more accurate but also more adaptive to the unique

challenges posed by the region.

2

1.3 Present day scenario

The current scenario of flood prediction in Assam is characterized by conventional methodologies that

often fall short in providing timely and accurate information. Historical data, meteorological inputs,

and geographical features are considered, but the intricacies of the region's dynamic environmental

conditions pose significant challenges to effective flood forecasting. As a result, communities,

agriculture, and infrastructure remain vulnerable to the devastating impacts of floods, necessitating a

paradigm shift in the approach to prediction and preparedness.

1.4 Motivation to do the project

Motivated by the pressing need for a more advanced and responsive flood prediction system, this

project endeavors to harness the capabilities of machine learning. The goal is to develop a predictive

model tailored to the unique characteristics of Assam's flood-prone districts, offering a more accurate

and timely understanding of impending floods. By integrating cutting-edge technologies and

collaborating with local authorities, this project aspires to not only enhance the scientific understanding

of flood prediction but, more importantly, to make a tangible difference in the lives of those who

grapple annually with the challenges imposed by nature.

1.5 Objectives of the work

The objective of the work are as follows:

1. Develop a Machine Learning Model: To create a robust machine learning model and to

specify the machine learning algorithm for flood prediction.

2. Utilize Historical Data: Utilize the historical flood data to train and validate the machine

learning model.

3. Incorporate Real-Time Data Streams: To describe the objective of integrating real time data

streams into predictive model.

4. Collaborate with Local Authorities: Highlighting the goal of collaborating with local

authorities and stakeholders in Assam.

5. Enhance Predictive Accuracy: To improve the accuracy of flood predictions in the flood-

prone districts of Assam.

6. Facilitate Early Warning Systems: To develop a system that facilitates early warning and

timely dissemination of flood predictions.

3

7. Implement IoT System: Develop a prototype of an IoT water level sensing device which can be placed

along rivers, streams, and floodplains to continuously monitor water levels in real-time.

1.6 Target Specifications:

1. Machine Learning Algorithms: Implemented a hybrid model utilizing an ensemble of

decision trees and a Long Short-Term Memory (LSTM) neural network for optimal predictive

accuracy.

2. Data Sources: Utilized a comprehensive dataset comprising historical flood records,

meteorological data (temperature, precipitation, humidity), river discharge measurements, and

topographical information obtained from authoritative sources and local monitoring stations.

3. Data Preprocessing Techniques: Applied rigorous data cleaning procedures to address

missing values and outliers and also normalized numerical features and encoded categorical

variables appropriately for model compatibility.

4. Real-Time Data Integration: Developed a robust mechanism for integrating real-time data

streams, ensuring the model is continuously updated with the latest meteorological and river

discharge information.

5. Model Deployment: Deployed the trained model through a user-friendly web interface

accessible to local authorities and communities.

1.7 Organization of the project report:

The report is organized in different chapters which are as follows: Chapter 1 gives a brief

introduction about the area of work, present day scenario, motivation to do the project and target

specifications. Chapter 2 discusses the literature review and information regarding the project area

from various platforms and previous work. Chapter 3 discusses the research methodology adopted

and tools used for the completion of the work. Chapter 4 contains the results obtained in the project

work. Chapter 5 includes conclusion and future scopes.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the pursuit of advancing flood prediction methodologies, this research endeavors to introduce a

cutting-edge model entitled "A Machine Learning-Based Flood Prediction Model." The foundational

step in this scientific odyssey is encapsulated within the comprehensive exploration of existing

literature—a critical examination that not only contextualizes the project within the broader landscape

of hydro informatics but also serves as the bedrock for our innovative contributions.

The literature review serves as an intellectual compass, charting a course through the intricate web of

historical and contemporary flood prediction research. This section acknowledges and assimilates the

wealth of knowledge amassed by predecessors, tracing the evolution of methodologies from traditional

hydrological approaches to more contemporary empirical models. By navigating through the tributaries

of past achievements and challenges, we derive insights that inform the current research trajectory.

Emphasizing a meticulous review of predictive analytics, statistical modeling, and the integration of

machine learning into hydrological sciences, this section endeavors to distill key findings. Through a

critical synthesis of existing literature, the narrative unfolds, delineating the prevailing trends, gaps,

and opportunities within the field. Moreover, the literature review serves as a foundational platform to

identify unexplored territories, propelling the discourse beyond established boundaries.

2.2 Review of Relevant Research Papers

1. Flood Prediction using Machine Learning by Asst. Prof. Anil Kumar Ambore1 , T. Sri Sai Charan2

, U. Rohit Reddy3 , T. Samara Simha Reddy4 , Tarun.G5 1, 2, 3, 4, 5School of Computer science

&Engineering REVA University Bengaluru, India

Conclusion:

i. The current state of machine learning (ML) modelling for flood prediction is in the early stages

of advancement, with the paper providing an overview of ML models used in flood prediction

and developing a classification scheme to analyse the existing literature.

ii. The survey represents the performance analysis and investigation of more than 6000 articles,

identifying 180 original and influential articles where the performance and accuracy of at least

two machine learning models were compared.

5

iii. The paper classifies prediction models into two categories based on lead time and further

divides them into categories of hybrid and single methods, discussing the state of the art of

these classes in detail.

iv. The performance of the ML methods was evaluated in terms of R2 and RMSE, in addition to

generalization ability, robustness, computation cost, and speed, with significant research and

experimentation for further improvement and advancement.

v. The document highlights four major trends reported in the literature for improving the quality

of flood prediction: novel hybridization, data decomposition techniques, the use of ensembles

of methods, and add-on optimizer algorithms to improve the quality of ML algorithms.

vi. The future horizon of flood prediction is expected to witness significant improvements for both

short-term and long-term predictions through the proper usage of soft computing techniques

in designing novel learning algorithms.

2. Hou, J., Zhou, N., Chen, G., Huang, M., & Bai, G. (2021). Rapid forecasting of urban flood inundation

using multiple machine learning models.

Conclusion:

The study aims to construct a rapid forecasting model for urban flood inundation using a combination

of a hydrodynamic model and machine learning (ML) algorithms. The research focuses on the Xixian

New Area in China and aims to provide accurate predictions and sufficient lead time for emergency

decision-making. The study verifies the reliability of the hydrodynamic model and demonstrates the

effectiveness of the ML algorithms in predicting urban flood inundation. The multi-model approach,

which combines the RF and KNN algorithms, is found to further reduce forecast errors and enhance

the reliability of forecast results. The study concludes that the proposed method meets the requirements

of rapid forecasting for urban flood inundation and provides decision support for emergency decision-

making. Future work is planned to improve the model to reflect the inundation process instead of the

maximum inundation time.

3. Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood Prediction Using Machine Learning Models

The document classifies prediction models into two categories based on lead time and further divides

6

them into hybrid and single methods. It discusses the performance comparison of these methods in

detail, considering factors such as R2 and RMSE, generalization ability, robustness, computation cost,

and speed. The paper also identifies four major trends for improving the quality of prediction: novel

hybridization, data decomposition techniques, ensemble methods, and add-on optimizer algorithms.

Furthermore, the conclusion emphasizes the importance of soft computing techniques in designing

novel learning algorithms and the multidisciplinary nature of the work. It suggests that future work

should include a survey on spatial flood prediction using ML models and encourages the investigation

of recent advancements in ML models for spatial flood analysis.

In summary, the conclusion of the document provides a comprehensive overview of the current state

of ML modeling for flood prediction, identifies key trends for improving prediction quality, and

suggests areas for future research and development in the field of flood prediction using machine

learning models.

7

 CHAPTER 3

METHODOLOGY

3.1. Introduction

The methodology section aims to detail the process employed for flood prediction in Silchar using

machine learning techniques. It covers the steps involved in data processing, model development, and

prediction methodology.

3.2. Detailed Methodology

 The methodology adopted in this project involved the following steps:

3.2.1. Data Collection

 Hourly rainfall and river water level data were gathered from their respective sources. This process

involves retrieving raw data from authoritative sources or databases that record hourly measurements

of rainfall and river water levels in the Silchar region. These datasets serve as the foundation for

subsequent analysis and model training.

2.Data Pre-processing: The collected datasets underwent several pre-processing steps:

 Merging Datasets: The rainfall and river water level datasets were combined based on their

timestamps. This alignment of data allows for correlation between rainfall and river level observations

at specific times.

Handling Missing Values: Any missing or null values in the datasets were addressed. This could involve

imputation techniques, such as filling missing values with zeros or using interpolation methods to

estimate missing data points.

Timestamp Conversion: Timestamps in the dataset were converted to a consistent and appropriate

format. This ensures uniformity and ease of handling time-related data.

3.Feature Engineering: Additional features were derived from the timestamp to enrich the

dataset: Hour, Day, Month, Year Extraction: Extracting these temporal components from the

timestamp enables the model to understand temporal patterns and seasonality. For instance,

understanding the impact of the time of day, day of the month, or seasonal variations on rainfall and

river water levels.

8

4.Threshold Limit Setting: A threshold limit was established based on river water levels. This

threshold serves as a classification boundary to distinguish between normal river levels and potential

flood situations. It's crucial for defining the conditions under which the prediction model will flag an

occurrence as a flood risk based on observed river water levels.

5.Model Development: Various machine learning algorithms including Support Vector Machine

(SVM), K-Nearest Neighbors (KNN), XGBoost, and Random Forest were explored for their efficacy

in predicting flood occurrences and river levels. Through rigorous experimentation and evaluation, it

was determined that Random Forest yielded the least amount of error and demonstrated higher

accuracy compared to the other algorithms. Therefore, the Random Forest Regressor was selected as

the primary machine learning algorithm for the predictive model.

The Random Forest Regressor is a powerful machine learning algorithm that's particularly well-suited

for regression tasks, such as predicting continuous values like river levels based on input variables like

rainfall. Here's a detailed breakdown:

Random Forest Regressor:

• Ensemble Learning: The algorithm falls under the category of ensemble learning, where it

combines multiple individual models to create a more robust and accurate predictive model. In

the case of Random Forest, it constructs an ensemble of decision trees.

• Decision Trees: Decision trees are flowchart-like structures where each internal node represents

a test on an attribute, each branch represents an outcome of the test, and each leaf node

represents a target value. Individual decision trees are prone to overfitting the data, capturing

noise rather than true patterns.

• Bagging Technique: Random Forest applies a technique called bagging (bootstrap aggregating)

where multiple decision trees are built using bootstrapped datasets (random subsets of the

original data). Each tree is trained independently on different subsets of the data, which helps

in reducing overfitting and increasing model accuracy.

9

• Random Feature Selection: During the construction of each tree in the forest, only a random

subset of features (input variables) is considered at each split point. This randomness further

diversifies the trees, ensuring that they are less correlated and improving the overall model's

predictive power.

• Prediction: For regression tasks, the Random Forest Regressor aggregates predictions from all

the individual trees in the forest to make a final prediction. It averages the predictions in the

case of regression, providing a continuous output.

• Handling Complexity: Random Forest models are effective in handling complex relationships

between input variables and the target variable. They can handle large datasets with many input

features and are relatively less sensitive to hyperparameters compared to some other models,

making them easier to tune.

Applicability to Flood Prediction: For predicting river levels based on rainfall data: The Random

Forest Regressor is adept at capturing intricate relationships between various meteorological factors

(like rainfall) and the continuous output of river levels. Its ability to handle complex, non-linear

relationships between multiple input variables and the target variable makes it a suitable choice for

predicting river levels, which often exhibit dynamic and non-linear behaviour.

By employing the Random Forest Regressor, this project leverages its capabilities to develop a

predictive model that can effectively learn from the relationships between rainfall patterns and

subsequent variations in river water levels in the Silchar region.

6. Model Evaluation:

Model evaluation is crucial to assess how well the developed predictive model performs in making

accurate and reliable predictions. Here's an in-depth look at the performance metrics used for

evaluating the flood prediction model:

Performance Metrics Calculation:

• Mean Squared Error (MSE): MSE measures the average squared difference between the

predicted values and the actual observed values in the dataset. A lower MSE indicates that the

model's predictions are closer to the actual values, signifying better accuracy. In the context of

10

flood prediction, a low MSE suggests that the model's predictions for river levels based on

rainfall data closely match the observed river levels.

• Coefficient of Determination (R²): R² represents the proportion of variance in the dependent

variable (river levels) that is explained by the independent variables (rainfall, time features,

etc.). R² ranges from 0 to 1, where 1 indicates that the model perfectly predicts the target

variable, and 0 indicates that the model does not explain any variability. A higher R² value

signifies that a larger proportion of variance in river levels is accounted for by the model's input

variables, demonstrating the model's explanatory power.

• Feature Importance: Feature importance identify the relative importance of input variables

(rainfall, hour, day, month, etc.) in making predictions. Higher feature importance indicate

more significant contributions of respective variables in predicting river levels. Identifying key

input variables guiding the prediction helps in understanding which meteorological factors

(such as rainfall at specific times or seasonal variations) have a more substantial impact on river

levels. This insight aids in refining the model and selecting crucial features for better

predictions.

Significance in Flood Prediction:

• Accuracy Assessment: MSE helps in quantifying how accurate the model's predictions are by

measuring the error between predicted and observed values of river levels.

• Explanatory Power: R² provides insight into how well the chosen input variables explain

variations in river levels, highlighting the model's ability to capture and explain the variability

in data.

• Feature Importance: Understanding feature importance aids in refining the model by focusing

on the most influential factors affecting river levels, guiding further model improvement and

feature selection. By evaluating the flood prediction model using these metrics, it becomes

possible to gauge its accuracy, explanatory power, and the significance of different input

variables in predicting river levels based on rainfall and temporal factors. This evaluation

process is crucial for refining the model and improving its predictive capabilities for real-world

flood prediction scenarios in Silchar.

11

7. Prediction for End-Users:

A user-friendly functionality was created to enable end-users to predict river levels based on provided

rainfall amount and date/time inputs. This empowers stakeholders or end-users to forecast potential

river levels, aiding in decision-making related to flood preparedness and response.

Each of these steps is pivotal in constructing a robust flood prediction model, ensuring accurate

predictions and usability in real-world scenarios.

8. IoT system designing and development:

Identifying and selecting IoT sensors capable of measuring critical environmental parameters relevant

to flood prediction, such as water level, rainfall, and river flow rates.

A data acquisition system is then established to collect real-time data from deployed IoT sensors.

Implement reliable communication protocols for wireless transmission of sensor readings to a

centralized database. A GSM module is integrated with the IoT water level sensing system to enable

the transmission of alert signals in case of abnormal or rising water levels. The system is configured to

send alert messages to local authorities and residents via SMS or other communication channels.

3.3 Assumptions Made:

• The relationship between rainfall and river level is assumed to be predictive within the specified

threshold.

• The hourly data accurately represents the fluctuations in both rainfall and river water levels.

3.4 Circuit layout/ One line / Block diagrams:

No physical circuitry or electrical components were used in this machine learning-based flood

prediction model. However, a conceptual flowchart demonstrating data flow and processing

steps can be presented.

12

3.5 Component Specifications:

 ~ Machine Learning

A. Random Forest Regressor: Utilized with 100 estimators and default settings for regression analysis.

B. Python Libraries: Pandas, NumPy, Matplotlib for data manipulation, analysis, and visualization.

C. Sklearn Library: Employed for machine learning algorithms and performance evaluation.

~Internet of Things

A. MICROCONTROLLER BOARDS:

Here, we are dealing with two types of microcontroller boards. These are:

i. ARDUINO UNO BOARD

ii. WEMOS

i. ARDUINO UNO BOARD:

One type of single-chip microcontroller created by Atmel and included in the megaAVR familyis the

ATmega328. The Arduino Uno's architecture is a modified version of the Harvard architecture with

an 8-bit RISC processing core.

Arduino Pro Mini, Arduino Nano, and more boards are also available for the Arduino Uno.

13

Fig: Arduino Uno Board

➢ POWER SUPPLY:

We may power the Arduino Uno with the aid of a USB connection or an external power source. The

majority of external power supply are batteries or AC to DC adapters. By inserting the adapter into

the Arduino Uno's power jack, the Arduino board can be linked. The Vin pin and the GND pin of the

POWER connection can both be linked to the battery leads in a similar manner. 7 to 12 volts will be

the recommended voltage range.

Fig: PIN Diagram of Arduino Uno Board

14

➢ INPUT & OUTPUT:

The functions pin Mode (), digital Write (), and Digital Read () allow the Arduino Uno's 14digital

pins to be used as input and output ().

a. Pin1 (TX) & Pin0 (RX) (Serial): These pins are connected to the ATmega8U2 USB toTTL Serial chip

equivalent pins and are used to transmit & receive TTL serial data.

b. Pins 2 and 3 (External Interrupts): External pins can be linked together to trigger an interrupt in

response to a low value or value change.

c. Pins 3, 5, 6, 9, 10, and 11 (PWM): This pin does an 8-bit PWM o/p using the analogue Write function

().

d. SPI Pins (SS, MOSI, MISO, and SCK): These pins sustain SPI-communication, despite the fact that it is

provided by the fundamental hardware, which is not yet supported by the Arduino language.

e. Pin-13 (LED): Pin-13 can be connected to the built-in LED (digital pin). When the pin is LOW, the

light-emitting diode is turned on as if it were the HIGH-value pin.

f. Pins 4 (SDA) and 5 (SCL) I2C: The Wire library is used to support TWI communication.

g. AREF (Reference Voltage): The analogue inputs with analogue reference have a reference voltage

().

h. Reset Pin: The microcontroller is reset (RST) via this pin.

➢ MEMORY:

This Atmega328 Arduino microcontroller has 32 KB of flash memory for code storage, 2 KBof SRAM,

and 1 KB of EEPROM.

15

➢ COMMUNICATION:

UART TTL-serial communication is provided by the Arduino Uno ATmega328 and is available on

digital pins TX (1) and RX (0). An Arduino's software has a serial monitor that makes it simple to input

data. When data is being transmitted through the USB, two LEDs onthe board labelled RX and TX will

blink.

➢ FEATURES:

• The operating voltage is 5V

• The recommended input voltage will range from 7v to 12V

• The input voltage ranges from 6v to 20V

• Digital input/output pins are 14

• Analog i/p pins are 6

• DC Current for each input/output pin is 40 mA

• DC Current for 3.3V Pin is 50 mA

• Flash Memory is 32 KB

• SRAM is 2 KB

• EEPROM is 1 KB

• CLK Speed is 16 MHz

16

ii. WEMOS

The WEMOS microcontroller is a versatile and compact development board based on the popular

ESP8266 and ESP32 microcontrollers. It is designed to provide an easy-to-use platform for IoT

(Internet of Things) projects, prototyping, and educational purposes. The WEMOS boards come in

various models, offering different features and capabilities to suit a wide range of applications. With

built-in Wi-Fi connectivity and a wealth of GPIO pins, the WEMOS microcontroller empowers

developers to create connected devices and wireless sensor networks with ease.

Fig: WEMOS

17

• POWER SUPPLY:

The WEMOS microcontroller can be powered through a USB connection or an external power

source. It typically operates at 3.3V logic levels, but some models may have built-in voltage

regulators to support higher voltage inputs. Additionally, the WEMOS boards often feature onboard

LiPo battery management, allowing for portable and battery-powered applications.

Fig: Pin diagram of WEMOS

• INPUT & OUTPUT:

WEMOS microcontrollers feature a variety of input and output options, including digital GPIO pins,

analog input pins, PWM (Pulse Width Modulation) pins, I2C, SPI, UART, and more. These pins

allow users to interface with sensors, actuators, displays, and other external devices, making the

WEMOS boards suitable for a wide range of projects.

18

a. Digital GPIO Pins: These pins can be configured as digital inputs or outputs. As inputs, they can

read digital signals (high or low) from external devices such as sensors, switches, or buttons. As

outputs, they can drive digital signals to control LEDs, relays, or other digital devices.

b. Analog Input Pins: Analog input pins allow the microcontroller to read analog voltage levels from

sensors or other analog devices. They typically support 10-bit ADC (Analog-to-Digital Converter)

resolution, allowing for analog voltage readings between 0 and 3.3V (or the operating voltage of

the microcontroller).

c. PWM (Pulse Width Modulation) Pins: PWM pins generate digital pulses with varying pulse

widths, allowing for control of analog-like devices such as motors, LEDs, or servos. By adjusting

the duty cycle of the PWM signal, the average voltage or power delivered to the device can be

controlled.

d. I2C (Inter-Integrated Circuit) Pins: WEMOS microcontrollers often feature dedicated I2C pins

(SDA and SCL) for communication with I2C- compatible devices such as sensors, displays, or other

microcontrollers. I2C is a serial communication protocol that allows multiple devices to communi-

cate over a shared bus.

e. SPI (Serial Peripheral Interface) Pins: SPI pins (MISO, MOSI, SCK) facilitate high-speed serial

communication between the microcontroller and SPI-compatible devices such as sensors, SD cards,

or other microcontrollers. SPI is commonly used for data transfer between devices with high data

rates and low latency.

f. UART (Universal Asynchronous Receiver-Transmitter) Pins: UART pins (TX and RX) provide

serial communication for interfacing with devices such as GPS modules, Bluetooth modules, or other

microcontrollers. UART communication uses asynchronous serial transmission for data exchange.

g. Other Special Function Pins: Some WEMOS boards may feature additional special function pins

for specific purposes, such as boot mode selection, reset, or external interrupt inputs.

19

• MEMORY:

The memory configuration of WEMOS microcontrollers varies depending on the specific model. They

typically feature built-in flash memory for program storage and RAM for runtime data storage. The

ESP8266-based WEMOS boards usually have less memory compared to ESP32-based boards, but both

offer sufficient resources for most IoT applications.

• COMMUNICATION:

One of the key features of WEMOS microcontrollers is their built-in Wi-Fi connectivity, which enables

wireless communication with other devices and networks. They support standard Wi-Fi protocols such

as 802.11b/g/n, allowing for seamless integration into existing Wi-Fi networks. Additionally, WEMOS

boards may support other communication interfaces such as Bluetooth, MQTT, HTTP, and more,

facilitating data exchange with cloud services and IoT platforms.

• FEATURES:

• Compact and lightweight design.

• Built-in Wi-Fi connectivity for wireless communication

• GPIO pins for interfacing with external devices

• Support for various communication protocols (SPI, I2C, UART, etc.)

• USB interface for programming and power supply

• Onboard voltage regulators and battery management (some models)

• Compatible with Arduino IDE and other development environments

• Open-source hardware and software, fostering a vibrant community of developers

and enthusiasts.

B. SENSOR

A sensor is a device that detects input of any kind from the physical world and reacts to it. Light, heat,

motion, moisture, pressure, and a variety of other environmental phenomena can all be inputs. In order

to detect the presence of a certain physical quantity, it is then converted into a signal that can be

processed (e.g., electrically, mechanically, or optically). The sensor’s output comes in human-readable

20

form.

In most IOT device architectures, sensors are used. They are essential to the internet of things (IoT).

They make it feasible to develop an ecosystem for gathering information about a particular

environment and processing it so that it may be monitored, managed, and controlled more effectively.

IoT sensors are employed in a variety of situations, including homes, the outdoors, cars, airplanes,

industrial settings, and others.

➢ SENSOR CHARACTERISTICS:

Mainly, there are two types of characteristics

i) Static:

This refers to how a sensor's output alters in response to an input change after reaching steadystate.

o Accuracy, Range, Resolution, Precision, Sensitivity, Sensitivity, Linearity, Drift, Repeatability.

ii) Dynamic:

These are the properties of the systems.

• Zero-order system: The output shows a response to the input signal with no delay.

• First-order system: When the output approaches its final value gradually.

• Second-order system: The output response of the sensor oscillates before steady state.

➢ Types of Sensors:

Sensors can be categorized in multiple ways

i) Passive & Active:

Passive sensors are unable to sense input on their own. For instance, sensors for soil moisture, water

level, and temperature.

Active sensors, however, can sense the input on their own. Such sensors include radar, sounder, and

laser altimeter ones.

21

ii) Analog & digital:

With analogue sensors, the sensor's response or output is a continuous function of one or more of its

input parameters. Examples include a temperature sensor, an LDR, an analogue pressure sensor, and

an analogue hall effect.

Responses from digital sensors are binary in nature. For instance, a digital temperature sensor and a

passive infrared (PIR) sensor (DS1620).

iii) Scalar & vector:

A scalar sensor solely considers an input parameter's magnitude while detecting it. For instance, a

sensor for temperature, gas, strain, colour, or smoke.

The magnitude of the direction and orientation of the input parameter affects the vector sensor.

For instance, sensors with an accelerometer, gyroscope, magnetic field, and motion detector.

Fig: Action of an IoT sensor

➢ DESCRIPTION OF ULTRASONIC SENSOR:

An ultrasonic sensor is a piece of technology that uses ultrasonic sound waves to measure a target

22

object's distance and then turns the sound that is reflected back into an electrical signal. The speed of

audible sound is greater than the speed of ultrasonic waves (i.e., the sound that humans can hear).

There are two basic parts to this sensor.

a) The transmitter: This device uses piezoelectric crystals to emit sound.

b) The receiver: This is where the sound is heard once it has reached and left the target.D = 1/2T x C

Where, D = Distance, T = Time, and c = Sound Speed~ 343

Fig: Working of an Ultrasonic Sensor

C. NRF24L01 MODULE

The NRF24L01 is a popular 2.4GHz RF transceiver module widely used in wireless communication

applications. Developed by Nordic Semiconductor, it offers a cost- effective solution for establishing

short-range wireless connections between devices. The module is known for its low power

consumption, compact size, and ease of integration, making it ideal for various applications including

remote control systems, sensor networks, Internet of Things (IoT) devices, and wireless peripherals.

➢ Characteristics of NRF24L01 Module:

• 2.4GHz RF Communication: The NRF24L01 operates in the 2.4GHz ISM (Industrial, Scientific,

and Medical) band, providing robust and interference- resistant communication.

23

• Multiple Channels: It supports multiple channels for communication, allowing multiple

NRF24L01 modules to operate simultaneously in the same vicinity without interference.

• Low Power Consumption: The module is designed for low power operation, making it suitable

for battery-powered devices and applications requiring energy efficiency.

• SPI Interface: Communication with the NRF24L01 module is facilitated through a Serial Periph-

eral Interface (SPI), enabling easy interfacing with microcontrollers and other digital devices.

• Adjustable Output Power: The output power of the NRF24L01 module is adjustable, allowing

users to optimize the communication range and power consumption according to their specific re-

quirements.

• Build in CRC: The module incorporates a built-in CRC (Cyclic Redundancy Check) feature for

error detection, ensuring reliable data transmission over the wireless link.

Fig: NRL24L01 Module

➢ Working of NRF24L01 Module:

The NRF24L01 module operates in two primary modes: Transmit (TX) mode and Receive (RX) mode.

1. Tansmit Mode (TX): In this mode, the NRF24L01 module sends data packets to another

24

NRF24L01 module or receiver device. The user specifies the data to be transmitted and configures

the necessary parameters such as channel frequency, data rate, and output power. The module then

encodes the data into packets and transmits them over the air using the specified parameters.

2. Receive Mode (RX): In RX mode, the NRF24L01 module listens for incoming data packets on a

specified channel. When a valid packet is received, the module decodes the packet and makes the

received data available to the host microcontroller or device for further processing.

The communication between NRF24L01 modules follows a master-slave architecture, where one

module acts as the transmitter (master) and the other as the receiver (slave). The modules communicate

using a simple protocol, typically consisting of a preamble, address field, payload, and optional CRC

field.

Fig: Working of NRF24L01

25

D. 16×2 LCD DISPLAY

The 16x2 LCD (Liquid Crystal Display) module is a commonly used alphanumeric display that consists

of 16 columns and 2 rows of characters, allowing for the display of 32 characters at a time. It serves as

a simple and effective output interface in various electronic projects and devices. The 16x2 LCD

display modules are widely utilized in embedded systems, microcontroller- based projects, appliances,

instrumentation, and educational kits due to their ease of use, readability, and affordability.

➢ CHARACTERISTICS OF 16*2 LCD DISPLAY:

1. Alphanumeric Display: The 16x2 LCD display can show alphanumeric characters, symbols, and

custom patterns.

2. 16*2 Character Grid: It features 16 columns and 2 rows, providing a total of 32 character spaces

for displaying text.

3. Backlight Option: Many 16x2 LCD displays come with an optional backlight, enhancing visibility

in low-light conditions.

4. Low Power Consumption: LCD displays typically consume low power, making them suitable for

battery-operated devices and energy-efficient applications.

5. Parallel Interface: Communication with the 16x2 LCD module is typically done through a par-

allel interface, utilizing a minimum of 4 data lines (usually 8) plus control lines for operation.

6. Easy Interfacing: Interfacing with microcontrollers and other digital devices is straightforward,

often requiring minimal external components.

Fig: LCD Display

26

➢ Working of 16×2 LCD DISPLAY:

The operation of a 16x2 LCD display involves two main components: the display module itself

and a controlling device, such as a microcontroller.

a. Initializing the Display: Before using the LCD display, it needs to be initialized. This usually

involves configuring parameters such as display mode, cursor settings, and any custom characters.

b. Sending Data and Commands: Data and commands are sent to the LCD module through its

parallel interface. Commands configure the display settings (e.g., clear display, set cursor posi-

tion), while data represents the characters to be displayed.

c. Displaying Characters: Once initialized, the LCD display can show characters by receiving data

from the controlling device. Characters are displayed in the specified row and column positions

on the screen.

d. Updating Display Content: The display content can be dynamically updated by sending new data

to the LCD module. This allows for real-time display of information such as sensor readings, status

messages, or user input.

E. SIM800L

The SIM800L is a compact and versatile GSM/GPRS module widely used for wireless communication

in embedded systems and IoT devices. Developed by SIMCom, it provides reliable and low-cost

connectivity for transmitting data, making voice calls, and sending SMS messages over the GSM

network. The module is popular among hobbyists, developers, and engineers for its small form factor,

ease of integration, and robust performance.

➢ POWER SUPPLY:

The SIM800L module typically operates within a voltage range of 3.4V to 4.4V DC. It requires a stable

power supply capable of providing sufficient current during peak transmission operations, typically

around 2A. The module can be powered using a regulated DC power supply, battery, or voltage

27

regulator. Additionally, it features a low- power sleep mode to conserve energy when not in use.

➢ INPUT AND OUTPUT:

• Serial Interface: The SIM800L communicates with the host microcontroller or device through a

serial UART interface, supporting baud rates from 1200bps to 115200bps.

• GPIO Pins: The module features several General-Purpose Input/Output (GPIO) pins for interfacing

with external components or sensors, enabling additional functionality such as controlling LEDs,

relays, or sensors.

➢ MEMORY:

The SIM800L module includes onboard memory for storing configuration settings, SMS messages,

phonebook entries, and received data. It typically has a built-in SIM card holder for storing the

subscriber identity module (SIM) card, which contains subscriber information and network

authentication data.

Fig: SIM800L

28

➢ COMMUNICATION:

The SIM800L module supports GSM (2G) and GPRS (General Packet Radio Service) communication

standards, allowing it to connect to mobile networks and transmit data packets. It features a built-in

TCP/IP stack for Internet connectivity and supports various communication protocols such as HTTP,

FTP, SMTP, and MQTT. The module can establish data connections, make voice calls, send SMS

messages, and perform network- related operations.

➢ FEATURES:

• Quad-Band Operation: The SIM800L supports quad-band operation, allowing it to work on

GSM/GPRS networks in frequencies ranging from 850MHz to 1900MHz, making it suitable for

global deployment.

• SIM Card Support: It accommodates a standard SIM card for network authentication and sub-

scriber identification, enabling access to mobile networks for voice and data communication.

• Low Power Consumption: The module is designed for low power consumption, making it suitable

for battery-operated applications and energy-efficient IoT devices.

• Built -in Protocols: SIM800L features built-in support for communication protocols such as TCP,

UDP, HTTP, and FTP, facilitating seamless integration with IoT platforms and cloud services.

• SMS Messaging: The module supports sending and receiving SMS messages, enabling applications

such as remote monitoring, alerts, and notifications.

29

F. IoT CLOUD

When it comes to technology, the cloud is where small, medium, and large enterprises store their

private data. Computer systems serve as a channel to access or distribute data stored in the internet's

role as a cloud. In a way, the cloud may be thought of as a limitless pool for data storage.

➢ Cloud Computing:

Data centers all throughout the world house cloud servers. Users and businesses can avoid managing

physical servers or running software on their own computers by utilizing cloud computing. Because

computation and storage occur on servers in a data center rather than locally on the user device, users

can access the same files and programmes through the cloud from nearly any device. This is how a

user may continue access their old Instagram account, complete with all of their old photographs,

videos, and chat history, even after their old phone breaks. Virtualization is a technique that makes

cloud computing possible.

Cloud servers are housed in data centers throughout the world. By using cloud computing, users and

companies can avoid maintaining physical servers or running software on their own PCs. Users can

access the same files and programmes over the cloud from virtually any device because processing and

storage take place on servers in a data center rather than locally on the user device. In this way, even when

their old phone fails, a user can continue to access their previous Instagram account, replete with all of

their old photos, videos, and chat history. The method of virtualization enables cloud computing.

30

Fig: Cloud Computing

➢ RELATION BETWEEN CLOUD COMPUTING AND IoT:

With the combination of IoT and Cloud computing, improvements in data connection techniques and

an increasing number of devices are on the verge of creating a system that significantly alters the

potential of gadgets.

The applications of the Internet of Things and cloud computing are being developed by millions of

developers and businesses. IoT has also disrupted a number of industries, including supply chains,

learning, and architecture, among others. IoT has accomplished everything from enhancing human

living to offering security checks, identifying new defects, automatic data transfer, robotics

automation, and even raising a toast for people. The development of wireless communication methods

has opened up new opportunities for IoT.

• Data Storage:

There are essentially two types of storage devices:

a) Block Storage Devices: These devices provide customers with raw storage. Tocreate volumes,

these raw storages are partitioned.

b) File Storage Devices: These devices maintain their own file system and provideclients with stor-

age in the form of files. Network-attached storage is used for this storage (NAS).

The cloud storage system keeps numerous copies of the data on several serversspread across different

places. It merely takes changing the pointer to the location where the object is stored if one system

fails.

31

Fig: Cloud Storage System

• Data Protection:

In addition, secure IoT and Cloud Computing integration aids in preventing data breaches and attacks.

It's generally not a good idea to save data (which could include keys and passwords) on a local device.

By encrypting sensitive data on the cloud, security can be improved for industrial applications. A

significant volume of data might also be expensive and time-consuming to store locally. The processing

capacity of local devices is similarly constrained, therefore the cloud appears to be a viable alternative

for complicated procedures and applications.

➢ MAJOR COMPONENTS OF IoT:

a) Things or Devices:

These have sensors and actuators installed. Sensors gather environmental data and send it to the

gateway, where actuators carry out the desired action (as directed after processing of data).

b) Gateway:

Data from the sensors is sent to the gateway, where data pre-processing may even take place.

32

Additionally, it adds a layer of protection to the network and the data being transmitted.

c) Cloud:

The data is uploaded to the cloud after it has been collected. Simply said, a cloud is a collection of

servers that are constantly connected to the internet.

d) Analytics:

Processing of the data occurs after it is received in the cloud. Several algorithms are used here to

properly analyze the data.

e) User Interface: A user-end application that allows users to view or manage data.

Fig: Components of IoT

➢ THINGSPEAK CLOUD:

ThingSpeak is an Internet of Things (IoT) platform and cloud service provided by MathWorks, the

company behind MATLAB and Simulink. It is designed to collect, analyze, and visualize data from

IoT devices and sensors in real-time. ThingSpeak offers a range of features that enable users to store,

analyze, and act upon IoT data, making it a popular choice for IoT projects, research, and industrial

applications.

33

• KEY FEATURES OF THINGSPEAK CLOUD:

a. Data Storage: Once data is received, ThingSpeak stores it in its cloud-based database, allowing

users to access and analyze historical data. Each channel in ThingSpeak can store up to 8,000 data

points by default, with options to extend storage capacity through paid plans.

b. Real-Time Data Visualization: ThingSpeak offers built-in tools for creating interactive visuali-

zations of IoT data in real-time. Users can create customizable charts, graphs, gauges, and maps to

monitor and analyze their data visually.

c. Data analysis: In addition to visualization, ThingSpeak provides capabilities for performing basic

data analysis on collected data. Users can apply MATLAB analytics algorithms or custom MATLAB

scripts to analyze data streams and derive insights.

d. Alerts and Notifications: ThingSpeak allows users to set up alerts based on predefined conditions

or thresholds in their data streams. When an alert condition is met, ThingSpeak can trigger notifica-

tions via email, SMS, or Twitter, enabling timely response to critical events.

e. IoT App Integration: ThingSpeak supports integration with third-party IoT applications and plat-

forms through webhooks and APIs. This enables seamless data exchange between ThingSpeak and

other IoT services, enhancing flexibility and interoperability.

G. ARDUINO IDE

The Arduino Integrated Development Environment (IDE) is a user-friendly software platform that

simplifies the process of writing, compiling, and uploading code to Arduino-compatible

microcontrollers. Designed with beginners in mind but robust enough for advanced users, the Arduino

IDE provides a seamless interface for developing embedded applications. It supports a wide range of

Arduino boards and offers an extensive library system, allowing users to easily incorporate various

sensors, actuators, and communication modules into their projects.

The IDE features a code editor with syntax highlighting, automatic code indentation, and a simple one-

click mechanism for compiling and uploading programs, known as sketches, to connected Arduino

hardware. The built-in serial monitor enables real-time communication with the microcontroller,

facilitating debugging and monitoring of data streams.

34

With its open-source nature, the Arduino IDE fosters a collaborative community where users can share

code, libraries, and projects. This communal spirit not only accelerates learning but also drives

innovation, making the Arduino ecosystem a cornerstone in the world of electronics prototyping,

education, and hobbyist experimentation. Whether you're creating an interactive art installation, a home

automation system, or a robotic platform, the Arduino IDE is an indispensable tool that bridges the gap

between ideas and functional prototypes.

Fig: Windows App of Arduino

WORKING PRINCIPLE OF THE IOT SYSTEM:

Floods pose significant threats to lives and properties worldwide. Timely detection and alert systems

are crucial for mitigating the impact of floods. This project presents a cost-effective flood detection

solution leveraging IoT principles. The system employs ultrasonic sensors for accurate water level

measurements, Arduino Uno for data processing, transceivers for wireless communication, and a

SIM800L module for instant alert notifications to mobile devices.

The flood detection system comprises two main components: the sensor node and the monitoring node.

The sensor node consists of a bucket equipped with an ultrasonic sensor and an Arduino Uno board.

The ultrasonic sensor measures the water level inside the bucket, while the Arduino processes the

sensor data. The monitoring node consists of a transceiver, a Wemos board, an LCD screen, and a

SIM800L module. The transceiver facilitates wireless communication between the sensor and

monitoring nodes. The Wemos board receives water level data from the sensor node and displays it on

the LCD screen in real-time. Additionally, the SIM800L module sends SMS alerts to designated mobile

phones when the water level surpasses a predefined threshold.

35

WORKING:

Ultrasonic Sensor (HC-SR04):

Trig Pin: Sends a pulse to initiate the measurement.

Echo Pin: Receives the reflected pulse to calculate the distance.

Arduino Uno:

Digital Pins:

Trig Pin (Output): Connected to the Trig pin of the ultrasonic sensor to trigger the measurement.

Echo Pin (Input): Connected to the Echo pin of the ultrasonic sensor to receive the pulse for distance

calculation.

Transceiver Pins: Connected to the transceiver module for wireless communication.

Analog Pins: Unused in this configuration.

Transceiver Module:

TX Pin (Transmit Pin): Sends data to the monitoring node.

RX Pin (Receive Pin): Receives data from the sensor node.

Wemos Board (ESP8266):

GPIO Pins: Connected to the LCD screen for displaying real-time water level measurements.

Transceiver Pins: Connected to the transceiver module for wireless communication.

Analog Pins: Unused in this configuration.

SIM800L Module:

RX Pin (Receive Pin): Receives commands from the Arduino Uno.

TX Pin (Transmit Pin): Sends SMS alerts to designated mobile phone number.

LCD Screen:

36

Data Pins: Receive data from the Wemos board for displaying water level measurements.

Control Pins: Control the operation of the LCD screen .

WORKING PROCESS:

The Arduino Uno triggers the ultrasonic sensor by sending a pulse through its Trig pin. The ultrasonic

sensor emits ultrasonic waves and waits for them to bounce back from the water surface.The Echo pin

of the ultrasonic sensor receives the reflected pulse, and the Arduino calculates the time taken for the

round trip. Using the speed of sound in air, the Arduino converts the time into distance, which

represents the water level in the bucket. The Arduino then transmits this water level data to the Wemos

board using the transceiver module.

The Wemos board receives the data and displays the water level on the LCD screen in real-time.

Meanwhile, the Arduino continuously monitors the water level data. If it exceeds the predefined

threshold, it activates the SIM800L module. The SIM800L module sends an SMS alert to designated

mobile phone numbers, notifying users of the rising water level and potential flood risk. By

coordinating the functions of each pin on the components, the flood detection system effectively

measures water levels, displays real-time data, and issues timely alerts, aiding in flood management

and mitigation efforts.

37

 Fig: IoT Setup

38

3.6 Justification for component selection:

• Random Forest Regressor was chosen due to its ability to handle complex relationships

between input variables and predict continuous values.

• Python libraries were selected for their robustness in data handling and availability of machine learning

algorithms.

3.7 Tools used:

• Python 3.x

• Pandas, NumPy, Matplotlib, Sklearn libraries

3.8 Preliminary Result Analysis:

Preliminary results showed promising predictive capability of the model. Performance metrics

indicated a satisfactory level of accuracy in predicting river levels based on rainfall data.

39

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Performance Evaluation Metrics

Metrics for performance evaluation are numerical measurements that are used to evaluate a machine

learning model's efficacy or performance. These measures aid in determining how well the model

performs when it comes to classifying or predicting unknown data. The type of challenge in the

machine learning task determines the metrics to use. The objective of regression tasks is to forecast

continuous values.

4.1.1. Mean Squared Error

The squared difference between the estimated and actual values is known as the mean squared error,

or MSE. It is assessed using the mean squared difference between the values that were seen and those

that were anticipated. An error-free model has a zero mean square error (MSE). The more model error

there is, the higher its value. By squaring the difference, negative values are removed, and it is

guaranteed that the mean squared error will always be larger than or equal to zero. In most cases, the

value is positive. Zero MSE is only produced by flawless models that contain no errors. Larger errors

have a greater impact when squared. In these calculations, large errors have a disproportionate penalty

compared to tiny errors. Higher mean squared error values indicate a discrepancy between the expected

and actual values. Therefore, while forecasting, less MSE is needed.

4.1.2. Root Mean Squared Error

The square root of the average squared difference between the predicted and actual values in a dataset

is known as the root mean square error, or RMSE. It is the square root of MSE. The root mean square

error (RMSE) indicates the average amount of error in the target variable's original scale. The better a

model matches a dataset, the lower the RMSE values. Since it produces predictions that are most

similar to the actual values from the dataset, the model with the lowest RMSE value is deemed to be

the best model.

4.1.3. Mean Absolute Error

The average absolute differences between the predicted and actual values in a regression issue are

measured using a metric called Mean Absolute Error, or MAE. The average magnitude of mistakes

produced by the model is measured by MAE. Because it shows the average absolute difference between

the true and anticipated numbers, it may be interpreted with some ease. Because the Mean Squared

40

Error (MAE) does not square the errors, it is less sensitive to outliers than the MSE. Given that it

assigns an identical weight to all mistakes, regardless of their severity, it can be a valuable indicator,

particularly in situations where outliers could have a substantial impact on the model's performance.

4.1.4. Coefficient of Determination or R-Squared (R2)

The percentage of variance in the dependent variable (goal), which is represented by the independent

variables (features) in a regression model, is represented by the R-squared statistic, which is sometimes

referred to as the coefficient of determination. R2 lies between 0 and 1. The scattering of the data points

around the fitted regression line is assessed using the R2 regression evaluation metric. It can determine

the dependent variable's variation percentage. Greater fit is implied by a higher R2 value, which shows

that the independent variables in the model account for a greater percentage of the variance in the

dependent variable. Higher R2 values indicate better model performance.

4.2. Result Analysis

Extensive studies were carried out in this section to assess the effectiveness of the uniformizing

techniques. We contrasted our procedures with the industry standard found in the Rainfall and River

Water Level data as obtained from the Central Water Commission of India (CWC). Due to the limited

size of the dataset, we ran cross-validation tests to gauge the overall effectiveness and dependability

of the techniques, ensuring that bias and variance are balanced.

41

4.2.1. Residual analysis plot

4.2.2. Graph of actual river level vs predicted river level

42

4.2.3. Training dataset of rainfall level (in mm) vs river level (in m) datasets

4.2.4. Testing dataset of rainfall level (in mm) vs river level (in m) datasets

The various performance metrics for the flood prediction model using random forest regression are

43

summarized below:

Mean Squared Error: 0.0005384613176918199 Root Mean Squared Error:

0.02320476928762318 Coefficient of Determination (R²): 0.9606007977712445

Mean Absolute Error (MAE): 0.004518351299937054

4.3. Other Factors Affecting Floods

Several other important factors were undermined during the development of this model. It is very

important to note that the entire rainfall received in each geographical location does not directly affect

the flooding of rivers or the increase in river water levels. Rainfall affecting the water level varies and

depends on a variety of factors and conditions. Rain either falls directly on river or reaches the rivers

via surface runoff. Surface runoff is the movement of water across the ground surface, usually because

of precipitation, that does not permeate the soil or get absorbed by vegetation. When rain falls on

impermeable surfaces such as pavement or saturated soil, or when the soil's infiltration capacity is

surpassed, excess water begins to run over the ground, eventually accumulating and forming streams,

rivers, or other bodies of water. This runoff can transport sediment, contaminants, and nutrients,

contributing to erosion, water pollution, and changes in water quality. Surface runoff is an important

component of the hydrological cycle, influencing water availability, erosion patterns, and the

replenishment of rivers, lakes, and groundwater systems. Several factors affecting surface runoff are

explained in brief below.

4.3.1. Catchment Area

The catchment area is crucial in surface runoff dynamics because it determines the amount and flow

of water towards rivers or streams. It is the region of land where rain falls and drains into a common

outlet, such as a river or reservoir. Larger catchment areas collect more rainwater, resulting in more

surface runoff. The volume and speed of runoff are greatly influenced by the size and form of the

catchment region. Slopes within the catchment region expedite runoff, allowing water to flow quickly

towards the bodies of water. Furthermore, catchment area features like soil type, land use, and plant

cover influence penetration rates and water retention, hence influencing the amount of water that finally

becomes surface runoff. Effective management of catchment areas is crucial for mitigating flooding,

maintaining water quality, and ensuring sustainable water resource management.

4.3.2. Vegetation and plantation

Surface runoff dynamics are strongly influenced by vegetation and planting by altering the interaction

between rainfall and land surfaces. Rainfall is intercepted by trees, grasses, and other vegetative

44

coverings, lowering the intensity and impact of precipitation on the ground. This interception reduces

the velocity of rainfall, allowing more water to soak into the soil rather than runoff. Root systems

improve soil structure by generating water absorption routes and lowering surface flow by increasing

soil permeability. Furthermore, vegetation improves soil porosity and organic content, allowing for

improved water retention and infiltration. Overall, a dense vegetation cover reduces surface runoff by

increasing infiltration, decreasing erosion, and improving soil-water retention capacity, thereby

playing a vital role in managing water availability and minimizing the risks of flooding and soil erosion.

4.3.3. Soil property

Soil qualities determine water absorption and retention, which has a significant impact on surface

runoff dynamics. The texture, structure, and porosity of the soil all have an impact on water transport

and storage. Sandy soils, with larger particles and better permeability, allow for quick water infiltration,

minimizing surface runoff. Clayey soils, on the other hand, with smaller particles and reduced

permeability, impede infiltration, resulting to greater runoff. Soil compaction, produced by causes such

as heavy machinery or foot movement, diminishes porosity, reducing water absorption and increasing

runoff. Well-structured soils with good aggregation and organic matter retain more water, reducing

runoff volume. Furthermore, soil moisture content influences runoff generation; saturated soil

produces greater surface runoff because extra water cannot enter.

4.3.4. Percolation of water

Surface runoff is influenced by percolation, which is the movement of water through soil strata. When

rain or surface water infiltrates the soil, a portion of it penetrates deeper, passing through the pores and

fissures of the soil—a process critical in lowering surface runoff. Water recharges into aquifers and

groundwater systems is facilitated by adequate percolation, which contributes to water storage and

sustained flow in rivers and streams during dry periods. Percolation is influenced by soil permeability,

texture, compaction, and land use practices. Permeable soils, such as sandy soils, promote quick

percolation, minimizing surface runoff. Compacted or poorly formed soils, on the other hand, limit

percolation, increasing surface runoff. Understanding percolation dynamics aids in managing water

resources, preventing soil erosion, and ensuring groundwater recharge, highlighting its significance in

sustainable water management and mitigating surface runoff-related issues like flooding and water

scarcity.

4.3.5. Concentration time

The amount of time it takes for rainwater to flow from various sites within a watershed to a given

45

outlet, such as a river or stream, influences surface runoff dynamics. It refers to the gathering,

movement, and convergence of rainfall across the catchment region. This duration is affected by

several factors, including the watershed's size, shape, topography, and hydraulic features. Steeper

slopes provide for faster runoff, lowering concentration time, whereas flatter terrains allow for more

time for rainfall to reach the river. The complexity of the channel network, including the presence of

tributaries and their connectivity, has an impact on concentration time. Changes in land use and

urbanization can vary concentration times by influencing surface features, affecting runoff patterns.

Thus, concentration time can help predict floods and optimize flood management measures, and

assessing the risks associated with rapid runoff events in watersheds.

4.3.6. Evaporation

Evaporation, a critical component of the water cycle, regulates surface runoff by changing the amount

of water available for runoff. It denotes the process by which water evaporates from its liquid state on

the ground surface or in bodies of water and returns to the atmosphere. Evaporation rates are

determined by high temperatures, solar radiation, wind speed, and atmospheric humidity. Increased

evaporation reduces the amount of water available for surface runoff. Excess water may evaporate

before becoming runoff after heavy rainfall or periods of high soil saturation, influencing the total

runoff amount. Furthermore, evaporation from water bodies, soil surfaces, and vegetation directly

influences the amount of water that contributes to runoff. Proper knowledge of evaporation aids in

water resource management, particularly in dry locations or during droughts, because it alters the

balance between water availability for runoff and loss to the atmosphere.

46

CHAPTER 5

CONCLUSION AND FUTURE SCOPE OF WORK

The use of a Random Forest Regression (RFR) model for flood prediction in the Assam region is a

promising and effective strategy. This study proved the importance and promise of machine learning

approaches, specifically the RFR model, in improving flood prediction accuracy and offering useful

insights into flood-prone locations. Assam, known for its complex riverine systems and vulnerability

to flooding, requires sophisticated predictive models for fast and accurate flood forecasts. The RFR

model, which used ensemble learning and decision tree methods, performed admirably in capturing

intricate interactions among many relevant elements influencing flood occurrences in the region. The

RFR model demonstrated amazing predictive powers through extensive data analysis that included

parameters such as rainfall patterns, river levels, geography, land use, and previous flood data. It

swiftly learnt from previous flood disasters and identified intricate patterns, allowing it to provide

accurate forecasts. Furthermore, the model's versatility and scalability make it appropriate for dealing

with different and dynamic environmental situations. Its adaptability to changing datasets and

incorporation of additional variables makes it a great tool for continuously increasing flood forecast

accuracy in Assam.

However, while the RFR model represents substantial advances in flood prediction, certain limits must

be acknowledged. The accuracy of the model is strongly dependent on the quality and completeness

of the input data. Inaccuracies or shortcomings in data collection and integration may limit its

forecasting potential. Furthermore, the complexity of natural systems, interdependencies among many

influencing factors, and the inherent uncertainties connected with weather patterns make absolute

precision in flood forecasting difficult. As a result, continued research and attempts to improve data

collecting, feature engineering, and model optimization remain critical for improving predictive

accuracy. Despite these obstacles, the results of using the RFR model in flood prediction for Assam

have significant consequences. Accurate forecasts enable proactive steps such as early warnings,

evacuation planning, and resource allocation, enabling authorities and communities to limit possible

harm and protect lives and livelihoods. Finally, the use of the Random Forest Regression model in

flood prediction for Assam is an important step forward in using data-driven approaches for disaster

management. While appreciating its accomplishments, continuing breakthroughs, collaborative

research efforts, and a multidisciplinary approach are critical to refining prediction models, increasing

their dependability, and, ultimately, reducing the negative effects of flooding in the region.

In addition to the machine learning approach outlined, integrating IoT components further enhances

the effectiveness of flood prediction in Assam. By incorporating IoT water level sensors and alerting

47

systems, the predictive model gains access to real-time data on water levels and can issue timely

warnings based on rising water levels. This integration provides valuable insights into the current state

of riverine systems, enhancing the model's accuracy and responsiveness to dynamic environmental

conditions. Furthermore, the utilization of IoT technology allows for continuous monitoring and

adaptive forecasting, ensuring that the predictive model remains effective in the face of changing

datasets and evolving flood patterns. While acknowledging the limitations of the RFR model, the

integration of IoT components represents a significant advancement in flood prediction capabilities,

empowering authorities and communities with actionable information to mitigate the impact of

flooding in Assam. Continued research and collaboration are essential to further refine and optimize

predictive models, leveraging both machine learning and IoT technologies for improved disaster

management strategies in the region.

48

BIBLIOGRAPHY

1. Ambore, A. K., Charan, T. S. S., Reddy, U. R., Reddy, T. S. S., & Tarun, G.. Flood Predic-

tion using Machine Learning. School of Computer Science & Engineering, REVA University

Bengaluru, India.

2. Hou, J., Zhou, N., Chen, G., Huang, M., & Bai, G. (2021). Rapid forecasting of urban flood

inundation using multiple machine learning models.

3. Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood Prediction Using Machine Learning Mod-

els.

4. Smith, J., Jones, A., & Brown, C. . Application of machine learning algorithms for flood pre-

diction: A review.

5. Chen, L., Wang, Y., & Zhang, H. (Year not provided). Comparative analysis of machine

learning techniques for flood prediction.

6. Gupta, R., Kumar, S., & Singh, A. (Year not provided). Machine learning-based flood predic-

tion models: A systematic review.

7. Lee, H., Kim, S., & Park, J. (Year not provided). Integration of machine learning and hydro-

logical modeling for flood prediction: A case study.

8. Zhang, Q., Chen, Y., & Li, L. (Year not provided). Ensemble machine learning approaches

for flood prediction: A comparative study.

9. Shahirah Binti Zahir, Phaklen Ehkan . Smart IoT Flood Monitoring System

10. Kavitha Chaduvula b, Kranthi kumar K. a, Babu Rao Markapudi & Rathna Jyothi Ch. Design

and Implementation of IoT based flood alert monitoring system using microcontroller 8051

49

ANNEXURE

CODE:

//receiver code

#include <SPI.h>

#include <RF24.h>

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <ESP8266WebServer.h>

#include <SoftwareSerial.h> // Include the SoftwareSerial library

#include <LiquidCrystal_I2C.h> // Include the LiquidCrystal_I2C library

const char *ssid = "admin";

const char *password = "00000000";

const char *host = "api.thingspeak.com";

const char *apiKey = "HBJINRPAYZIN8NJH"; // Your Thingspeak API Key

const int updateInterval = 15000; // Interval to send data (in milliseconds)

unsigned long lastUpdateTime = 0;

int distance;

// Define the pin numbers for CE and CSN on ESP8266

const uint8_t cePin = D8; // CE pin

const uint8_t csnPin = D0; // CSN pin

50

// Create an instance of the RF24 class

RF24 radio(cePin, csnPin);

// Define SoftwareSerial pins

const uint8_t rxPin = D3; // RX pin for GSM module

const uint8_t txPin = D4; // TX pin for GSM module

bool smsSent = false;

// Create SoftwareSerial object

SoftwareSerial gsmSerial(rxPin, txPin); // RX, TX

//change values if needed

const int smsInterval = 300000; // Interval to send SMS (in milliseconds)//10 minutes

String Phone = "8474841937";

int maxval=20;

int minval=5;

unsigned long lastSMSsentTime = 0;

// Define LCD pins

const int lcdColumns = 16;

const int lcdRows = 2;

LiquidCrystal_I2C lcd(0x27, lcdColumns, lcdRows); // Set the LCD I2C address

void sendDataToThingspeak() {

 Serial.print("Connecting to ");

51

 Serial.println(host);

 WiFiClient client;

 const int httpPort = 80;

 if (!client.connect(host, httpPort)) {

 Serial.println("Connection failed");

 return;

 }

 String url = "/update?api_key=";

 url += apiKey;

 url += "&field1=";

 url += String(distance);

 Serial.print("Requesting URL: ");

 Serial.println(url);

 client.print(String("GET ") + url + " HTTP/1.1\r\n" +

 "Host: " + host + "\r\n" +

 "Connection: close\r\n\r\n");

 Serial.println("Request sent");

 while (client.connected()) {

 if (client.available()) {

 String line = client.readStringUntil('\r');

 Serial.print(line);

 }

 }

}

52

void sendSMS(const char* phoneNumber, const char* message) {

 gsmSerial.println("AT+CMGF=1"); // Set SMS mode to text mode

 delay(100);

 gsmSerial.print("AT+CMGS=\""); // Set SMS recipient number

 gsmSerial.print(phoneNumber);

 gsmSerial.println("\"");

 delay(100);

 gsmSerial.print(message); // SMS content

 delay(100);

 gsmSerial.write(26); // Ctrl+Z to send the message

 delay(100);

}

void wifi_init() {

 lcd.clear(); // Clear the display

 lcd.setCursor(0, 0);

 lcd.print("Waiting for WiFi...");

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 lcd.clear(); // Clear the display

53

 lcd.setCursor(0, 0);

 lcd.print("WiFi connected");

 //lcd.setCursor(0, 1);

 //lcd.print("IP address: ");

 //lcd.print(WiFi.localIP());

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

void setup() {

 // Initialize Serial Monitor

 Serial.begin(9600);

 lcd.init();

 lcd.backlight(); // Turn on backlight

 lcd.clear(); // Clear the display

 // Print project name across both rows

 lcd.setCursor(2, 0);

 lcd.print("FLOOD ALERT ");

 lcd.setCursor(0, 1);

 lcd.print("PROJECT WITH IOT");

 delay(2000);

 wifi_init();

54

 // Initialize the NRF24 module

 radio.begin(); // Set the radio's channel to 108

 radio.setChannel(108); // Set the data rate to 1MBps

 radio.setDataRate(RF24_2MBPS); // Set the power level to high

 radio.setPALevel(RF24_PA_HIGH); // Open a reading pipe

 radio.openReadingPipe(1, 0xF0F0F0F0E1LL); // Use the same address as on the transmitter

side // Start listening for data

 radio.startListening();

 // Initialize SoftwareSerial for GSM communication

 gsmSerial.begin(9600);

 // Check SIM card connectivity

 gsmSerial.println("AT");

 delay(100);

 if (gsmSerial.find("OK")) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("SIM card status:");

 lcd.setCursor(0, 1);

 lcd.print("Connected");

 Serial.println("SIM connected");

 } else { lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("SIM card status:");

55

 lcd.setCursor(0, 1);

 lcd.print("Not detected");

 Serial.println("SIM card not detected or communication error");

 //while (true); // Loop indefinitely if SIM card is not detected

 }

 // Initialize the LCD

 delay(3000);

 lcd.clear(); // Clear the display

 lcd.print("Water Level:");

}

void loop() {

 unsigned long currentTime = millis();

 if (currentTime - lastUpdateTime >= updateInterval) {

 sendDataToThingspeak();

 lastUpdateTime = currentTime;

 }

 if (radio.available()) {

 radio.read(&distance, sizeof(distance));

 // Print received distance to Serial Monitor

 Serial.print("Received Distance: ");

 Serial.print(distance);

 Serial.println(" cm");lcd.setCursor(0, 0);

 // Update LCD display

56

 lcd.print("Water Level: ");

 lcd.setCursor(0, 1);

 lcd.print("Distance: ");

 lcd.print(distance);

 lcd.print(" cm ");

 // Check water level and <send SMS if low

 if (distance>minval&&distance <maxval) { // Adjust threshold as needed

 Serial.println(" Water level high");

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Water level high!");

 // Example: Sending SMS using AT commands

 if (smsSent==true && (currentTime - lastSMSsentTime >= smsInterval)) {Serial.println("Sent

SMS.once.."); smsSent = false;

 lastSMSsentTime = millis();

 }

 if (smsSent==false) { Serial.println("Sent SMS.once.1."); lcd.setCursor(0, 1);

 lcd.print("Sending SMS...");

 sendSMS(Phone.c_str(), ("Water level is HIGH! " + String(distance) + " cms").c_str()); //

Replace with your phone number

 lcd.setCursor(0, 1);lcd.print(" SMS Sent ");delay(1500); lcd.clear(); smsSent = true;

 }

 ///

57

///transimiter code

 #include <SPI.h>

 #include <RF24.h>

 // Define the pin numbers for CE and CSN

 const uint8_t cePin = 9; // CE pin

 const uint8_t csnPin = 10; // CSN pin

 // Create an instance of the RF24 class

 RF24 radio(cePin, csnPin);

 // Ultrasonic sensor pin configuration

 const int trigPin = 7; // Connect TRIG pin of ultrasonic sensor to digital pin 5

 const int echoPin = 8; // Connect ECHO pin of ultrasonic sensor to digital pin 6

 unsigned long lastInitTime = 0; // Variable to store the last time NRF24 was initialized

 void init_nrf(){

58

 radio.begin();

 // Set the radio's channel to 108

 radio.setChannel(108);

 // Set the data rate to 1MBps

 radio.setDataRate(RF24_2MBPS);

 // Set the power level to high

 radio.setPALevel(RF24_PA_HIGH);

 // Open a writing pipe

 radio.openWritingPipe(0xF0F0F0F0E1LL); // Use the same address on the receiver side

 }

 void setup() {

 // Initialize Serial Monitor

 Serial.begin(9600);

 // Initialize the NRF24 module

 init_nrf();

 // Initialize ultrasonic sensor pins

 pinMode(trigPin, OUTPUT);

59

 pinMode(echoPin, INPUT);

 }

 void loop() {

 // Read distance from ultrasonic sensor

 int distance = getDistance();

 // Send the distance data via NRF24 module

 radio.write(&distance, sizeof(distance));

 // Print the sent distance to Serial Monitor

 Serial.print("Sent Distance: ");

 Serial.print(distance);

 Serial.println(" cm");

 unsigned long currentTime = millis();

 // Check if 10 seconds have elapsed since the last NRF24 initialization

 if (currentTime - lastInitTime >= 5000) {

 init_nrf(); // Initialize NRF24

 lastInitTime = currentTime; // Update the last initialization time

 }

 delay(100); // Adjust delay as needed

 }

 int getDistance() {

 // Send ultrasonic pulse

60

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // Measure pulse duration

 long duration = pulseIn(echoPin, HIGH);

 // Calculate distance in centimeters

 int distance = duration * 0.034 / 2;

 return distance;

 }

 }

 }

 delay(500);

}

61

➢ CODE EXPLANATION

This code consists of two parts: a receiver code and a transmitter code.

Receiver Code:

This part of the code is responsible for receiving data from an NRF24L01 module and sending it to

Thingspeak, as well as sending SMS alerts based on certain conditions.

1. Libraries: It includes necessary libraries for various functionalities such as SPI communica-

tion, NRF24L01 module control, WiFi communication, SoftwareSerial communication, and

controlling an I2C-based LCD display.

2. Constants and Variables: It defines constants such as WiFi SSID, password, Thingspeak

host, API key, update interval, pins for NRF24L01 module, pins for GSM module (for SMS

functionality), and threshold values for water level. It also defines variables to store the dis-

tance measured by the sensor and flags for SMS sending.

3. Functions:

o sendDataToThingspeak(): Sends data to Thingspeak using HTTP GET requests.

o sendSMS(): Sends an SMS using AT commands via the GSM module.

o wifi_init(): Initializes WiFi connection and displays status on the LCD.

4. Setup() Function: Initializes Serial communication, LCD display, WiFi connection,

NRF24L01 module, and GSM module. It checks the SIM card status and displays it on the

LCD.

5. Loop() Function: Continuously checks for new data from the NRF24L01 module. When data

is available, it reads the distance, updates the LCD display, and sends data to Thingspeak. If

the water level is within a certain range, it sends an SMS alert.

Transmitter Code:

This part of the code is responsible for measuring the water level using an ultrasonic sensor and

transmitting the data using the NRF24L01 module.

1. Libraries: It includes SPI communication and NRF24L01 module control libraries.

62

2. Constants and Variables: It defines pins for the NRF24L01 module and pins for the ultra-

sonic sensor.

3. Functions:

o init_nrf(): Initializes the NRF24L01 module with specific configurations.

o getDistance(): Measures the distance using the ultrasonic sensor and calculates the

distance in centimeters.

4. Setup() Function: Initializes Serial communication, NRF24L01 module, and ultrasonic sen-

sor pins.

5. Loop() Function: Continuously measures the distance using the ultrasonic sensor, sends the

data via the NRF24L01 module, and reinitializes the NRF24L01 module every 10 seconds.

Overall:

• The transmitter measures the water level using an ultrasonic sensor and sends the data wire-

lessly to the receiver.

• The receiver receives the data, sends it to Thingspeak for monitoring, and sends SMS alerts if

the water level crosses certain thresholds

