
1

 B. TECH FINAL YEAR PROJECT REPORT

ON

“FIRE FIGHTER ROBOT WITH GAS SENSOR USING

IoT”

Submitted in partial fulfillment for the award of degree of Bachelor of
Technology by Assam Science and Technology University

Submitted to

Department of Electronic and Telecommunication Engineering

Under the guidance of

 Prof. Dr. Bijoy Goswami

Submitted By:

 Department of Electronic and Telecommunication Engineering

 Assam Engineering College Guwahati
 JALUKBARI- 781013, GUWAHAT

 July , 2024

Bibungsar Brahma 2006100026014

Dibankar debnath 180610026055

Divya Roy 210650026002

2

 CERTIFICATE

This is to cerƟfy that the project enƟtled “FIRE FIGHTER ROBOT WITH GAS SENSOR USING

IoT” has been carried out and presented by

Bibungsar Brahma 2006100026014

Dibankar debnath 180610026055

Divya Roy 210650026002

Students of B. Tech, 8th Semester (Electrical Engineering), Assam Engineering College,

under my supervision and guidance in a manner satisfactory to warrant its acceptance as

prerequisite for the award of Bachelor of Engineering in Electrical Engineering of the

Assam Science and Technology University (ASTU).

Further the report has not been submitted in any form for the award of any other degree/diploma.

Date: Prof. Bijoy Goswami

Place- Guwahati Dept. of Electronic and Telecommunication Engineering

 Assam Engineering College, Guwahati- 781013

 JULY , 2024

3

 DECLARATION

I declare that this written submission represents my ideas in my own words and where

others' ideas or words have been included, I have adequately cited and referenced the

original sources. I also declare that I have adhered to all principles of academic honesty

and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above will

be cause for disciplinary action by the Institute and can also evoke penal action from the

sources which have thus not been properly cited or from whom proper permission has not

been taken when nee

 (Signature)

 Date:-----

4

 ACKNOWLEDGMENTS

We would like to express our sincere graƟtude and appreciaƟon to all those who have contributed

to the successful compleƟon of this project. Their support, guidance, and encouragement have been

invaluable throughout the enƟre process.

 First and foremost, we extend our hearƞelt thanks to our supervisor, BIJOY GOSWAMI SIR for their

conƟnuous support and insighƞul guidance. Their experƟse and willingness to share knowledge

have played a vital role in shaping this project and enhancing its quality.

We are also thankful to the faculty members of ETE DEPARTMENT,ASSAM ENGINEERING COLLEGE

for providing us with a conducive environment for learning and exploraƟon. Their dedicaƟon to

imparƟng knowledge and their commitment to excellence have greatly influenced our project's

outcomes.

We would like to acknowledge the assistance and cooperaƟon received from our fellow classmates

and friends. Their valuable insights, brainstorming sessions, and collaboraƟve efforts have been

instrumental in overcoming challenges and achieving our objecƟves.

AddiƟonally, We are grateful to the parƟcipants and respondents who generously shared their Ɵme

and opinions, enabling us to collect relevant data and gather valuable insights for our project.

 We would also like to extend our graƟtude to the library staff for their assistance in accessing

relevant resources and materials. Their efforts have been instrumental in broadening our

understanding and enriching our project.

 Finally, we are indebted to our family and friends for their unwavering support, encouragement,

and understanding throughout this project. Their belief in us and their constant moƟvaƟon have

been our driving force, inspiring us to strive for excellence.

 In conclusion, we would like to express our deepest appreciaƟon to all those who have contributed

directly or indirectly to the compleƟon of this mini project. Without their support, this endeavor

would not have been possible. Thank you all for your valuable contribuƟons.

 Bibungsar Brahma 200610026014

 Dibankar Debnath 180610026055

 Divya Roy 210650026002

5

ABSTRACT

There is no doubt that firefighting is an important job, but it is also a very dangerous

occupation. The absence of human beings in detection of fire usually leads to a huge damage.

This project aims to design a firefighting robot that can operate remotely. The development of

Fire Fighting Robot consists of two elements i.e., hardware and programming. The project is

designed to develop a fire fighting robot using Arduino uno . The robotic vehicle is loaded with

water pump which is controlled by servos. An microcontroller is used for the desired operation.

At the transmitting end using commands are sent to the receiver to control the movement of

the robot either to move forward, and left or right etc. At the receiving end tow motors are

interfaced to the microcontroller where two of them are used for the movement of the vehicle

and the one to position the robot. The sensor adequate range with obstacle detection, while the

receiver driver module used to drive DC motors via motor driver IC for necessary work. A

water tank along with water pump is mounted on the robot body and its operation is carried out

from the microcontroller output through appropriate command from the transmitting end. The

whole operation is controlled by an microcontroller. A motor driver IC is interfaced to the

microcontroller through which the controller drives the motors,three ir flame sensors are fixed

on robot chassis to sense the fire and to reach the destination to put off the fire. The type of

locomotion used by a mobile robot is crucial for the robot to perform its task and reach

its goal in a given environment. This work focuses on the optimization of the design

of a fire fighting robot system subject to optimizing well defined mobility metrics. As

robots evolve from industrial fixed base robots to autonomous mobile platforms, the

concept of locomotion in robotics becomes much more important. Similar to nature, also

robot locomotion must be adapted to the given terrain or task.

6

CONTENT

 PARTICULARS Page No.:

 Cover Page

Certificate

 1

 2

 Declaration

Acknowledgement

 3

4

 Abstract 5

 Content 6

 List of figures

List of table

 7-8

9

CHAPTERS CHAPTER CONTENT Page No.:

1 INTRODUCTION 9 - 12

 1.1 Indroduction 9

 1.2

1.3

 Project overview

 Component overview

 10

11-12

2

2.1

2.2

LITERATURE REVIEW

L iterature review

Problem Statement

 13 - 14

13

14

7

8

 LIST OF FIGURES

 Figure No.: Name of the figures Page No.:

2.1 Overview of system 16

3.1 L293D Motor driver module 20

3.2 Flame sensor module 22

3.3 Internal architecture of dc motor 21

3.4 5v water pump 25

3.5 Servo Motor 26

3.6 RotaƟng mechanism of servo motor 27

3.7 Arduino UNO board 28

3.8 Pin diagram of Atmega328

30

3.9 Architecture of AVR 32

3.10 Line Diagram of Rocker Bogie Mechanism 35

3.11 Three Dimensional view of Rocker Bogie Mechanism 36

3.12

 3.13

RBM on uneven path

Screenshort of Arduino IDE

37

42

3.14 Program compiling using arduino IDE.

43

3.16 Selecting the port

44

3.17 Uploading program to the arduino 44

3.18 Circuit diagram for analyzing characterisƟcs of PV arrays 45

9

 LIST OF FIGURES

 Figure No.: Name of the figures Page No.:

3.19 FuncƟonal descripƟon 56

3.20 Flow chart 59

4.1 Microcontroller –flame sensor interfacing 60

 LIST OF TABLE

 Table No.: Name of the table Page No.:

3.14 Pin descripƟon table 23

3.15 DescripƟon of each pins of ATmega328 31

10

 CHAPTER 1

 INTRODUCTION

 1.1. INTRODUCTION

 Cultural property management is entrusted with the responsibility of protecting and

preserving an institution's buildings, collections, operations and occupants. Constant attention

is required to minimize adverse impact due to climate, pollution, theft, vandalism, insects, mold

and fire. Because of the speed and totality of the destructive forces of fire, it constitutes one of

the more serious threats. Vandalized or environmentally damaged structures can be repaired

and stolen objects recovered. Items destroyed by fire, however, are gone forever. An

uncontrolled fire can obliterate an entire room's contents within a few minutes and completely

burn out a building in a couple of hours. Hence it has become very necessary to control and

cease the fire to protect the Life and costlier things. For that we purposed to design and fabricate

the fire-fighting robot. Autonomous robots can act on their own, independent of any controller.

The basic idea is to program the robot to respond in a certain way to outside stimuli. The very

simple bump-and-go robot is a good illustration of how this works. This sort of robot has a

sensor to detect obstacles. When you turn the robot on, it zips along in a straight line. When it

finally hits an obstacle, the impact is on sensors, i.e, sensors may get damaged. Using

Ultrasonic sensor and programming logic, the robot is guided to turn right and move forward

again, when the robot finds an obstacle in its way. In this way, the robot changes direction any

time it encounters an obstacle. Advanced robots use more elaborate versions of this same idea.

Roboticists create new programs and sensor systems to make robots more smarter and more

perceptive. Today, robots can effectively navigate in a variety of environments.

 Robots can be defined as machine resembling a human being but capable of performing

complex assignments. In hazardous jobs like firefighting robots can be of significant service.

Fire Fighting is an imaginary gameplay of firefighter rescuing the victims and stopping the fire

as soon as possible. Many of the times wide reaching fire mishaps commence due to small fire

flame leading to the much more vandalization.

11

The stated firefighting robot is competent of detecting the smoke raised in the air due to flame,

with the help of smoke sensor MQ2. Likewise, presence of the fire can be detected by the

robot with flame sensors intact on anterior of the prototype robot.

Fire detected gets douse with water from water tank mounted on the robot.

The robot firefighter is designed to look for fire in small houses of specific dimensions. An

ideal firefighting robot is also capable of warn the service man about the outrage via SMS or a

call. Water pump sprays water on the fire to stop it from further spreading. In addition to being

able to be installed in homes, laboratories, stores, shops, etc., firefighting robot is easily

portable and can be used once installed.

1.2 PROJECT OVERVIEW

The project is designed to develop a fire fighting robot using Arduino uno . The

robotic vehicle is loaded with water pump which is controlled by servos. An ATMega

328 microcontroller is used for the desired operation. At the transmitting end using

commands are sent to the receiver to control the movement of the robot either to move

forward, and left or right etc. At the receiving end tow motors are interfaced to the

microcontroller where two of them are used for the movement of the vehicle and the

one to position the robot. The ultrasonic sensor adequate range with obstacle

detection, while the receiver driver module used to drive DC motors via motor driver

IC for necessary work. A water tank along with water pump is mounted on the robot

body and its operation is carried out from the microcontroller output through

appropriate command from the transmitting end. The whole operation is controlled

by an ATmega 328 microcontroller. A motor driver IC is interfaced to the

microcontroller through which the controller drives the motors three flame sensors

are fixed on robot chassis to sense the fire and to reach the destination to put off the

fire.

12

1.3 COMPONENTS OVERVIEW

This system uses the following components.

1.3.1 Microcontroller

 Microcontroller can be described as a computer embedded on a rather small

circuit board. To describe the function of a microcontroller more precisely it is a

single chip that can perform various calculations and task and send/receive signals

from other devices via the available pins. Precisely what tasks and communication

with the world it does, is what is governed by what instructions we give to the

Microcontroller. It is this job of telling the chip what to do, is what we refer to as

programming on it.

However, the microcontroller by itself, cannot accomplish much, it needs

several external inputs, power, for one, a steady clock signal, for another. Also, the

job of programming it has to be accomplished by an external circuit. So typically, a

microcontroller is used along with a circuit which provides these things to it; this

combination is called a microcontroller board. The Arduino Uno that you have

received is one such microcontroller board. The actual microcontroller at its heart is

the chip called Atmega328. The advantages that Arduino offers over other

microcontroller boards are largely in terms of reliability of the circuit hardware as

well as the ease of programming and using it.

1.3.2 Power Supply

7805 is a voltage regulation IC which is used to supply 5V Direct current to

the microcontroller

1.3.3 Motor Driver IC

L293D is a dual H-bridge motor driver integrated circuit (IC). They are use to control

13

they the 4 motor used in project. There are 2 motor driver IC used in the project one

to control front motor and other for rear motors.

1.3.4 Computer Interface

Finally, this project uses IDE compiler for interfacing the arduino with a PC.

This interface is used to setup and compile the Arduino.

14

 CHAPTER 2

LITERATURE SURVEY

 2.1 LITERTURE REVIEW

 The automatic fire fighting robot consists of hardware and software design. The

hardware part deals with the mechanical and construction design, electric and electronic

circuitry. The software parts deals with the programming . Fire-fighting robots can take many

forms, but typically consist of a robotic vehicle with a fire-extinguishing payload, such as a

water cannon, foam sprayer, or CO2 gas dispenser.

 These robots can be operated remotely or autonomously, and are usually

equipped with cameras and sensors to help them navigate and detect fires. Some robots are

even capable of performing basic search-and-rescue operations, such as locating victims and

carrying them to safety.

 This robot integrates the idea of natural fire detection and corresponding engine

control. In order for the robot to be controlled bidirectionally, it makes use of the engine driver.

With the assistance of a microcontroller, each guidance for controlling movement is given to

the robot . The use of fire-fighting robots has several advantages over traditional firefighting

techniques. For example, robots can operate in hazardous environments without putting human

firefighters at risk. They can also be used to monitor a fire in real-time, allowing firefighters to

better contain and extinguish the blaze. Finally, robots can be used in situations where human

access is not possible, such as in collapsed buildings or in remote locations. The paper aims to

motivate the robotics community to develop a real-world application based on what it can

accomplish . In addition to being able to be installed in homes, laboratories, stores, shops, etc.,

firefighting robot is easily portable and can be used once installed .

15

 2.2 Problem Statement

 As explained in the introduction chapter, the realization of

complete potential of the sensors and the wired medium in information transfer is

the major issue that the following thesis of the following project deals with.

Fig 2.1: Overview of system

From Fig 2.1, there are at least five interfacing circuits, L293d driver module, Arduino-uno with

Microcontroller, flame sensors, servo motor and 5v pump here arduino uno acts a heart of our

project,in the above block diagram we can see that there are three flame sensors and ultrasonic sensor

which acts as input interface to the microcontroller and servomotor, pump, driver module acts a

output interface to the microcontroller,here the input and output interface can be indicated with the

arrow lines with the respective the microcontroller performs with the respective commands and delay

which is programmed on arduino software.

SERVO MOTOR

ARDUINO
UNO

PUMP

FIRE
SENSOR

LEFT

FIRE
SENSOR
RIGHT

FIRE
SENSOR
CENTRE

POWER
SUPPLY

12V SUPPLY
FOR

MONITOR

POWER
SUPPLY

L293D
MOTOR
DRIVER

IC

LEFT DC
MOTOR

RIGHT DC
MOTOR

16

17

3.2 Hardware used

1 .PVC Pipes with 90 and 145 degree connectors

2 .Nuts and Bolts 3. Water Tank and Pipe

18

4. Metal Strips 5. Metal Clamps

 6.Nozzle for accurate speed of water flow

19

7.Drill Machine

3.2.1 L293D Driver module

The Motor Driver is a module for motors that allows you to control the

working speed and direction of two motors simultaneously .This Motor

Driver is designed and developed based on L293D IC.L293D is a 16 Pin

Motor Driver IC. This is designed to provide bidirectional drive currents at

voltages from 5 V to 36 V.

20

Figure 3.1: L293D motor driver module

L293D is a dual H-bridge motor driver integrated circuit (IC). Motor drivers

act as current amplifiers since they take a low-current control signal and

provide a higher-current signal. This higher current signal is used to drive the

motors.L293D contains two inbuilt H-bridge driver circuits. In its common

mode of operation, two DC motors can be driven simultaneously, both in

forward and reverse direction. The motor operations of two motors can be

controlled by input logic at pins 2 & 7 and 10 & 15. Input logic 00 or 11 will

stop the corresponding motor. Logic 01 and 10 will rotate it in clockwise and

anticlockwise directions, respectively. Enable pins 1 and 9 (corresponding to

the two motors) must be high for motors to start operating. When an enable

input is high, the associated driver gets enabled. As a result, the outputs

become active and work in phase with their inputs. Similarly, when the enable

input is low, that driver is disabled, and their outputs are off and in the high-

impedance state.

21

 3.2.1.1 Features of L293D driver

module

 Hardware features

 can be used to run Two DC motors with the same IC.

 Speed and Direction control is possible

 Motor voltage Vcc2 (Vs): 4.5V to 36V

 Maximum Peak motor current: 1.2A

 Maximum Continuous Motor Current: 600mA

 Supply Voltage to Vcc1(vss): 4.5V to 7V

 Transition time: 300ns (at 5Vand 24V)

 Automatic Thermal shutdown is available

 Available in 16-pin DIP, TSSOP, SOIC packages

ApplicaƟons

 Used to drive high current Motors using Digital Circuits

 Can be used to drive Stepper motors

 High current LED’s can be driven

 Relay Driver module (Latching Relay is possible)

22

 3.2.1.1Pin description

The L293D driver module has 16pins. They are as follows:

ENABLE :

 When enable is pulled low, the module is disabled which means the module will not turn

on and it fails to drive motors. When enable is left open or connected to 3.3V, the module is

enabled i.e the module remains on and driving of motors also takes place.

VCC:

 GND:

 Supply voltage 3.3v to 5v

 Ground pin

INPUT & OUTPUT:

These two pins acts as an input and output interface for
communication.

 Table no 3.1. pin description table

3.2.2 Flame Sensor Module

A flame sensor module that consists of a flame sensor (IR receiver), resistor,

capacitor, potentiometer, and comparator LM393 in an integrated circuit. It can detect

23

infrared light with a wavelength ranging from 700nm to 1000nm.The far-infrared

flame probe converts the light detected in the form of infrared light into current

changes. Sensitivity is adjusted through the onboard variable resistor with a detection

angle of 60 degrees.

Working voltage is between 3.3v and 5.2v DC, with a digital output to indicate the

presence of a signal. Sensing is conditioned by an LM393 comparator.

 Figure 3.2: flame sensor module

3.2.3 DC Motor:

Motors convert electrical energy into mechanical energy.A DC motor

is an electric motor that runs on direct current (DC) electricity.

In any electric motor, operation is based on simple electromagnetism. A current-

carrying conductor generates a magnetic field; when this is then placed in an external

magnetic field, it will experience a force proportional to the current in the conductor,

and to the strength of the external magnetic field. As you are well aware of from

playing with magnets as a kid, opposite (North and South) polarities attract, while

like polarities (North and North, South and South) repel. The internal configuration

24

of a DC motor is designed to harness the magnetic interaction between a current-

carrying conductor and an external magnetic field to generate rotational motion.

Direct current (DC) motors are widely used to generate motion in a variety of

products. Permanent magnet DC (direct current) motors are enjoying increasing

popularity in applications requiring compact size, high torque, high efficiency, and

low power consumption.

In a brushed DC motor, the brushes make mechanical contact with a set of

electrical contacts provided on a commutator secured to an armature, forming an

electrical circuit between the DC electrical source and coil windings on the armature.

As the armature rotates on an axis, the stationary brushes come into contact with

different sections of the rotating commutator.

 Fig 3.3 Internal architecture of dc motor

Permanent magnet DC motors utilize two or more brushes contacting a

commutator which provides the direct current flow to the windings of the rotor,

which in turn provide the desired magnetic repulsion/attraction with the permanent

magnets located around the periphery of the motor.

The brushes are conventionally located in brush boxes and utilize a U-shaped

spring which biases the brush into contact with the commutator. Permanent magnet

brushless dc motors are widely used in a variety of applications due to their simplicity

of design, high efficiency, and low noise. These motors operate by electronic

25

commutation of stator windings rather than the conventional mechanical

commutation accomplished by the pressing engagement of brushes against a rotating

commutator.

A brushless DC motor basically consists of a shaft, a rotor assembly equipped

with one or more permanent magnets arranged on the shaft, and a stator assembly

which incorporates a stator component and phase windings. Rotating magnetic fields

are formed by the currents applied to the coils.

The rotator is formed of at least one permanent magnet surrounded by the

stator, wherein the rotator rotates within the stator. Two bearings are mounted at an

axial distance to each other on the shaft to support the rotor assembly and stator

assembly relative to each other. To achieve electronic commutation, brushless dc

motor designs usually include an electronic controller for controlling the excitation

of the stator windings.

3.2.4 Water Pump

The water pump is operated at 5v which can be interfaced with Arduino

 Fig 3.4 5v water pump

 3.2.5 Servo Motor

A servo is a small DC motor with the following components added: some

26

gear reduction, a position sensor on the motor shaft, and an electronic circuit that

controls the motor's operation. In other words, a servo is to a DC motor what the

Arduino is the ATmega microcontroller---components and housing that make the

motor easy to use. This will become abundantly clear when we work with

unadorned DC motors next week.

The gear reduction provided in a servo is large; the basic hobby servo has a

180:1 gear ratio. This means that the DC motor shaft must make 180 revolutions to

produce 1 revolution of the servo shaft. This large gear ratio reduces the speed of

the servo and proportionately increases its torque. What does this imply about small

DC motors? Servo motors are typically used for angular positioning, such as in radio

control airplanes. They have a movement range of 0 up to 180 degrees, but some

extend up to 210 degrees. Typically , a potentiometer measures the position of the

output shaft at all times so the controller can accurately place and maintain its

position.

 Fig 3.5 Servo Motor

PPM uses 1 to 2ms out of a 20ms timeperiod to encode its information. The

servo expects to see a pulse every 20 milliseconds (.02 seconds). The length

of the pulse will determine how far the motor turns. A 1.5 millisecond pulse

will make the motor turn to the 90 degree position (often called the neutral

27

position). If the pulse is shorter than 1.5 ms, then the motor will turn the shaft

to closer to 0degrees. If the pulse is longer than 1.5ms,the shaft turns closer

to 180 degrees.The amount of power applied to the motor is proportional to

the distance it needs to travel. So, if the shaft needs to turn a large distance,

the motor will run at full speed. If it needs to turn only a small amount, the

motor will run at a slower speed.

Fig 3.6 Rotating mechanism of servo motor

3.2.6 MICROCONTROLLER ATMEGA 328

 The Atmel 8-bit AVR RISC-based microcontroller combines 32 KB ISP flash

memory with read-while-write capabilities, 1 KB EEPROM, 2 KB SRAM, 23 general purpose

I/O lines, 32 general purpose working registers, three flexible timer/counters with compare

modes, internal and external interrupts, serial programmable USART, a byte- oriented 2-wire

serial interface, SPI serial port, 6-channel 10-bit A/D converter (8-channels in TQFP and

QFN/MLF packages), programmable watchdog timer with internal oscillator, and five software

selectable power saving modes.

28

 Fig 3.7 Arduino UNO board

The device operates between 1.8-5.5 volts. The device achieves throughputs

approaching 1 MIPS.

3.2.6.1. Applications

Today the ATmega328 is commonly used in many projects and autonomous

systems where a simple, low-powered, low-cost micro-controller is needed. Perhaps

the most common implementation of this chip is on the popular Arduino development

platform, namely the Arduino Uno and Arduino Nano models.

29

3.2.6.2 Features

 28-pin AVR Microcontroller

 Flash Program Memory: 32 kbytes

 EEPROM Data Memory: 1 kbytes

 SRAM Data Memory: 2 kbytes

 I/O Pins: 23

 Timers: Two 8-bit / One 16-bit

 A/D Converter: 10-bit Six Channel

 PWM: Six Channels

 RTC: Yes with Separate Oscillator

 MSSP: SPI and I²C Master and Slave Support

 USART: Yes

 External Oscillator: up to 20MHz

The Atmega328 is a very popular microcontroller chip produced by Atmel.

It is an 8-bit microcontroller that has 32K of flash memory, 1K of EEPROM, and 2K

of internal SRAM.

The Atmega328 is one of the microcontroller chips that are used with the

popular Arduino Duemilanove boards. The Arduino Duemilanove board comes with

either 1 of 2 microcontroller chips, the Atmega168 or the Atmega328. Of these 2, the

Atmega328 is the upgraded, more advanced chip. Unlike the Atmega168 which has

16K of flash program memory and 512 bytes of internal SRAM, the Atmega328 has

32K of flash program memory and 2K of Internal SRAM.

The Atmega328 has 28 pins, It has 14 digital I/O pins, of which 6 can be used

as PWM outputs and 6 analog input pins. These I/O pins account for 20 of the pins.

30

PIN DIAGRAM OF ATMEGA328

 Figure 3.8: Pin diagram of Atmega328

31

Table 3.2: Description of each pins of ATmega328

As stated before, 20 of the pins function as I/O ports. This means they can function as an

input to the circuit or as output. Whether they are input or output is set in the software. 14

of the pins are digital pins, of which 6 can function to give PWM output. 6 of the pins are

for analog input/output. Two of the pins are for the crystal oscillator, this is to provide a

clock pulse for the Atmega chip. A clock pulse is needed for synchronization so that

communication can occur in synchrony between the Atmega chip and a device that

32

connected to.

The Atmega328 chip has an analog-to-digital converter (ADC) inside of it.

This must be or else the Atmega328 wouldn't be capable of interpreting analog

signals. Because there is an ADC, the chip can interpret analog input, which is why

the chip has 6 pins for analog input. The ADC has 3 pins set aside for it to function-

AVCC, AREF, and GND. AVCC is the power supply, positive voltage, that for the

ADC. The ADC needs its own power supply in order to work. GND is the power

supply ground. AREF is the reference voltage that the ADC uses to convert an analog

signal to its corresponding digital value. Analog voltages higher than the reference

voltage will be assigned to a digital value of 1, while analog voltages below the

reference voltage will be assigned the digital value of 0. Since the ADC for the

Atmega328 is a 10-bit ADC, meaning it produces a 10-bit digital value, it converts

an analog signal to its digital value, with the AREF value being a reference for which

digital values are high or low. Thus, a portrait of an analog signal is shown by this

digital value; thus, it is its digital correspondent value. The last pin is the RESET pin.

This allows a program to be rerun and start over. And this sums up the pin out of an

Atmega328 chip .

 3.2.6.3. ARCHITECTURE

 Figure 3.9: Architecture of AVR

33

FEATURES OF AVR.

• High-performance, Low-power AVR® 8-bit Microcontroller

• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single-clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 16 MIPS Throughput at 16 MHz

– On-chip 2-cycle Multiplier

• Nonvolatile Program and Data Memories

– 32K Bytes of In-System Self-Programmable Flash

• Endurance: 10,000 Write/Erase Cycles

– Optional Boot Code Section with Independent Lock Bits

• In-System Programming by On-chip Boot Program

• True Read-While-Write Operation

– 1024 Bytes EEPROM

• Endurance: 100,000 Write/Erase Cycles

– 2K Byte Internal SRAM

– Programming Lock for Software Security

• JTAG (IEEE std. 1149.1 Compliant) Interface

– Boundary-scan Capabilities According to the JTAG Standard

– Extensive On-chip Debug Support

– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• Peripheral Features

– Two 8-bit Timer/Counters with Separate Pre scalers and Compare Modes

– One 16-bit Timer/Counter with Separate Pre scaler, Compare Mode, and

Capture Mode

– Real Time Counter with Separate Oscillator

– Four PWM Channels

– 8-channel, 10-bit ADC

• 8 Single-ended
Channels

34

• 7 Differential Channels in TQFP Package Only

• 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

– Byte-oriented Two-wire Serial Interface

– Programmable Serial USART

– Master/Slave SPI Serial Interface

– Programmable Watchdog Timer with Separate On-chip Oscillator

– On-chip Analog Comparator

• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated RC Oscillator

– External and Internal Interrupt Sources

– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down,

Standby and Extended Standby

• I/O and Packages

– 32 Programmable I/O Lines

– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

• Operating Voltages

– 2.7 - 5.5V for ATmega32L

– 4.5 - 5.5V for ATmega32

• Speed Grades

– 0 - 8 MHz for ATmega32L

– 0 - 16 MHz for ATmega32

• Power Consumption at 1 MHz, 3V, 25°C for ATmega32L

– Active: 1.1 mA

– Idle Mode: 0.35 mA

– Power-down Mode: < 1 μA

•
BASIC TERMINOLOGIES IN ARDUINO

Analog to Digital Converter (ADC)

 The process of Analog to digital conversion is shown in figure.

35

 The Arduino has 10 bits of Resolution when reading analog signals.

 210=1024 increments.

 Influence also by how fast you sample.

Pulse Width Modulation (PWM)

 The Arduino has 8bit of resolution, when outputting a signal using PWM.

 The range of output voltage is from 0 to 5 Volts.

 28=255 Increments

 Average of on/off(digital signals to make an average voltage),Duty cycle in

100% of 5Volts.

3. 8 LANGUAGE REFERENCES:

The Microcontroller on the board is programmed using the Arduino

programming language (based on wiring) and the arduino development environment

(based on processing).

 3.3.Design of Rocker-Bogie Mechanism
 The term “rocker” describes the rocking aspect of the larger links present
each side of the suspension system and balance the bogie as these rockers are
connected to each other and the vehicle chassis through a modified differential.

Figure 3.10 Line Diagram of Rocker Bogie Mechanism

36

In the system, “bogie” refers to the conjoining links that have a drive wheel attached
at each end. Bogies were commonly used to bare loading as tracks of army tanks
as idlers distributing the load over the terrain. Bogies were also quite commonly
used on the trailers of semitrailer trucks as that very time the trucks will have to
carry much heavier loa

As accordance with the motion to maintain centre of gravity of entire vehicle, when one
rocker moves up-ward, the other goes down. The chassis plays vital role to maintain the
average pitch angle of both rockers by allowing both rockers to move as per the situation

 The physics of these rovers is quite complex. To design and control these analytical

models of how the rover interacts with its environment are essential. Models are also needed

for rover action planning. Simple mobility analysis of rocker-bogie vehicles have been

developed and used for design evaluation in the available published works.

 The rocker-bogie configuration is modeled as a planer system. Improving the

performances of a simpler four wheel rover has also been explored

 Figure 3.11. Three Dimensional view of Rocker Bogie Mechanism

37

3.3.1 ADVANTAGES

 The design incorporates independent motors for each wheel. There are no
springs or axles, making the design simpler and more reliable.

 Rocker Bogie Suspension can withstand a tilt of at least 500 in any direction

without overturning, which is the biggest advantage of heavy loaded
vehicle.

 It can move in harsh environment

 It can work in place which are beyond human reach

Rocker Bogie consisting of no spring and stub axle in each wheel which allows the

chasis to climb over any obstacle such as rocks , ditches, sands etc. that are upto double

the wheels diameter in size while keeping all the wheels on ground for maximum time.

 Figure 3.12. RBM on uneven path

3.3.2. FUTURE SCOPE

 It can be useful in space mission too, recently it is used in Mars Rover. This

mechanism takes consideration on unevenness of the surface it is driving on.

 This rover has larger wheel as compared to obstacles, It can easily operate over

most of the Martian rocks.

38

 It’s future application will be assist astronauts during space operations, it will act
as a path finder too.

 It is also used in coal mines, act as a spy robot and in military operation too.

3.3.3. SELECTION OF MATERIAL

Selection of material is an important step in designing of any component

The main advantages of material selection are :

It increases the reliability of

product .

It reduces the cost of product.

It can also optimize the weight of product.

 3.4 .SOFTWARE REQUIREMENTS

3.4.1.Embedded C

Embedded C is a set of language extensions for the C Programming language

by the C Standards committee to address commonality issues that exist between C

extensions for different embedded systems. Historically, embedded C programming

requires nonstandard extensions to the C language in order to support exotic features

such as fixed- point arithmetic, multiple distinct memory banks, and basic I/O

operations.

3.4.2. Difference between C and Embedded C

Though C and embedded C appear different and are used in different contexts, they

have more similarities than the differences. Most of the constructs are same; the

difference lies in their applications .

C is used for desktop computers, while embedded C is for microcontroller

39

based applications. C takes more resources of a desktop PC like memory, OS, etc.

while programming on desktop systems what embedded C cannot. Embedded C has

to use the limited resources (RAM, ROM, I/O’s) on an embedded processor. Thus,

program code must fit into the available program memory. If code exceeds the limit,

the system is likely to crash.

Compilers for C (ANSI C) typically generate OS dependent executable files.

Embedded C requires compilers to create files to be downloaded to the

microcontrollers/microprocessors where it needs to run. Embedded compilers give

access to all resources which is not provided in compilers for desktop computer

applications.

Embedded systems often have the real-time constraints, which is usually not

there with desktop computer applications.

Embedded systems often do not have a console, which is available in case of

desktop applications.

The C programming language is perhaps the most popular programming

language for programming embedded systems. C continues to be a very popular

language for micro- controller developers/programmers due to the code efficiency

and reduced overhead and development time. C offers low-level control and is

considered more readable than assembly language which is a little difficult to

understand. Assembly language requires more code writing, whereas C is easy to

understand and requires less coding. Plus, using C increases portability, since C code

can be compiled for different types of processors. We can program microcontrollers

using Atmel Atmega328, AVR or PIC.

Here by developing the programs as per the electronic hardware using Atmel

Atmega328 micro controller. For the operations like: blink led, increment decrement

counters, token displays etc.

Most C programmers are spoiled because they program in environments where not

40

only there is a standard library implementation, but there are frequently a number of

other libraries available for use. The cold fact is, that in embedded systems, there

rarely are many of the libraries that programmers have grown used to, but

occasionally an embedded system might not have a complete standard library, if there

is a standard library at all. Few embedded systems have capability for dynamic

linking, so if standard library functions are to be available at all, they often need to

be directly linked into the executable. Oftentimes, because of space concerns, it is not

possible to link in an entire library file, and programmers are often forced to "brew

their own" standard c library implementations if they want to use them at all. While

some libraries are bulky and not well suited for use on microcontrollers, many

development systems still include the standard libraries which are the most common

for C programmers.

C remains a very popular language for micro-controller developers due to the

code efficiency and reduced overhead and development time. C offers low-level

control and is considered more readable than assembly. Many free C compilers are

available for a wide variety of development platforms. The compilers are part of an

IDEs with ICD support, breakpoints, single-stepping and an assembly window. The

performance of C compilers has improved considerably in recent years, and they are

claimed to be more or less as good as assembly, depending on who you ask. Most

tools now offer options for customizing the compiler optimization. Additionally,

using C increases portability, since C code can be compiled for different types of

processors .

3.4.3.Software

The software used by the arduino is Arduino IDE. The Arduino IDE is a

cross- platform application written in Java, and is derived from the IDE for the

Processing programming language and the Wiring project.

41

It is designed to introduce programming to artists and other newcomers

unfamiliar with software development. It includes a code editor with features such as

syntax highlighting, brace matching, and automatic indentation, and is also capable

of compiling and uploading programs to the board with a single click. There is

typically no need to edit make files or run programs on a command- line interface.

Although building on command-line is possible if required with some

third-party tools such as Ino.

The Arduino IDE comes with a C/C++ library called "Wiring" (from the

project of the same name), which makes many common input/output operations much

easier. Arduino programs are written in C/C++, although users only need define two

functions to make a runnable program:

 setup() – a function run once at the start of a program that can initialize settings

 loop() – a function called repeatedly until the board powers off

A typical first program for a microcontroller simply blinks a LED on and off.

In the Arduino environment, the user might write a program like this:

42

 Figure 3.13: A Screenshot of Arduino IDE

For the above code to work correctly, the positive side of the LED must be

connected to pin 13 and the negative side of the LED must be connected to ground.

The above code would not be seen by a standard C++ compiler as a valid program,

#define LED_PIN 13

void setup (){

pinMode(LED_PIN, OUTPUT);// enable pin 13 for digital output

}

void loop (){

digitalWrite(LED_PIN, HIGH);// turn on the LED

delay(1000);// wait one second (1000 milliseconds)

43

so when the user clicks the "Upload to I/O board" button in the IDE, a copy of the

code is written to a temporary file with an extra include header at the top and a very

simple main() function at the bottom, to make it a valid C++ program.

The Arduino IDE uses the GNU tool chain and AVR Libc to compile

programs, and uses AVR dude to upload programs to the board.

For educational purposes there is third party graphical development

environment called Mini blog available under a different open source license.

PROGRAM COMPILING

Figure 3.14: Program compiling using arduino IDE.

44

SELECTING BOARD

Figure 3.15: Selecting the board from Tools menu

SELECTING PORT

Figure 3.16: Selecting the port

45

UPLOADING PROGRAM

Figure 3.17: Uploading program to the arduino.

3.4.4. Language Reference

Arduino programs can be divided in three main parts: structure, values

(variables and constants), and functions.

Available data types in ARDUINO IDE are

 void

 boolean

 char (0 – 255)

 byte - 8 bit data (0 – 255)

 int - 16-bit data (32,767 - -32,768)

 long – 32 bit data (2,147,483,647 to -2,147,483,648)

46

 float

 double

 string - char array

 String - object

 array

AT COMMANDS

AT commands are used to control MODEMs. AT is the abbreviation for

Attention. These commands come from Hayes commands that were used by the

Hayes smart modems. The Hayes commands started with AT to indicate the attention

from the MODEM. The dial up and wireless MODEMs (devices that involve

machine to machine communication) need AT commands to interact with a

computer. These include the Hayes command set as a subset, along with other

extended AT commands.

AT commands with a mobile phone can be used to access following

information and services:

1. Information and configuration pertaining to mobile device or Bluetooth module.

2. SMS services.

3. MMS services.

4. Fax services.

5. Data and Voice link over mobile network.

The Hayes subset commands are called the basic commands and the

commands specific to a Bluetooth network are called extended AT commands.

47

3.5 ARDUINO UNO FINAL CODE

We have uses two Arduino uno

1. CODE OF BLUETOOTH MODULE

#define in1 5 //L298n Motor Driver pins.

#define in2 6

#define in3 10

#define in4 11

#define LED 13

int command; //Int to store app command state.

int Speed = 204; // 0 - 255.

int Speedsec;

int buttonState = 0;

int lastButtonState = 0;

int Turnradius = 0; //Set the radius of a turn, 0 - 255 Note:the robot will malfunction if this is higher

than int Speed.

int brakeTime = 45;

int brkonoff = 1; //1 for the electronic braking system, 0 for normal.

void setup() {

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 pinMode(LED, OUTPUT); //Set the LED pin.

 Serial.begin(9600); //Set the baud rate to your Bluetooth module.

}

 void loop() {

 if (Serial.available() > 0) {

 command = Serial.read();

 Stop(); //IniƟalize with motors stoped.

 switch (command) {

48

 case 'F':

 forward();

 break;

 case 'B':

 back();

 break;

 case 'L':

 leŌ();

 break;

 case 'R':

 right();

 break;

 case 'G':

 forwardleŌ();

 break;

 case 'I':

 forwardright();

 break;

 case 'H':

 backleŌ();

 break;

 case 'J':

 backright();

 break;

 case '0':

 Speed = 100;

 break;

 case '1':

 Speed = 140;

 break;

 case '2':

49

 Speed = 153;

 break;

 case '3':

 Speed = 165;

 break;

 case '4':

 Speed = 178;

 break;

 case '5':

 Speed = 191;

 break;

 case '6':

 Speed = 204;

 break;

 case '7':

 Speed = 216;

 break;

 case '8':

 Speed = 229;

 break;

 case '9':

 Speed = 242;

 break;

 case 'q':

 Speed = 255;

 break;

 }

 Speedsec = Turnradius;

 if (brkonoff == 1) {

 brakeOn();

 } else {

50

 brakeOff();

 }

 }

}

void forward() {

 analogWrite(in1, Speed);

 analogWrite(in3, Speed);

}

void back() {

 analogWrite(in2, Speed);

 analogWrite(in4, Speed);

}

void leŌ() {

 analogWrite(in3, Speed);

 analogWrite(in2, Speed);

}

void right() {

 analogWrite(in4, Speed);

 analogWrite(in1, Speed);

}

void forwardleŌ() {

 analogWrite(in1, Speedsec);

 analogWrite(in3, Speed);

}

void forwardright() {

 analogWrite(in1, Speed);

 analogWrite(in3, Speedsec);

51

}

void backright() {

 analogWrite(in2, Speed);

analogWrite(in4, Speedsec);

}

void backleŌ() {

 analogWrite(in2, Speedsec);

 analogWrite(in4, Speed);

}

void Stop() {

 analogWrite(in1, 0);

 analogWrite(in2, 0);

 analogWrite(in3, 0);

 analogWrite(in4, 0);

}

void brakeOn() {

 //Here's the future use: an electronic braking system!

 // read the pushbuƩon input pin:

 buƩonState = command;

 // compare the buƩonState to its previous state

 if (buƩonState != lastBuƩonState) {

 // if the state has changed, increment the counter

 if (buƩonState == 'S') {

 if (lastBuƩonState != buƩonState) {

 digitalWrite(in1, HIGH);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, HIGH);

 digitalWrite(in4, HIGH);

 delay(brakeTime);

52

 Stop();

 }

 }

 // save the current state as the last state,

 //for next Ɵme through the loop

 lastBuƩonState = buƩonState;

 }

}

void brakeOff() {

}

 2. CODE OF FLAME SENSOR

#define in3 7 //Motor2 L298 Pin in3

#define in4 6 //Motor2 L298 Pin in4

#define enB 5 //Enable2 L298 Pin enB

#define ir_R AO

#define ir_F A1

#define ir_L A2

#define servo A4

#define pump A5

int Speed = 160; // Write The Duty Cycle 0 to 255 Enable for Motor Speed|

int s1, s2, 53;

void setup(){ // put your setup code here, to run once

Serial.begin(9600); // start serial communication at 9600bps pinMode(ir_R, INPUT);//

declare fire sensor pin as input pinMode(ir_F, INPUT);// declare fire sensor pin as input

pinMode(ir_L, INPUT);// declare fire sensor pin as input pinMode(enA, OUTPUT); // declare

as output for L298 Pin enA

pinMode(in1, OUTPUT); // declare as output for L298 Pin in1

pinMode(in2, OUTPUT); // declare as output for L298 Pin in2

53

pinMode(in3, OUTPUT); // declare as output for L298 Pin in3

pinMode(in4, OUTPUT); // declare as output for L298 Pin in4 pinMode(enB, OUTPUT); //

declare as output for L298 Pin enB

pinMode(servo, OUTPUT);

pinMode (pump, OUTPUT);

for (int angle = 90; angle ‹= 140; angle += 5) {

servoPulse(servo, angle);

for (int angle = 140; angle >= 40; angle == 5) {

servoPulse(servo, angle);}

for (int angle = 40; angle <= 95; angle += 5) {

servoPulse(servo, angle); }

analogWrite(enA, Speed);

analogWrite(enB, Speed);

delay (500);

void loop(){|

s1 = analogRead (ir_R);

s2 = analogRead(ir_F);

53 = analogRead (ir_L);

Serial.print(s1);

Serial.print（"\t"）；

Serial.print(s2);

Serial.print（"\t"）；

Serial.printin(s3);

delay (50);

if(s1<250){

Stop();

Auto Controll

digitalWrite(pump, 1);

for(int angle = 90; angle >= 40; angle -= 3){

servoPulse(servo, angle);

for(int angle = 40; angle <= 90; angle += 3){

servoPulse (servo, angle);

else if(s2<350){

54

Stop();

digitalWrite(pump, 1);

for (int angle = 90; angle <= 140; angle += 3){

servoPulse(servo, angle);

for(int angle = 140; angle >= 40; angle -= 3){

servoPulse(servo, angle);

for (int angle = 40; angle <= 90; angle += 3){

servoPulse(servo, angle);

else if(s3<250){

Stop();

digitalWrite(pump, 1);

for(int angle = 90; angle <= 140; angle += 3){

servoPulse(servo, angle);

for(int angle = 140; angle >= 90; angle == 3){

servoPulse(servo, angle);

else if(s1>=251 && s1<=700){

digitalWrite(pump, 0);

backword();

delay (100);

turnRight();

delay (200);

else if(s2>=251 && s2<=800){|

digitalWrite(pump, 0);

forword ();

else if(s3>=251 && s3<=700){

digitalwrite(pump, 0);

backword();

delay(100);

turnLeft();

delay (200);

Jelsef

digitalWrite (pump, 0);

Stop ();

delay (10);

void servoPulse (int pin, int angle){

55

delay (50);

// Refresh cycle of servo

void forword(){ //forword

digitalWrite(in1, HIGH); //Right Motor forword Pin digitalWrite(in2, LOW); //Right Motor

backword Pin| digitalWrite(in3, LOW); //Left Motor backword Pin digitalWrite(in4, HIGH); //Left

Motor forword Pin

void backword(){ //backword

digitalWrite(in1, LOW); //Right Motor forword Pin digitalWrite(in2, HIGH); //Right Motor

backword Pin digitalWrite(in3, HIGH); //Left Motor backword Pin digitalWrite(in4, LOW); //Left

Motor forword Pin|

void turnRight(){ //turnRight

digitalWrite(in1, LOW); //Right Motor forword Pin digitalWrite(in2, HIGH); //Right Motor

backword Pin digitalWrite(in3, LOW); //Left Motor backword Pin| digitalWrite(in4, HIGH); //Left

Motor forword Pin|

void turnLeft(){//turnLeft

digitalWrite(in1, HIGH); //Right Motor forword Pin digitalWrite(in2, LOW); //Right Motor

backword Pin digitalWrite(in3, HIGH); //Left Motor backword Pin digitalWrite(in4, LOW); //Left

Motor forword Pin

void Stop(){ //stop|

digitalWrite(in1, LOW); //Right Motor forword Pin digitalWrite(in2, LOW); //Right Motor

backword Pin digitalWrite(in3, LOW); //Left Motor backword Pin

digitalWrite(in4, LOW); //Left Motor forword Pin

}

56

3.6 SYSTEM MODELLING AND DESIGN

3.8.1 FUNCTIONAL DESCRIPTION

Fig 3.18 : Functional description

diagram The constituent parts involved in the process are

 sensors

 Arduino with Atmel Atmega328 microcontroller

 L293 driver module

 Servo with pump

First block portrays to be sensors which receives, verifies and forwards the

message to the Microcontroller. Micro is the second block. Micro processes the

message and sends to the driver module. Driver module behaving as the third

constituent part and servo pump acts as fourth part which extinguishes the fire.

57

3.6.2. FUNCTIONAL BLOCK DIAGRAM

Power Supply

Flame Sensor

 Servo Motor

Servo
Motor

Water

Outlet

 Water

Pump

 MOTOR DRIVER

IN1
IN2
CN1

V88 V8
OUT1
OUT2

GND GND

OUT3
OUT4 EN2

IN3
IN4

L290D

MOTOR FOR WHEELS

Gas Sensor
Gas

Sensor

 BUZZER

58

3.6.3. CIRCUIT DIAGRAM

59

3.6.4. DATA FLOW DIAGRAM

Fig 3.19 : Flow chart

The flow starts by initializing the ports of components. First the power supply

should be on to the circuit and three sensors are there one on middle and remaing two

on right and left side of chassis whenever the fire is occurred the respective value is

read by the sensors when fire is occurred the voltage becomes zero and chassis is

moved to the respective and put off fire whenever there is no fire then there is no input

is occurred occurred voltage is more than 0 volts and the initial condition is move to

other direction

60

 CHAPTER 4

 IMPLEMENTATION AND TESTING

4.1. MICROCONTROLLER – FLAME SENSOR INTERFACING

 Fig 4.1: Microcontroller –flame sensor interfacing

Fig 4.1 The flame sensor is used to detect the fire or other light sources which are in

the range of wavelength from 760nm to 1100nm. The module consists of an IR sensor,

potentiometer, OP-Amp circuitry and a led indicator. When a flame will be detected,

the module will turn on its red led. This module is sensitive to flame but it can also

detect ordinary light. The detection point is 60 degrees. The sensitivity of this sensor

is adjustable and it also has a stable performance.

It has both outputs, analog and digital. The analog output gives us a real time

voltage output signal on thermal resistance while the digital output allows us to set a

threshold via a potentiometer. In our tutorial we are going to use both of these outputs

one by one and see how the sensor works.We can use the flame sensor to make an

61

alarm when detecting the fire, for safety purpose in many projects and in many more

ways.

 PROGRAMMING OVERVIEW

About Arduino Uno R3 Programming To programing Arduino Uno, you need the

open source Arduino IDE software that the card manufacturer company wrote. The

Arduino IDE Program is a software program written in Java language, used to

program Arduino cards and to download Arduino cards to Arduino cards.download

the program that I downloaded from the firm's site (https://www.arduino.cc/) with

this program. It has an editor that uses the Processing / Wiring language, the

commands that resemble the C language in some places, and the supporting utilities

for the projects (Library - library). Along with this, another company's editor (IDE)

has been developed since Arduino includes open source software. A bootloader

(boot loader) has already been installed on ATmega328 on Arduino Uno. With this

bootloader we can develop software without the need for an external programmer to

program Arduino. The programming work can easily be performed by making the

necessary settings and definitions in the IDE program .

 4.3 RESULT ANALYSIS

The initial stage of the project is the part of Finding fire, fire sensor LM393 The fire sensor

detects fire at a certain distance. It does not receive data from areas outside of the

determined area. It was decided to use two Reducing motors in order to realize the motion

system. Both of these Reducing engines can move forward and backward. According to the

obstacle state, if the motor is to be turned, one of the motors is given a reverse current by

the processor and the axial rotation is provided and the obstacle less driving is provided.

Thus, every obstacle was easily overcome in the environment where the system is located.

62

RESULTS

Snapshots

63

 CHAPTER 5

 ADVANTAGES AND LIMITATIONS

 ADVANTAGES

1. Faster Response Time: Firefighting robots are capable of responding to emergency

situations faster than human firefighters. This can be especially beneficial in situations

where human firefighters may be delayed due to traffic, bad weather, or other factors.

2. Increased Safety: Firefighting robots are able to enter dangerous environments that may

be too hazardous for human firefighters. This is especially important when dealing with

hazardous materials such as chemicals and toxic substances.

3. Enhanced Mobility: Firefighting robots are often equipped with powerful motors and

can traverse terrain that may be difficult for humans to access. This can be very helpful

in situations where the fire is located in an area that is not easily accessible to human

firefighters.

4. Improved Accuracy: Firefighting robots are typically equipped with sophisticated

sensors that can detect fire, heat, and smoke more accurately than the human eye. This

helps to ensure that the fire is extinguished quickly and efficiently.

5. Cost Savings: Firefighting robots are often cheaper to operate than human firefighters.

This can result in significant cost savings in terms of training, equipment, and

manpower.

 LIMITATIONS

1. Robot’s Mobility: Firefighting robots are typically wheeled, tracked or a combination

of both, and they rely on their mobility to move around and reach the fire. However, if

64

the surface is too rough or if there are large obstacles present, the robot may not be able

to move around freely.

2. Limited Reach: Firefighting robots have limited reach and may not be able to get close

enough to put out the fire.

3. Limited Sensors: Firefighting robots have limited sensors and cameras to detect the fire,

making it difficult to determine the exact location and size of the fire.

4. Limited Fire Fighting Capabilities: Firefighting robots are limited in their firefighting

capabilities. They are typically limited to using water, foam, or dry chemical

extinguishers, which may not be enough to put out large or intense fires.

5. High Cost: Firefighting robots are expensive and may not be affordable for some fire

departments.

6. Safety: Firefighting robots pose a safety risk to firefighters, as they may not be able to

detect hazardous conditions such as smoke or heat.

65

 FUTURE SCOPE

The project has been motivated by the desire to design a system that can detect

fires and take appropriate action, without any human intervention. The

development of sensor networks and the maturity of robotics suggests that we can

use mobile agents for tasks that involve perception of an external stimulus and

reacting to the stimulus, even when the reaction involves a significant amount of

mechanical actions. This provides us the opportunity to pass on to robots tasks

that traditionally humans had to do but were inherently life- threatening. Fire-

fighting is an obvious candidate for such automation. Given the number of lives

lost regularly in fire- fighting, the system we envision is crying for adoption. Our

experience suggests that designing a fire-fighting system with sensors and robots

is within the reach of the current sensor network and mobile agent technologies.

Furthermore, we believe that the techniques developed in this work will carry

over to other areas involving sensing and reacting to stimulus, where we desire

to replace the human with an automated mobile agent.

 However, there has been research on many of these pieces in
different contexts e.g. coordination among mobile agents, techniques for
detecting and avoiding obsta cles,, on-thefly communication between humans
and mobile agents, etc. It will be both interesting and challenging to put all this
together into a practical, autonomous fire-fighting service.

66

 CONCLUSION

The firefighting robot is a promising new technology that has the

potential to revolutionize the way fire fighters operate. It is capable of

navigating through a burning building and locating the source of the

fire and extinguishing it quickly and accurately. Its main advantage is

that it can be used in hazardous environments where it would be too

dangerous for humans to enter. It also has the potential to save lives, as

it is capable of responding to fires more quickly than human

firefighters. Therefore, the firefighting robot is an excellent tool to have

in the firefighting arsenal.

67

 REFERENCES

A. Eswaran, A. Vijay, S. Karthick, C. Sheik Mohammed, M. Vimal, Solae powered

automaƟc firefighƟng robot, internaƟonal journal of engineering research &

technology (ijert), etedm – 2018 (volume 6 – issue 04), april 2018 .

B. “Human Wireless Controlling Fire FighƟng Robot (FFR) With 3-Axis Hose”,

InternaƟonal Journal of Advanced Computer Technology (IJACT), Vol. 2, No. 3,

pp. 1- 8.

C. Mr. Borse Karan Dipak, Mr. Bansode Vishal Laxman, Mr. Gadekar AƟsh

Mahadeo, Mr. Adhav Gitanjali Subhash, Miss. Shelke Amruta Ashok, Review of

Fire FighƟng Robot, IJSRD - InternaƟonal Journal for ScienƟfic Research &

Development| Vol. 4, Issue 01, 2016 | ISSN (online): 2321-0613 .

D. FirefighƟng robot: an approach By-Manish Kumbhare, S s kumbhalkar Indian

Streams Research Journal Vol.2, Issue. I/March201412pp.1-4 Dr. Wael

Abdulmajeed, Dr. Ali Mahdi and Karzan Taqi.

E. Muhamad Bukhari Al-Mukmin, M.Zahar, Design And Development Of

AutomaƟc Fire FighƟng Robot, 2011.

F. W.Z. Wan Hasan, Mohd Hasimi Mohd Sidek, Suhaidi Shafie, Mohammad

Hamiruce Marhaban, Fire FighƟng Robot, Conference: APSAEM2010.At:

Malaysia, July 2010.

G. Pramod B.N., Hemalatha K.N., Poornima B.J., Harshita R., Fire FighƟng Robot,

2019, IEEE, InternaƟonal Conference On InformaƟon and CommunicaƟon

Technology Convergence (ICTC), Jeju, South Korea Oct 2019 [KrisƟ Kosasih, E.

Merry SarƟka, M. Jimmy Hasugian, dan Muliady the Intelligent Fire FighƟng Tank

Robot, Electrical Engineering Journal , volume 1, issue 1, Posted: 2010-10.

68

