Applicability of Porcupine as Pro-Siltation Measure and Determination of Most Efficient Pattern Adopted in Alluvial Rivers

A dissertation submitted in partial Fulfilment of the Requirement for the Award of the Degree of

MASTERS OF TECHNOLOGY

In

CIVIL ENGINEERING (With Specialization in Water Resources Engineering) of

ASSAM SCIENCE & TECHNOLOGY UNIVERSITY SESSION 2021-23

Submitted by-

DIPSHIKHA LAHKAR (ROLL NO: PG-C-021) ASTU Registration no: 006106221 M.Tech. (4th Semester)

Under the Guidance of-

Dr. BIPUL TALUKDAR Professor

DEPARTMENT OF CIVIL ENGINEERING

ASSAM ENGINEERING COLLEGE, GUWAHATI, ASSAM – 781013

DECLARATION

I hereby declare that the work presented in the dissertation "Applicability of Porcupine as **Pro-Siltation Measure and Determination of Most Efficient Pattern Adopted in Alluvial Rivers**" in partial fulfilment of the requirement for the award of the degree of "MASTER OF TECHNOLOGY" in Civil Engineering (with specialization in Water Resources Engineering), submitted in the Department of Civil Engineering, Assam Engineering College, Jalukbari, Guwahati – 13 under Assam Science & Technology University, is a real record of my work carried out in the said college under the supervision of Dr. Bipul Talukdar, Professor, Department of Civil Engineering, Assam Engineering College, Jalukbari, Guwahati – 13.

Whatever I have presented in this report has not been submitted by me for the award of any other Degree or Diploma.

Date:....

DIPSHIKHA LAHKAR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Date:....

DR. BIPUL TALUKDAR

(Professor) Department of Civil Engineering Assam Engineering College Guwahati-781013

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the work presented in the project report entitled "Applicability of Porcupine as Pro-Siltation Measure and Determination Of Most Efficient Pattern Adopted In Alluvial Rivers" is submitted by DIPSHIKHA LAHKAR, Roll No:PG-C-021, a student of M.Tech 4th semester, Department of Civil Engineering, Assam Engineering College, in partial fulfillment of the requirement for award of the degree of Master of Technology in Civil Engineering with Specialization in Water Resources Engineering under my guidance and supervision.

Date:

DR. BIPUL TALUKDAR

(Professor) Department of Civil Engineering Assam Engineering College Guwahati-781013

CERTIFICATE FROM HEAD OF THE DEPARTMENT

This is to certify that the project report entitled "**Applicability of Porcupine as Pro-Siltation Measure and Determination of Most Efficient Pattern Adopted in Alluvial Rivers**" has been submitted by **DIPSHIKHA LAHKAR**, bearing Roll No: PG-C-021, a student of M.Tech. 4th Semester, Water Resources Engineering (Civil Engineering Department), Assam Engineering College, in partial fulfillment of the requirements for the award of the degree of Master of Technology in Water Resource Engineering of Assam Science & Technology University.

Date: Place:

DR. JAYANTA PATHAK

(Professor & Head of the Department) Department of Civil Engineering Assam Engineering College Jalukbari, Guwahati-13

ACKNOWLEDGEMENT

At the very outset I would like to express my deepest gratitude and sincere thanks to my respected guide Dr. Bipul Talukdar, Professor, Department of Civil Engineering, Assam Engineering College for his invaluable supervision, guidance and constructive suggestion throughout the course of my work.

I also express my sincere thanks and gratitude to Dr. Jayanta Pathak, Professor & Head of the Department of Civil Engineering, Assam Engineering College, for his kind co-operation while carrying out my work.

We also extend our sincere thanks to the faculty and staff of the Department of Civil Engineering at Assam Engineering College, Guwahati. Their valuable assistance and contributions played a crucial role in the completion of this study, especially the Hydraulics Laboratory where we carried out most of our work. Thank you for the support and opportunities provided.

I also like to thank all my classmates and well-wishers for their constant encouragement, valuable advice and inspiration throughout the work.

Lastly, I acknowledge my indebtedness to all my family members for their whole hearted moral support and constant encouragement.

DIPSHIKHA LAHKAR M.Tech., 4th Semester Department of Civil Engineering Assam Engineering College Jalukbari

TABLE OF CONTENTS

LIST OF FIGURES	viii-x
LIST OF TABLES	xi-xvii
ABSTRACT	xviii
CHAPTER 1	1-8
INTRODUCTION	
1.1 General	1
1.2 Open Channel Flow	2
1.3 Mechanism Of Sediment Transport in Open Channel Flow	2
1.4 Incipient Motion Condition	4
1.5 Brief Introduction to Related Terminology	4
1.5.1 Erosion	4
1.5.2 Alluvial River	5
1.5.3 Properties of Alluvial River	5
1.6 Porcupine As River Training Work	5
1.6.1 Porcupine Systems	6
1.7 Objective	8
1.8 Chapter Wise Planning	8
CHAPTER 2	9-12
LITERATURE REVIEW	
2.1 General	9
2.2 Porcupine	10
CHAPTER 3	13-18
MATERIALS AND THE METHODOLOGY ADOPTED	
3.1 Materials Description	13
3.1.1 Model	13
3.1.2 Bed Material	14
3.1.3 Bank Material	14
3.2 Experimental Channel Description	14
3.3 Experimental Procedure	17

3.3.1 Measurement of Velocity	18
3.4 Methodology Adopted	19
3.4.1 Flow Chart	19
CHAPTER 4	20-137
EXPERIMENTAL WORK	
4.1 Sieve Analysis of Bed Material	21
4.2 Sieve Analysis of Sediment	22
4.3 Specific Gravity of Sediment 1	28
4.4 Porosity of Sediment 1	28
4.5 Specific Gravity of Sediment 2	29
4.6 Porosity of Sediment 2	29
4.7 Specific Gravity of Sediment 3	30
4.8 Porosity of Sediment 3	30
4.9 Specific Gravity of Bed Material	31
4.10 Specific Gravity of Bank Material	31
4.11 DIRECT SHEAR TEST	32
4.12 Results of Experiments Done with Different Porcupine Layouts.	35
4.13 Indices	35
4.14 Estimation of Sediment Deposition	37
4.15 Calculation of Sediment Deposition for Each Trial	78
CHAPTER 5	138-151
RESULTS AND DISCUSSIONS	
5.1 Velocity Index	138
5.2 Calculation of Trap Efficiency (Phase 1)	139
5.3 Comparison of Trap Efficiency with Different Indices and Their Graphical Representation	140
5.4 Comparison of Trap efficiency with different sediment sample (Phase2)	149
CHAPTER 6	152-153
CONCLUSIONS AND FURTHER SCOPE OF THE STUDY	
6.1 Conclusions	152
6.2 Further Scope	153
REFRENCES	

LIST OF FIGURES

No.	Caption	Page
1.1	Open channel flow	2
1.2	Sediment transport process	3
1.3	Three dimensional sketch of a typical RCC Porcupine unit	6
1.4	RCC porcupine	7
1.5	RCC porcupine screen	7
3.1	Model of porcupine made of MS Rod	13
3.2	Test points in the Experimental channel	15
3.3	Experimental channel	15
3.4	Experimental Channel of AEC, Hydraulics Lab	16
3.5	Point Gauge with trolley	17
3.6	Acoustic Doppler Velocimeter (ADV)	18
3.7	Flow chart for Methodology adopted	19
4.1	Particle size distribution of bed material	21
4.2	Particle size distribution of sediment 1	23
4.3	Particle size distribution of sediment 2	25
4.4	Particle size distribution of sediment 3	27
4.5	Shear stress vs. normal stress graph for Sediment 1	32
4.6	Shear stress vs. normal stress graph for Sediment 2	33
4.7	Shear stress vs. normal stress graph for Sediment 3	34
4.8	Line diagram of channel grid	35
4.9	Typical layout of porcupine field	36
4.10	Porcupine layout in the channel	36
4.11	Layout of porcupine field for trial 1	38
4.12	Porcupine field for 1 st trial	39
4.13	Channel bed after experimental run for 1st trial	39
4.14	Layout of porcupine field for trial 2	40
4.15	Porcupine field for 2 nd trial	41
4.16	Channel bed after experimental run for 2 nd trial	41
4.17	Layout of porcupine field for trial 3	42
4.18	Porcupine field for 3 rd trial	43
4.19	Channel bed after experimental run for 3 rd trial	43
4.20	Layout of porcupine field for trial 4	44
4.21	Porcupine field for 4 th trial	45

No.

Caption

4.22	Channel bed after experimental run for 4 th trial	45
4.23	Layout of porcupine field for trial 5	46
4.24	Porcupine field for 5 th trial	47
4.25	Channel bed after experimental run for 5 th trial	47
4.26	Layout of porcupine field for trial 6	48
4.27	Porcupine field for 6 th trial	49
4.28	Channel bed after experimental run for 6 th trial	49
4.29	Layout of porcupine field for trial 7	50
4.30	Porcupine field for 7 th trial	51
4.31	Channel bed after experimental run for 7 th trial	51
4.32	Layout of porcupine field for trial 8	52
4.33	Porcupine field for 8 th trial	53
4.34	Channel bed after experimental run for 8 th trial	53
4.35	Layout of porcupine field for trial 9	54
4.36	Porcupine field for 9 th trial	55
4.37	Channel bed after experimental run for 9 th trial	55
4.38	Layout of porcupine field for trial 10	56
4.39	Porcupine field for 10 th trial	57
4.40	Channel bed after experimental run for 10 th trial	57
4.41	Layout of porcupine field for trial 11	58
4.42	Porcupine field for 11 th trial	59
4.43	Channel bed after experimental run for 11 th trial	59
4.44	Layout of porcupine field for trial 12	60
4.45	Porcupine field for 12 th trial	61
4.46	Channel bed after experimental run for 12 th trial	61
4.47	Layout of porcupine field for trial 13	62
4.48	Porcupine field for 13 th trial	63
4.49	Channel bed after experimental run for 13 th trial	63
4.50	Layout of porcupine field for trial 14	64
4.51	Porcupine field for 14 th trial	65
4.52	Channel bed after experimental run for 14 th trial	65
4.53	Layout of porcupine field for trial 15	66
4.54	Porcupine field for 15th trial	67

4.55	Channel bed after experimental run for 15 th trial	67
4.56	Layout of porcupine field for trial 16	68
4.57	Porcupine field for 16 th trial	69
4.58	Channel bed after experimental run for 16 th trial	69
4.59	Layout of porcupine field for trial 17	70
4.60	Porcupine field for 17 th trial	71
4.61	Channel bed after experimental run for 17 th trial	71
4.62	Layout of porcupine field for trial 18	72
4.63	Porcupine field for 18 th trial	73
4.64	Channel bed after experimental run for 18 th trial	73
4.65	Layout of porcupine field for trial 19	74
4.66	Porcupine field for 19 th trial	75
4.67	Channel bed after experimental run for 19 th trial	75
4.68	Layout of porcupine field for trial 20	76
4.69	Porcupine field for 20 th trial	77
4.70	Channel bed after experimental run for 20 th trial	77
5.1	Plot of Trap efficiency versus PFDI	140
5.2	PFDI versus Trap efficiency for $PFLF = 0.5$ and $PFLF = 0.33$, when 8 kg of sediment was injected	141
5.3	PFDI versus Trap efficiency for PFLF = 0.5 and PFLF = 0.33, when 5 kg sediment was injected PFDI versus Trap efficiency for PFLF = 0.5, when 5 kg and 8 kg of	142
5.4	sediment was injected	143
5.5	PFDI versus Trap efficiency for $PFLF = 0.33$, when 5 kg and 8 kg of sediment was injected	144
5.6	PVFI versus Trap efficiency for $q_s = 300 \text{ ppm}$	145
5.7	PVFI versus Trap efficiency for $q_s = 600 \text{ ppm}$	146
5.8	PFLF versus Trap efficiency for $PFDI = 1.4$	147
5.9	PFLF versus Trap efficiency for $PFDI = 0.9$	148
5.10	PFLF versus Trap efficiency for PFDI = 1.4 for different Sediment Sample	150
5.11	PFLF versus Trap efficiency for $PFDI = 0.9$ for different Sediment Sample	151

LIST OF TABLES

No.	Caption	Page
4.1	Test results of sieve analysis of bed material	20
4.2	Summary of particle size distribution of the river bed material	21
4.3	Test results of sieve analysis of sediment 1	22
4.4	Summary of particle size distribution of the sediment 1	23
4.5	Test results of sieve analysis of sediment 2	24
4.6	Summary of particle size distribution of the sediment 2	25
4.7	Test results of sieve analysis of sediment 3	26
4.8	Summary of particle size distribution of the sediment 3	27
4.9	Data and observation sheet for determination of specific gravity of sediment 1	28
4.10	Data and observation sheet for void ratio determination of sediment 1	28
4.11	Data and observation sheet for determination of specific gravity of sediment 2	29
4.12	Data and observation sheet for void ratio determination of sediment 2	29
4.13	Data and observation sheet for determination of specific gravity of sediment 3	30
4.14	Data and observation sheet for void ratio determination of sediment 3	30
4.15	Data and observation sheet for determination of specific gravity of bed material	31
4.16	Data and observation sheet for determination of specific gravity of bank material	31
4.17	Normal Stress and Shear Stress of Sediment 1	32
4.18	Normal Stress and Shear Stress of Sediment 2	33
4.19	Normal Stress and Shear Stress of Sediment 3	34
4.20	Range of dimensional parameters for the trial porcupine field models	37
4.21	Measurement of sediment deposition at 1st trial	38
4.22	Measurement of sediment deposition at 2 nd trial	40
4.23	Measurement of sediment deposition at 3 rd trial	42
4.24	Measurement of sediment deposition at 4 th trial	44
4.25	Measurement of sediment deposition at 5 th trial	46
4.26	Measurement of sediment deposition at 6 th trial	48
4.27	Measurement of sediment deposition at 7 th trial	50
4.28	Measurement of sediment deposition at 8 th trial	52

4.29	Measurement of sediment deposition at 9 th trial	54
4.30	Measurement of sediment deposition at 10 th trial	56
4.31	Measurement of sediment deposition at 11 th trial	58
4.32	Measurement of sediment deposition at 12 th trial	60
4.33	Measurement of sediment deposition at 13 th trial	62
4.34	Measurement of sediment deposition at 14 th trial	64
4.35	Measurement of sediment deposition at 15 th trial	66
4.36	Measurement of sediment deposition at 16 th trial	68
4.37	Measurement of sediment deposition at 17th trial	70
4.38	Measurement of sediment deposition at 18 th trial	72
4.39	Measurement of sediment deposition at 19th trial	74
4.40	Measurement of sediment deposition at 20 th trial	76
4.41	Estimation of sediment deposition in the porcupine field at section A for 1st trial	78
4.42	Estimation of sediment deposition in the porcupine field at section B for 1st trial	79
4.43	Estimation of sediment deposition in the porcupine field at section C for 1^{st} trial	80

No.	Caption	Page
4.44	Estimation of sediment deposition in the porcupine field at section A for 2nd trial	81
4.45	Estimation of sediment deposition in the porcupine field at section B for 2nd trial	82
4.46	Estimation of sediment deposition in the porcupine field at section C for 2nd trial	83
4.47	Estimation of sediment deposition in the porcupine field at section A for 3rd trial	84
4.48	Estimation of sediment deposition in the porcupine field at section B for 3rd trial	85
4.49	Estimation of sediment deposition in the porcupine field at section C for 3rd trial	86
4.50	Estimation of sediment deposition in the porcupine field at section A for 4th trial	87
4.51	Estimation of sediment deposition in the porcupine field at section B for 4th trial	88
4.52	Estimation of sediment deposition in the porcupine field at section C for 4th trial	89
4.53	Estimation of sediment deposition in the porcupine field at section A for 5th trial	90
4.54	Estimation of sediment deposition in the porcupine field at section B for 5th trial	91
4.55	Estimation of sediment deposition in the porcupine field at section C for 5th trial	92
4.56	Estimation of sediment deposition in the porcupine field at section A for 6th trial	93
4.57	Estimation of sediment deposition in the porcupine field at section B for 6th trial	94
4.58	Estimation of sediment deposition in the porcupine field at section C for 6th trial	95
4.59	Estimation of sediment deposition in the porcupine field at section A for 7th trial	96

No.	Caption	Page
4.60	Estimation of sediment deposition in the porcupine field at section B for 7th trial	97
4.61	Estimation of sediment deposition in the porcupine field at section C for 7th trial	98
4.62	Estimation of sediment deposition in the porcupine field at section A for 8th trial	99
4.63	Estimation of sediment deposition in the porcupine field at section B for 8th trial	100
4.64	Estimation of sediment deposition in the porcupine field at section C for 8th trial	101
4.65	Estimation of sediment deposition in the porcupine field at section A for 9th trial	102
4.66	Estimation of sediment deposition in the porcupine field at section B for 9th trial	103
4.67	Estimation of sediment deposition in the porcupine field at section C for 9th trial	104
4.68	Estimation of sediment deposition in the porcupine field at section A for 10th trial	105
4.69	Estimation of sediment deposition in the porcupine field at section B for 10th trial	106
4.70	Estimation of sediment deposition in the porcupine field at section C for 10th trial	107
4.71	Estimation of sediment deposition in the porcupine field at section A for 11th trial	108
4.72	Estimation of sediment deposition in the porcupine field at section B for 11th trial	109
4.73	Estimation of sediment deposition in the porcupine field at section C for 11th trial	110
4.74	Estimation of sediment deposition in the porcupine field at section A for 12th trial	111
4.75	Estimation of sediment deposition in the porcupine field at section B for 12th trial	112
	xiv	

4.76	Estimation of sediment deposition in the porcupine field at section C for 12th trial	113
4.77	Estimation of sediment deposition in the porcupine field at section A for 13th trial	114
4.78	Estimation of sediment deposition in the porcupine field at section B for 13th trial	115
4.79	Estimation of sediment deposition in the porcupine field at section C for 13th trial	116
4.80	Estimation of sediment deposition in the porcupine field at section A for 14th trial	117
4.81	Estimation of sediment deposition in the porcupine field at section B for 14th trial	118
4.82	Estimation of sediment deposition in the porcupine field at section C for 14th trial	119
4.83	Estimation of sediment deposition in the porcupine field at section A for 15th trial	120
4.84	Estimation of sediment deposition in the porcupine field at section B for 15th trial	121
4.85	Estimation of sediment deposition in the porcupine field at section C for 15th trial	122
4.86	Estimation of sediment deposition in the porcupine field at section A for 16th trial	123
4.87	Estimation of sediment deposition in the porcupine field at section B for 16th trial	124
4.88	Estimation of sediment deposition in the porcupine field at section C for 16th trial	125
4.89	Estimation of sediment deposition in the porcupine field at section A for 17th trial	126
4.90	Estimation of sediment deposition in the porcupine field at section B for 17th trial	127

4.91	Estimation of sediment deposition in the porcupine field at section C for 17th trial	128
4.92	Estimation of sediment deposition in the porcupine field at section A for 18th trial	129
4.93	Estimation of sediment deposition in the porcupine field at section B for 18th trial	130
4.94	Estimation of sediment deposition in the porcupine field at section C for 18th trial	131
4.95	Estimation of sediment deposition in the porcupine field at section A for 19th trial	132
4.96	Estimation of sediment deposition in the porcupine field at section B for 19th trial	133
4.97	Estimation of sediment deposition in the porcupine field at section C for 19th trial	134
4.98	Estimation of sediment deposition in the porcupine field at section A for 20th trial	135
4.99	Estimation of sediment deposition in the porcupine field at section B for 20th trial	136
4.100	Estimation of sediment deposition in the porcupine field at section C for 20th trial	137
5.1	Velocity Index calculation	138
5.2	Trap Efficiency calculation	139
5.3	PFDI versus Trap efficiency for $q_s = 300$ ppm and $q_s = 600$ ppm	140
5.4	PFDI versus Trap efficiency for $PFLF = 0.5$ and $PFLF = 0.33$, when 8 kg of sediment was injected	141
5.5	PFDI versus Trap efficiency for $PFLF = 0.5$ and $PFLF = 0.33$, when 5 kg of sediment was injected	142
5.6	PFDI versus Trap efficiency for $PFLF = 0.5$, when 5 kg and 8 kg of sediment was injected	143

No.	Caption	Page
5.7	PFDI versus Trap efficiency for $PFLF = 0.33$, when 5 kg and 8 kg of sediment was injected	144
5.8	PVFI versus Trap efficiency for $q_s = 300 \text{ ppm}$	145
5.9	PVFI versus Trap efficiency for $q_s = 600 \text{ ppm}$	146
5.10	PFLF versus Trap efficiency for $PFDI = 1.4$	147
5.11	PFLF versus Trap efficiency for $PFDI = 0.9$	148
5.12	Trap efficiency calculation	149
5.13	PFLF versus Trap efficiency for PFDI = 1.4 for different Sediment Sample	150
5.14	PFLF versus Trap efficiency for $PFDI = 0.9$ for different Sediment Sample	151

ABSTRACT

Flooding is a major natural disaster that can cause significant damage to both land and property. One of the most significant problems that occur during floods is the scouring of the river bed and bank, which can lead to a change in the course of the river. To mitigate this problem, a preventive measure called Porcupine has been developed.

Porcupine is a sediment trap system that captures the sediment in the river, thereby controlling scouring. The system has been deployed in large Indian rivers such as the Ganga, Brahmaputra, and Kosi as a cost-effective measure for river training, and has been found to produce positive results in capturing sediment.

In this thesis, an in-depth study of the sediment trap efficiency of porcupine systems was conducted using laboratory experiments. Using various dimensional parameters, trial porcupine field models were prepared and laid on the channel with the simulated river bed. The research aimed to investigate the sediment deposition pattern for various configurations of porcupine systems, with specific focus on discharge and sediment concentration of the river.

The research findings provide valuable insights into the sediment trap efficiency of porcupine systems and can be used to improve the design and implementation of sediment trap systems in rivers. This can ultimately aid in reducing the impact of floods and protect both land and property.

Chapter 1

INTRODUCTION

1.1 General

Rivers with a meandering nature are prone to severe erosion, which can lead to a catastrophic and uncontrollable situation if not properly addressed. This is particularly problematic during the monsoon season, when river erosion accelerates and access to materials and labour becomes limited. To prevent this, it is crucial to take a proactive approach by studying the river's pattern and implementing timely river training measures. These measures can include re-vegetation to reduce flow speed and strategic bank or channel works to stabilize the river channel and protect its banks. By effectively training the river, excessive meandering can be prevented, shifting in its course can be minimized, and navigability can be maintained. Ultimately, the key to successfully combating scour is to act preventatively and make use of effective strategies that address the specific needs of the river.

Protection to the river banks is normally accomplished by a variety of river training works including a marginal embankment or levees, guide banks, guide bunds, groynes or spurs, submerged vanes, cut offs, pitching of banks, pitched islands, sills, closing dykes, and longitudinal dykes. Some of these measures are less expensive than others. Considerations in their use, besides effectiveness, include the cost of construction, environmental impact and aesthetics. Permeable structures tend to be the least expensive to construct. The increasing demand of bank protection work in many reaches of rivers has focused attention on an imperative need to develop cost-effective river training measures. Therefore, application of framed structures has gained importance as a cost effective measure for river management. Bandalling, board fencing, jack-jetty systems and tetrahedral frames are some of these cost-effective methods used for river training.

1.2 Open Channel Flow (OCF)

An open channel is a passage through which liquid flows with a free surface exposed to the atmosphere. This type of flow, known as open channel flow or free surface flow, is driven by the component of gravity and is characterized by a hydrostatic pressure distribution. The free surface of the flow is the boundary between the liquid and the air, which can be either stationary or moving. The pressure within the liquid is always hydrostatic, meaning that it is constant throughout the fluid and is determined by the fluid's density and the force of gravity. An example of open channel flow is depicted in Figure 1.1. This type of flow is essential in many natural and man-made systems, such as rivers, canals, and irrigation channels.

Figure 1.1: Open channel flow.

1.3 Mechanism of Sediment Transport in Open Channel Flow

Rivers transport sediments in various modes, such as bed load, suspended load, and wash or dissolved load. Bed load sediments move close to the riverbed through rolling, sliding, and hopping, while suspended load sediments move at a large fraction of the mean flow velocity in the stream. Dissolved load, on the other hand, is carried within the water column. The amount of sediments entering the channel greatly influences the channel flow, cross-section and regime. The traditional channel design theory ignored the significance of sediment transport, but it is now acknowledged that a comprehensive study of sediment transport is crucial for successful channel design. Different types of sediment flowing in a channel (figure 1.2) are broadly discussed below.

- 1. **BED LOAD-** Bed load is the sediment transported along the riverbed by sliding, rolling, and saltation. It typically makes up 5-20% of total sediment transport and consists of heavy particles such as sand, pebbles, gravels, and cobbles. Saltation is one method of bed load transport in which current lifts sediment from the bed and carries it a certain distance before it falls back to rest. This process can create a chain reaction as particles are lifted and moved, resulting in the exchange of places among similar particles on a non-moving bed.
- 2. **SUSPENDED LOAD-** Suspended load is the sediment carried by the flow in suspension, supported by the surrounding fluid, and consisting mostly of smaller particles like clay, silt, and fine sands. It settles when flow velocity decreases. It is kept in suspension by the upward motion due to the turbulence exchange which continuously exchanges fluid over a certain distance between horizontal layers, creating a balance between the settling of sediment and rising fluid from lower layers of higher concentration. Suspended load exerts additional hydrostatic pressure on the riverbed.
- 3. **DISSOLVED LOAD-** Dissolved load refers to the particles that are carried in solution by the stream flow. It is a much smaller component of the total sediment transport than suspended and bed load. The dissolved load consists of particles that are soluble in water and can be derived from the dissolution of rocks in the channel, as well as from tributaries entering the stream.

Fig. 1.2: Sediment transport process

1.4 Incipient Motion Condition

The condition of incipient motion of sediment particles refers to the point at which individual particles of a given material begin to move within a fluid flow in an open channel. Determining the exact hydraulic conditions at which this occurs can be challenging, as different criteria can be used to define the point of incipient motion. For example, it could be defined as the point when a single particle starts moving, a few particles start moving, general motion occurs on the bed, or when the rate of sediment transport approaches zero. Despite the difficulty in defining this condition, it is important to understand, as it can have significant implications for the stability of the channel and the behaviour of the sediment particles within the flow.

1.5 Brief Introduction to Related Terminology

1.5.1 Erosion

Erosion is the process by which soil, rock, or dissolved material is removed from one location on Earth's crust and transported to another location by the actions of surface processes such as water flow or wind. This process can be further divided into physical or mechanical erosion, in which rock or soil is broken down into elastic sediment, and chemical erosion, where soil or rock is dissolved into a solvent and then transported away. The transported material can range from a few millimeters to thousands of kilometers away.

River Erosion is that in which the river erodes away the bed and banks of its channel vertically and laterally. Vertical erosion is the downward erosion which deepens the river channel. Lateral erosion is sideward erosion which widens the river channel. There are four ways in how the river erode the bed and the bank (EROSIONAL PROCESS)-

- (i) **Hydraulic Action-** The force of river flow helps to break the rock and dragging them away from the bed and the banks of the river.
- (ii) **Abrasion-** The grinding of the rock fragments carried by the river against the banks and bed of the channel. This grinding action will widen and deepen the channel.
- (iii) **Attrition-** The knocking of rock fragments in the water against each other. The fragments are broken into smaller and become smoother pebbles.
- (iv) **Corrosion-** The process in which the water reacts chemically with soluble minerals in the rocks and dissolves them.

1.5.2 Alluvial River

An alluvial river is a type of river characterized by its mobile bed and banks made of sediment and/or soil. These rivers are shaped by the nature and frequency of floods they experience, which shape the channel through erosion, Deposition and sediment transportation. As such, alluvial rivers can take various forms depending on factors such as the properties of the banks, flow patterns, riparian ecology and sediment characteristics.

1.5.3 Properties of Alluvial Rivers.

- 1. Alluvial channels are characterized by their tendency to follow the path of least resistance, resulting in meandering and winding flow patterns.
- 2. These channels are dynamic, as the loose sedimentary materials can be transported and deposited by water flow, leading to changes in the channel shape and course over time through erosion and sedimentation.

1.6 Porcupine as River Training Work

Protection of river banks is a part and parcel of river training works. Permeable structures in the form of RCC porcupine screens/spurs/dampeners are a cost-effective alternative to the impermeable bank protection works for the rivers carrying considerable amount of silt. RCC porcupine is a prismatic type permeable structure, comprises of six members of made of RCC, which are joined with the help of iron nuts and bolts.

Functions: Permeable structures in form of RCC porcupines serve one or more of the following functions:

(a) Training the river along the desired course.

(b) Reducing the intensity of flow at the point of river attack.

(c) Creating a slack flow to induce siltation in the vicinity of the permeable structures and in the downstream reach.

(d) Providing protection to the bank by dampening the velocity of flow along the bank.

Use of porcupines: Subject only to silt availability in the flow, porcupines:

- (a) Can make the river deposit its silt in and around the porcupine.
- (b) Can slow down the velocity of flow of the river.
- (c) Can stop riverbank erosion.
- (d) Can reclaim land i.e., build up scoured or a low area to utilizable level.
- (e) Can stop bed scour.
- (f) Can maintain bed level.

(g) In case there is no silt in a river (or in lean season), and silt is artificially placed inside porcupines influence zone, the silt will get retained instead of getting washed out.

1.6.1 Porcupine Systems

RCC porcupine is a permeable structure, consisting of six prismatic members made of reinforced cement concrete (RCC), which are joined together with the help of iron nuts and bolts. Figure 1.3 illustrates a 3D sketch of a typical RCC porcupine. The length of each member ranges from 2 to 3 meters, with a cross-section of 15cm x 15cm. Reinforcement is provided using 4 numbers of 6mm diameter MS bars, with stirrups placed at 15cm intervals. These porcupines can be placed both along and across the flow to create gradual obstruction, reducing velocity locally and promoting sedimentation. Figure 1.5 depicts a typical RCC porcupine screen. RCC porcupines are a cost-effective measure to control erosion and facilitate channelization in rivers.

Figure 1.3: Three dimensional sketch of a typical RCC Porcupine unit (Source: Aamir and Sharma, 2014)

Figure 1.4: RCC porcupine (Source: http://sgov.stlindia.com/website/brahmaputraboard/)

Figure 1.5: RCC porcupine

(Source: http://sgov.stlindia.com/website/brahmaputraboard/)

1.7 Objective

- 1. To investigate the impact of different porcupine field configurations on sediment deposition
- 2. To evaluate the effectiveness of various porcupine field models in terms of their sediment trapping efficiency.
- 3. To make critical comparisons between the performances of the different models, which will be defined using specific dimensionless parameters and different sediments.

1.8 Chapter Wise Planning

- 1. Chapter 1: general introduction of the report, related terminology that supports the research is stated and the objectives are clearly presented.
- 2. Chapter 2: literature review, where some past works done in the same field are discussed very briefly.
- 3. Chapter 3: Details about the Materials used.
- 4. Chapter 4: Detailed description of the Experimental Works.
- 5. Chapter 5: Results and Discussions.
- 6. Chapter 6: Conclusions And Further Scope of the Study

Chapter 2

LITERATURE REVIEW

In recent years, there has been a significant amount of research and investigation on measures to combat siltation and erosion in alluvial rivers such as Ganga, Brahmaputra in India and Jamuna in Bangladesh, using various techniques such as RCC porcupines (both triangular and prismatic), RCC Jack Jetty, submerged vanes, geo bags, and revetments. A comprehensive review of the literature on open channel flow, incipient motion condition, sediment trap efficiency of porcupines, development of a rational design methodology, cost-effective river training structures, and protection of the Majuli island from flood and river bank erosion has been conducted and will be presented in the following paragraphs.

2.1 General

Garde and Rangaraju (1977) comprehensively compiled and synthesized the extensive information on sediment transport and alluvial stream-related issues found in various research publications, journals and monographs. The book covers a wide range of topics related to sediment transport, including the properties of sediments, incipient motion conditions, flow regimes, resistance to flow, bed load transport, suspended load transport, and total load transport. Additionally, it delves into applied problems such as sediment sampling and samplers, stable channels, variations in stream bed elevation and plan forms, sediment control, river training, and other miscellaneous issues such as model studies, mud flows, density currents and sediment transport through pipes.

Rijn (1984) proposed a method for calculating the suspended load in alluvial rivers by integrating the product of local concentration and flow velocity over the depth of the water column. This method is based on determining the reference concentration from bed-load transport measurements, and uses concentration profiles for calibration. Rijn also introduced new relationships to account for the size gradation of bed materials and the effect of sediment particles on turbulence. The method was verified using 800 data sets, with 76% of the predicted values falling within a range of 0.5 to 2 times the measured values.

Nicholas (2003) in a study conducted by Nicholas, the potential for understanding the mechanisms of flow and suspended sediment transport on lowland flood plains was explored by using a combination of three-dimensional numerical modelling and acoustic DopplerVelocimeter. The study found that, contrary to the commonly held belief that suspended sedimenttransport is primarily driven by turbulent mixing processes, a significant portion of the sedimentmovement is caused by advection along topographically determined flow lines. The research alsoshowed that vegetative roughness has a significant impact on flow velocity and turbulent kineticenergy, resulting in profiles that differ from the logarithmic "law of the wall." Furthermore, the study revealed that while horizontal sediment transport is primarily driven by advection, the

Vertical sediment concentration profile in the lower half of the flow is strongly influenced by a balance between turbulent ejection and sweep events.

Singh and Goswami (2012) conducted a study that investigated the impacts of human activities on the flow and sediment regime as well as on the biogeochemical flux of nutrients in the Brahmaputra River Basin. The study found that human activities, such as land-use change and development practices, have a significant impact on the erosion and sediment discharge of the river, and pose a potential threat to the biogeochemical fluxes of nutrients. Additionally, demographic and socio-economic factors were found to play a role in these impacts, and the study suggests that if current practices continue, these activities will have a significant impact on the biogeochemical cycles and emissions of key elements in the basin. Furthermore, the study noted that the ecosystems in the Brahmaputra River Basin are largely shaped by the monsoon climate, and the adverse changes in the local ecological climate are likely linked to ongoing deforestation and increasing land denudation.

2.2 Porcupine

Brahmaputra Board, Guwahati (2012) -The Brahmaputra Board, based in Guwahati, conducted a study in 2012 that revealed the detrimental impact of erosion on Majuli Island due to the powerful Brahmaputra River. To address this issue, the Board developed a scheme in November 1999 for the protection of the island from floods and erosion, with an estimated cost of 86.56 crores. The scheme was executed in three phases, with Phase 1 starting in March 2005 and being completed in April 2011. Phases 2 and 3 were ongoing as of 2012.

During Phase 1, the use of permeable RCC porcupine screens, spurs, and dampeners were implemented at various locations, leading to a substantial arrest of erosion in affected areas. In Phases 2 and 3, the casting and laying of 1,27,396 porcupines encouraged heavy siltation, resulting in an increase in the island's area from 502.21 sq. km (2004) to 520.21 sq. km (2011). Additionally, the remaining protection works, including the completion of 5 spurs, river bank revetment, and the laying of porcupines at vulnerable locations, were targeted for completion by March 2014. Overall, the efforts of the Brahmaputra Board have proven to be successful in protecting and preserving the landmass of Majuli Island.

Aamir and Sharma (2014) conducted a study on the effectiveness of porcupine systems as a cost-effective measure for river training. The study was conducted in the Outdoor River Engineering laboratory of the Department of Water Resources Development and Management at IIT Roorkee, near the Toda Kalyanpur village.

The research results showed that porcupine systems have a good ability in capturing sediment, with graphs indicating that trap efficiency is inversely proportional to submergence, and directly proportional to sediment concentration when keeping the

Porcupine Field Density Index (PDFI) and Porcupine Field Submergence Index (PFSI) fixed. The results also demonstrated that densely configured porcupines have greater efficiency in capturing sediment, but a compromise between density and cost-effectiveness has to be made. The study also highlights that porcupine systems are very effective in low submergence and high sediment concentration scenarios.

Aamir and Sharma (2015) conducted a study to compare the performance of triangular and prismatic porcupines for erosion control. The experiments were carried out in the Outdoor River Engineering laboratory of the Department of Water Resources Development and Management at IIT Roorkee, near the Toda Kalyanpur village.

The results of the study showed that, for a given sediment concentration, the trap efficiency of triangular porcupines was higher than that of prismatic porcupines. The research was supported by the graphs, which plotted the relationship between trap efficiency and the Porcupine Field Density Index (PDFI) and Porcupine Field Submergence Index (PFSI). These graphs indicated that trap efficiency is inversely proportional to submergence and directly proportional to sediment concentration. The results were compared between triangular and prismatic porcupines. The study concluded that triangular porcupines have a better performance in capturing sediment as compared to prismatic porcupines. However, it is worth noting that the use of prismatic porcupines may be more economically advantageous and can be safer for trimmed bank slopes of rivers.

Aamir and Sharma (2015) logically studied the pattern of deposition caused by various configurations of porcupine field layout and hence to propose a preliminary design methodology. The experiments for their study were carried out in the Outdoor River Engineering laboratory of the Department WRD&M, IIT Roorkee, situated near the Toda Kalyanpur village, Roorkee in two phases. In phase 1, the effect of porcupines on the fluvial parameters was studied. In phase 2, the effect of various layout combinations of porcupines on the sediment laden flow of water was investigated to come up with the optimum layout combination of porcupine field to meet with the required objective of erosion control, moderate reclaim or high reclaim. Results showed that a second tier of porcupines can be placed over the outer to improve their performance in the cases of high submergence. Preliminary design template is developed which can provide the designer with the range of values of PDFI for different sediment concentration and PFSI, to achieve the desired objective of erosion control, moderate reclaim and heavy reclaim in the reach.

Kalita (2017) made critical comparisons between the performances of various models of vegetation fields (defined on the basis of some dimensionless parameters), in terms of their sediment trapping efficiency and finally compared the results with the trap efficiency of

porcupine model. Results showed that sediment trap efficiency depends on the quantity of sediment that is laden in the flow, i.e., more the sediment inflow with the Clear water, more will be its trapping efficiency. Trap efficiency also depends on the type of vegetation used as the model and its dimensional characteristics. As a whole, aquatic vegetation traps more sediment than riparian vegetation. Trap efficiency also depends on the surface spread of the vegetation i.e.; more the vegetation coverage area at surface (both laterally and linearly), more is its sediment trapping efficiency. The reason behind the observation of model fields of vegetation acting solo, exhibiting more trap efficiency as compared to its performance in association with a porcupine field model; may be attributed to two facts. First, the channel bed might get scoured in presence of vegetation model trapped inside porcupine member model; as the arrangement adopted in the present study. Secondly, the pattern of laying of the vegetation field models in conjunction with the porcupine field model in the present study; might not be proper and practical and will need further exploration. It has also been found that sediment trap efficiency also depends on root diameter. Bushier root system traps more sediment than that of less bushy root system.

Sinha (2017) made critical comparisons between the performance of various models of porcupine fields (defined on the basis of some dimensionless parameters), in terms of their sediment trapping efficiency. Results showed that that more the transverse extend of the porcupine field for a given spacing between successive retards, more will be its sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency of porcupine fields with increasing density of retards (represented by the ratio PFDI) gets more and more enhanced as the porcupine field gets longitudinally expanded. More the ratio between the lateral and linear extends of the porcupine field; more is its sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency. For a given value of length of single compartment, the increase of sediment trapping efficiency of porcupine fields with increasing ratio of its lateral to linear spread (represented by the ratio PCDI) gets more and more enhanced as the porcupine field gets longitudinally expanded.

3.1 Materials Description

3.1.1 Model

- The porcupine models used in this study were created by scaling down to match the dimensions of the laboratory channel.
- The models were constructed using MS Rods, which were 10mm in thickness and 20.32cm in length, and were welded together.
- An additional 4cm length was added to each member of the model to allow for embedding them into the simulated riverbed in the experimental channel.
- Figure 3.4 provides visual representation of such typical models. These models were used as a representation of the actual size porcupines to study their performance in the laboratory setting, providing a cost-effective and efficient method to study the efficacy of porcupine systems in controlling erosion and facilitating channelization in rivers.

Fig. 3.1: Model of porcupine made of MS Rod

3.1.2 Bed Material

- The laboratory channel used in this study was filled with bed materials collected from the river Brahmaputra, specifically from the Pandu Port of Maligaon, Guwahati, Assam.
- The bed materials were collected, air-dried and then evaluated for particle size distribution, in order to determine the relative percentages of fine and medium-grained sand, as well as fines present in the sample.
- Specific gravity of the sample was determined by using a pycnometer.
- To replicate the natural conditions of the river bed, the simulated river bed in the laboratory channel, which had a depth of 0.49 meters, was prepared by maintaining the same relative percentages of fine and medium sand that were present in the actual river bed material sample collected from the site. This ensured that the laboratory channel closely mimicked the real-world conditions, providing a more accurate representation of the porcupine system's performance in controlling erosion and facilitating channelization in rivers.

3.1.3 Bank Material

- The laboratory channel used in this study was lined with bank materials collected from the river Brahmaputra, specifically from the Pandu Port of Maligaon, Guwahati, Assam.
- This information was used to replicate the natural conditions of the river bank, in order to provide an accurate representation of the performance of various erosion control measures and bank stabilization techniques in the laboratory setting.

3.2 Experimental Channel Description

- All the experiments for this study were conducted in the Hydraulics Laboratory Channel of Assam Engineering College in Guwahati (Figure 3.4).
- The channel measures 35 meters in length, 1.8 meters in width and 1.275 meters in depth, with a 0.49 meter thickness of sand bed.

Fig. 3.2: Test points in the experimental channel

Fig.3.3: Experimental channel

- The water flow in the channel was maintained by utilizing two pumps of 5 HP and 10 HP.
- Water from the pumps was collected in a tank, passed through a combined arrangement of energy dissipater and wire mesh screens to reduce turbulence, and then fed into the channel through an inlet.
- The water at the outlet was collected in a rectangular tank and the flow rate into the channel was controlled using a discharge valve at the inlet.
- The slope of the channel bed was taken 1:250 and the slope of the bank was taken as1.5H:1V. This setup provided a controlled environment to study the performance of the erosion control measures and bank stabilization techniques in the laboratory setting.

(a)

(b)

Figure 3.4: Experimental Channel of AEC, Hydraulics Lab

3.3 Experimental Procedure

- The experiments were conducted in the Hydraulics Laboratory Channel of Assam Engineering College in Guwahati (Figure 3.4a and 3.4b). The channel was first levelled and the flow was gradually introduced into it by releasing the discharge valve slowly until reaching the point at which the bed materials just tend to lift, representing incipient motion condition. The valve was then readjusted back a little to maintain a flow velocity less than the critical velocity.
- A clear water run was continued for 45 minutes before starting the experimentation with the porcupine field models. The rectangular weir was then removed to allow the water to drain out gradually from the channel without disturbing the sand bed. The position of the discharge valve was fixed and kept constant for the rest of the experiments. Sand bed levels were measured with the help of point gauge (Figure 3.7).
- After placing the first trial model of the porcupine field, the sediment bed of the channel was again levelled around the field and the flow was introduced. A fixed quantity of sediment was injected into the channel 2 meters upstream of the porcupine field for 2 hours(For 1st Ten trial) and 3 hours(For next 10 trial). The motor was then shut down and the rectangular weir removed to allow the water to drain out gradually from the channel. After the water had completely drained, the sand bed levels were again measured with the help of point gauge.
- The same procedure was followed for the rest of the model porcupine fields studied in this work. All the experiments were performed with sediments having specific gravity of 2.57(Sediment 1),2.59(Sediment 2) and 2.61(Sediment 3) and porosity of 34%(Sediment 1),34%(Sediment 2) and 35%(Sediment 3) and bed material having, specific gravity of 2.62.

Figure 3.5: Point Gauge with trolley

3.3.1 Measurement of Velocity

The Acoustic Doppler Velocimeter (ADV) was utilized to accurately measure the velocity of water flow. The Vectrino Velocimeter, a device that utilizes the Doppler Effect, was employed in the ADV. The device emits a short pulse of sound, captures the echo, and then calculates the change in pitch or frequency of the echo to determine the water speed. The Vectrino Velocimeter measures the velocity of water flow in three beam components, parallel to its three beams. The data is reported in both Beam and XYZ coordinate systems. The XYZ coordinates are relative to the probe and are not dependent on the orientation of the Vectrino. In the XYZ coordinate system, a positive velocity in the X-direction is indicated by the arrow on the X-axis. To ensure the accuracy of the measurements, velocity was recorded at three distinct points along the flow path - upstream, midstream, and downstream - for each trial.

Figure 3.6: Acoustic Doppler Velocimeter (ADV)
3.4 METHODOLOGY ADOPTED

3.4.1 The scheme of the experiment has been described in fig 3.7 below. Phase 1 experiments were conducted for a single sediment size, whereas phase 2 was conducted by using 3 different sediment sizes.

Phase 1 (Sediment Size Fixed)

Phase 2 (porcupine inclination perpendicular to the bank)

Chapter 4

EXPERIMETAL WORK

4.1 Sieve Analysis of Bed Material

The particle size distribution of the bed material was determined as per IS 2720: (Part 4)-1985 using dry sieve analysis.

Sl.	IS Sieve size	Weight retained	% weight	Cumulative %	% passing
No.	In mm	in gin	retained	Weight retained	
1	10	0	0	0	100
2	4.75	5	1	1	99
3	2.36	7	1.4	2.4	97.6
4	1.18	23	4.6	7	93
5	0.60	265	53	60	40
6	0.30	160	32	92	8
7	0.15	33	6.6	98.6	1.4
8	0.075	5	1	99.6	0.4
9	pan	2	0.4	100	0

 Table 4.1: Test results of sieve analysis of bed material

Fineness Modulus $= \frac{360.6}{100} = 3.61$

The particle size distribution graph is shown in figure 4.1.

EXPERIMENTAL WORK

Figure 4.1: Particle size distribution of bed material

From the sieve analysis data, following results were obtained. From the above graph of percentage finer and particle size, the values of D10, D30, D50, D60, Cu and Cc were determined.

Uniformity Coefficient, $Cu = D_{60} / D_{10}$

Coefficient of Curvature, $Cc = (D30)^2 / D60 \times D10$

Table 4.2: Summary of particle size distribution of the river bed material

Properties	Value
D ₁₀	0.32 mm
D ₃₀	0.51 mm
D ₆₀	0.77 mm
Uniformity coefficient, C _u	2.4
Coefficient of Curvature, Cc	1.05
Classification (IS)	Poorly graded sand

4.2 Sieve Analysis of Sediment

Table 4.3: Test results of sieve analysis of Sediment 1

Sl. No.	IS Sieve size In mm	Weight retained in gm	% Weight retained	Cumulative % Weight retained	% Passing
1	10	0	0	0	100
2	4.75	3	0.6	0.6	99.4
3	2.36	2	0.4	1	99
4	1.18	1	0.2	1.2	98.8
5	0.6	0	0	1.2	98.8
6	0.3	7	1.4	2.6	97.4
7	0.15	345	69	71.6	28.4
8	0.075	115	23	94.6	5.4
9	pan	27	5.4	100	0

Fineness Modulus $=\frac{172.8}{100} = 1.728$

From the sieve analysis data, following results were obtained. From the graph of percentage finer and particle size, the values of D_{10} , D_{30} , D_{60} , Cu and Cc were determined.

The particle size distribution graph is shown in figure 4.2

Figure 4.2: Particle size distribution of sediment 1

Table 4.4: S	Summary of	particle size	distribution	of the	sediment 1
	2	1			

Properties	Value	
D ₁₀	0.088 mm	
D30	0.15 mm	
D ₆₀	0.2 mm	
Uniformity coefficient, Cu	2.27	
Coefficient of Curvature, C _c	1.27	
Classification (IS)	Poorly graded sand	

Sl No	IS Sieve size in mm	Weight Retained in gm	% Weight Retained	Cummulative % Weight Retained	% Passing
1	10	0	0.00	0.00	100.00
2	4.75	2	0.40	0.40	99.60
3	2.36	0	0.00	0.40	99.60
4	1.18	2	0.40	0.80	99.20
5	0.6	5	1.00	1.80	98.20
6	0.3	32	6.40	8.20	91.80
7	0.15	361	72.20	80.40	19.60
8	0.075	93	18.60	99.00	1.00
	Pan	5	1.00	100.00	0.00

 Table 4.5: Test results of sieve analysis of Sediment 2

Fineness Modulus $=\frac{191.00}{100} = 1.91$

From the sieve analysis data, following results were obtained. From the graph of percentage finer and particle size, the values of D_{10} , D_{30} , D_{60} , Cu and Cc were determined.

The particle size distribution graph is shown in figure 4.3

Figure 4.3: Particle size distribution of sediment 2

Table 4.6: Summary of particle size distribution of the sediment 2

Properties	Value
D ₁₀	0.13
D ₃₀	0.17
D ₆₀	0.21
Uniformity coefficient, C _u	1.62
Coefficient of Curvature, C _c	1.06
Classification (IS)	Poorly graded sand

Sl No	IS Sieve size in mm	Weight Retained in gm	% Weight Retained	Cummulative % Weight Retained	% Passing
1	10	0	0.00	0.00	100.00
2	4.75	2	0.40	0.40	99.60
3	2.36	1	0.20	0.60	99.40
4	1.18	3	0.60	1.20	98.80
5	0.6	13	2.60	3.80	96.20
6	0.3	54	10.80	14.60	85.40
7	0.15	317	63.40	78.00	22.00
8	0.075	98	19.60	97.60	2.40
	Pan	12	2.40	100.00	0.00

Table 4.7: Test results of sieve analysis of Sediment 3

Fineness Modulus $=\frac{196.20}{100} = 1.962$

From the sieve analysis data, following results were obtained. From the graph of percentage finer and particle size, the values of D_{10} , D_{30} , D_{60} , Cu and Cc were determined.

The particle size distribution graph is shown in figure 4.4

Figure 4.4: Particle size distribution of sediment 3

Properties	Value
D ₁₀	0.12
D ₃₀	0.18
D ₆₀	0.23
Uniformity coefficient, Cu	1.92
Coefficient of Curvature, C _c	1.97
Classification (IS)	Poorly graded sand

Table 4.8: Summary of particle size distribution of the sediment 3

4.3 Specific Gravity of Sediment 1

Determination of specific gravity using pycnometer

Table 4.9: Data and observation sheet for determination of specific gravity of sediment 1

Serial no.	Specific Gravity
1	2.56
2	2.58
3	2.59

Specific Gravity = 2.57

4.4 Porosity of Sediment 1

 Table 4.10: Data and observation sheet for void ratio determination of sediment 1

Serial No.	Void ratio
1	0.5
2	0.5
3	0.53

Average e = 0.51

Porosity, n = e/1 + e = 34%

4.5 Specific Gravity of Sediment 2

Determination of specific gravity using pycnometer

Table 4.11: Data and observation sheet for determination of specific gravity of sediment 2

Serial no.	Specific Gravity
1	2.56
2	2.62
3	2.60

Specific Gravity = 2.59

4.6 Porosity of Sediment 2

Table 4.12: Data and observation sheet for void ratio determination of sediment 2

Serial No.	Void ratio
1	0.51
2	0.53
3	0.53

Average e = 0.52

Porosity, n = e/1 + e = 34%

4.7 Specific Gravity of Sediment 3

Determination of specific gravity using pycnometer

Table 4.13: Data and observation sheet for determination of specific gravity of sediment 3

Serial no.	Specific Gravity
1	2.58
2	2.60
3	2.64

Specific Gravity = 2.61

4.8 Porosity of Sediment 3

 Table 4.14: Data and observation sheet for void ratio determination of sediment 3

Serial No.	Void ratio
1	0.54
2	0.53
3	0.53

Average e = 0.53

Porosity, $n = \frac{e}{1+e} = 35\%$

4.9 Specific Gravity of Bed Material

Determination of specific gravity using pycnometer

Table 4.15: Data and observation sheet for determination of specific gravity of bed material

Serial no.	Specific Gravity
1	2.56
2	2.63
3	2.69

Specific Gravity = 2.62

4.10 Specific Gravity of Bank Material

Specific Gravity (Pycnometer)

Table 4.16: Data and observation sheet for determination of specific gravity of bank material

Serial No.	Specific Gravity
1	2.5
2	2.5
3	3.33

Average
$$G = 2.78$$

4.11 DIRECT SHEAR TEST

The shear parameters of the river bed material were determined using direct shear test. The plot of maximum shear stress versus normal stress are shown in the figure below.

Table 4.17: Maximum shear stress corresponding to each normal stress

SF	וח	М	FI	ΝТ	1
JE	וט	111			т

Normal stress (kPa)	50	100	150
Maximum shear stress (kPa)	30	55	82

Intercept=4.33

Figure 4.5: Shear stress vs. normal stress graph

 $\Phi = 29^{o}$

 Table 4.18: Maximum shear stress corresponding to each normal stress

SEDIMENT 2

Normal stress (kPa)	50	100	150
Maximum shear stress (kPa)	29	57	82
``´´			

Slope= 0.53 Intercept=3.00

Figure 4.6: Shear stress vs. normal stress graph

 $\Phi = 28^{o}$

 Table 4.19: Maximum shear stress corresponding to each normal stress

SEDIMENT 3			
Normal stress (kPa)	50	100	150
Maximum shear stress (kPa)	32	59	87

Slope= 0.52 Intercept=3.67

Figure 4.7: Shear stress vs. normal stress graph

 $\Phi = 27^{o}$

4.12 Results of Experiments Done with Different Porcupine Layouts.

Using the dimensional parameters as listed in Table 4.9, trial porcupine field models were prepared and laid on the channel with the simulated river bed. Relevant observations were made to study the sediment deposition of these trial field models as per the methodology laid down and described in the third chapter of this report. Length of each porcupine field was started from a distance of 18 m from the upstream end of the simulated bed in the channel and the width started from the bank of the channel. After each experimental run, the bed profiles were measured in the form of 0.50 m x 0.50 m grid with point gauge along three imaginary lines (A, B & C) on the channel bed along the flow, as shown in figure 4.5. Figure 4.6 shows typical layout of porcupine field.

Figure 4.8: Line diagram of channel grid

4.13 Indices

Some indices were coined in this study in order to differentiate between various porcupine field models in their terms. These indices are defined as under:

A) Porcupine Field Density Index (PFDI) = Length of one retard / Spacing between the two retards = L_r/L_s

B) Porcupine Compartment Density Index (PCDI) = Length of retard / Total length of compartment = L_r/L_c

C) Porcupine Field Length Factor (PFLF) = Length of one compartment of porcupine field / Total length of compartments = L_s/L_c

D) PFVI (Porcupine Field Velocity Index) = (Upstream velocity – Mid velocity)/ (Mid velocity – Downstream velocity)

E) PFVI (Porcupine Field Velocity Index) = (Upstream velocity – Mid velocity)/ (Mid velocity – Downstream velocity)

Figure 4.9: Typical layout of porcupine field

(Source: Aamir and Sharma, 2014)

Fig.4.10:Porcupine layout in channel

Trial No.	Angle of porcupine placed	Sediment Sample	Length of Retards, L _r , in cm	Spacing of Retards, L _s , in cm	No. of compart ment	Weight of sand injected in kg	Length of compartm ent in cm	PFLF L _s / L _c	PCDI L _r / L _c	PFDI Lr / Ls
1	20 ⁰ u/s	Sediment 1	50	35	3	5	105	0.33	0.47	1.4
2	10º u/s	Sediment 1	50	35	3	8	105	0.33	0.47	1.4
3	20 ⁰ u/s	Sediment 1	50	35	2	5	70	0.5	0.7	1.4
4	10 ⁰ u/s	Sediment 1	50	35	2	8	70	0.5	0.7	1.4
5	20 ⁰ u/s	Sediment 1	50	55	3	5	165	0.33	0.3	0.9
6	10º u/s	Sediment 1	50	55	3	8	165	0.33	0.3	0.9
7	20 ⁰ u/s	Sediment 1	50	55	2	5	110	0.5	0.45	0.9
8	10 ⁰ u/s	Sediment 1	50	55	2	8	110	0.5	0.45	0.9
9	90^0 to the bank	Sediment 1	50	55	2	5	110	0.5	0.45	0.9
10	90° to the bank	Sediment 1	50	55	3	8	165	0.33	0.3	0.9
11	90^0 to the bank	Sediment 1	50	35	2	5	70	0.5	0.7	1.4
12	90° to the bank	Sediment 1	50	35	3	8	105	0.33	0.47	1.4
13	90^0 to the bank	Sediment 2	50	55	2	3	110	0.5	0.45	0.9
14	90° to the bank	Sediment 2	50	55	3	5	165	0.33	0.3	0.9
15	90° to the bank	Sediment 3	50	55	2	3	110	0.5	0.45	0.9
16	90° to the bank	Sediment 3	50	55	3	5	165	0.33	0.3	0.9
17	90° to the bank	Sediment 2	50	35	2	3	70	0.5	0.7	1.4
18	90° to the bank	Sediment 2	50	35	3	5	105	0.33	0.47	1.4
19	90^0 to the bank	Sediment 3	50	35	2	3	70	0.5	0.7	1.4
20	90^0 to the bank	Sediment 3	50	35	3	5	105	0.33	0.47	1.4

Table 4.20: Range of dimensional parameters for the trial porcupine field models

4.14 Estimation of Sediment Deposition

1. For 1^{st} trial of porcupine field model layout (figure 4.8), porcupines were placed 20^{0} inclined

towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$ Porcupine

Compartment Density Index (PCDI) = $L_r / L_c = 0.47$ Porcupine

Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg of sediment(sediment 1) was injected.

Ls 35; Lr 50; Lc 105, sediment									
Distance	Doin	t 001100 *0	odina	OKg Doint gou	100 roodin	a with	Unight	ofrinnla	of cond
along the	without porcupine field			ronn gai	upine field	g with d (m)	neigin	(m)	of sand
length of the	withou	(m)	ne neia	pore	upine new	u (III)		(III)	
channel (m)		(111)							
	A	В	C	А	В	C	Α	В	С
0	0.224	0.252	0.228	0.236	0.262	0.236	0.012	0.01	0.004
0.5	0.226	0.25	0.23	0.236	0.258	0.236	0.01	0.008	0.002
1	0.229	0.251	0.229	0.239	0.258	0.236	0.01	0.007	0.004
1.5	0.23	0.25	0.226	0.238	0.256	0.235	0.008	0.006	0.006
1.0	0.25	0.20	0.220	0.250	0.200	0.200	0.000		0.000
2	0.229	0.252	0.225	0.233	0.256	0.234	0.004	0.004	0.008
2.5	0.228	0.251	0.228	0.231	0.254	0.239	0.003	0.003	0.008
2.5	0.220	0.201	0.220	0.231	0.251	0.239	0.005	0.005	0.000
3	0.23	0.248	0.231	0.231	0.249	0.238	0.001	0.001	0.005
2.5	0.22	0.248	0.221	0.22	0.240	0.225	0	0.001	0.002
5.5	0.23	0.248	0.231	0.25	0.249	0.233	U	0.001	0.002
4	0.226	0.25	0.226	0.225	0.25	0.229	-0.001	0	0.001

Table 4.21: Measurement of sediment deposition at 1st trial

$$\frac{L_{s}=35 \text{ cm}}{\sqrt{2}}$$

Fig.4.11: Layout of porcupine field for trial 1

EXPERIMENTAL WORK

Figure 4.13: Channel bed after experimental run for 1ssttrial

2. For 2nd trial of porcupine field model layout (figure 4.11), porcupines are placed 10⁰ inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.47$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 8 kg of sediment(sediment 1) was injected.

Ls 35; Lr 50; Lc 105 sediment										
				8kg						
Distance	Point g	gauge	reading	Point gaug	Point gauge reading with			Height of ripple of sand		
along the	without	porcupine	e field	porcupine	field (m)		(m)			
length of the	(m)									
channel (m)										
	А	В	C	А	В	C	А	В	C	
0	0.236	0.248	0.24	0.25	0.259	0.247	0.014	0.011	0.007	
0.5	0.238	0.249	0.238	0.25	0.259	0.248	0.012	0.01	0.01	
1	0.237	0.25	0.237	0.248	0.256	0.248	0.011	0.006	0.011	
1.5	0.237	0.252	0.236	0.247	0.258	0.249	0.01	0.006	0.013	
2	0.239	0.25	0.236	0.245	0.254	0.251	0.006	0.004	0.015	
2.5	0.241	0.251	0.238	0.245	0.255	0.254	0.004	0.004	0.016	
3	0.24	0.251	0.24	0.242	0.254	0.254	0.002	0.003	0.014	
3.5	0.238	0.248	0.241	0.239	0.249	0.254	0.001	0.001	0.013	
4	0.238	0.249	0.237	0.237	0.249	0.247	-0.001	0	0.01	

Table 4.22: Measurement of sediment deposition at 2nd trial

Figure 4.14: Layout of porcupine field for trial 2

Figure 4.15: Porcupine field for 2nd trial

Figure 4.16: Channel bed after experimental run for 2nd trial

3. For 3rd trial of porcupine field model layout (figure 4.14), porcupines are placed 20⁰ inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.7$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 5 kg of sediment(sediment 1) was injected.

Table 4.23: Measurement of sediment deposition at 3rd trial

Ls 35; Lr 50; Lc 70 sediment 5kg										
Distance alongthe	Point	gauge re	eading	Point gau	ige read	ing with	Height of ripple of			
length of the	witho	out porc	upine	porcup	oine fiel	d (m)	sand (m)			
channel	t	field (m)							
(m)										
	А	В	С	А	В	С	А	В	С	
0	0.24	0.248	0.242	0.25	0.255	0.246	0.01	0.007	0.004	
0.5	0.239	0.25	0.243	0.248	0.257	0.248	0.009	0.007	0.005	
1	0.24	0.252	0.246	0.248	0.258	0.253	0.008	0.006	0.007	
1.5	0.24	0.249	0.242	0.247	0.254	0.249	0.007	0.005	0.007	
2	0.241	0.248	0.241	0.247	0.253	0.249	0.006	0.005	0.008	
2.5	0.238	0.253	0.242	0.241	0.256	0.251	0.003	0.003	0.009	
3	0.237	0.253	0.243	0.238	0.255	0.25	0.001	0.002	0.007	
3.5	0.239	0.252	0.243	0.239	0.253	0.247	0	0.001	0.004	
4	0.24	0.251	0.24	0.24	0.251	0.243	0	0	0.003	

Figure 4.17: Layout of porcupine field for trial 3

Figure 4.18: Porcupine field for 3rd trial

Figure 4.19: Channel bed after experimental run for 3rdtrial

4. For 4thtrial of porcupine field model layout (figure 4.17), porcupines are placed 10⁰ inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.7$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 8 kg of sediment(sediment 1) was injected.

Table 4.24: Measurement of sediment deposition at 4th trial

Ls 35; Lr 50; Lc 70 sediment 8kg											
Distance along	Point	gauge re	eading	Point gau	ge readi	ng with	Height of ripple of				
the length of the	with	out porce	upine	porcup	ine field	(m)	sand (m)				
channel (m)		field (m))								
	A	В	С	А	В	C	А	В	C		
0	0.242	0.251	0.239	0.258	0.261	0.244	0.016	0.01	0.005		
0.5	0.241	0.25	0.24	0.255	0.261	0.245	0.014	0.011	0.005		
1	0.242	0.251	0.238	0.255	0.259	0.245	0.013	0.008	0.007		
1.5	0.242	0.252	0.239	0.253	0.258	0.249	0.011	0.006	0.01		
2	0.24	0.249	0.241	0.25	0.255	0.252	0.01	0.006	0.011		
2.5	0.238	0.25	0.24	0.245	0.255	0.25	0.007	0.005	0.01		
3	0.237	0.252	0.239	0.242	0.255	0.247	0.005	0.003	0.008		
3.5	0.236	0.248	0.238	0.239	0.25	0.243	0.003	0.002	0.005		
4	0.235	0.249	0.237	0.237	0.25	0.241	0.002	0.001	0.004		

Figure 4.20: Layout of porcupine field for trial 4

Figure 4.21: Porcupine field for 4th trial

Figure 4.22: Channel bed after experimental run for 4thtrial

5. For 5th trial of porcupine field model layout (figure 4.20), porcupines are placed 20^0 inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.3$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg of sediment(sediment 1) was injected.

Table 4.25: Measurement of sediment deposition at 5th trial

Ls 55; Lr 50; Lc 165 sediment 5kg										
Distance along the length of	Point gauge reading			Point gauge reading with			Height of ripple ofsand			
the channel	withou	t porcup	inefield	porcupine field (m)			(m)			
(m)	(m)									
	А	В	C	А	В	C	А	В	C	
0	0.233	0.246	0.238	0.244	0.254	0.241	0.011	0.008	0.003	
0.5	0.236	0.247	0.235	0.245	0.254	0.236	0.009	0.007	0.001	
1	0.235	0.246	0.237	0.245	0.253	0.238	0.01	0.007	0.001	
1.5	0.232	0.246	0.236	0.239	0.25	0.24	0.007	0.004	0.004	
2	0.233	0.25	0.233	0.239	0.253	0.24	0.006	0.003	0.007	
2.5	0.234	0.251	0.234	0.238	0.254	0.242	0.004	0.003	0.008	
3	0.235	0.25	0.233	0.239	0.251	0.238	0.004	0.001	0.005	
3.5	0.232	0.258	0.234	0.233	0.258	0.236	0.001	0	0.002	
4	0.231	0.259	0.236	0.231	0.259	0.237	0	0	0.001	

Figure 4.23: Layout of porcupine field for trial 5

Figure 4.24: Porcupine field for 5th trial

Figure 4.25: Channel bed after experimental run for 5th trial

0.006

0.004

0.004

0.003

0.001

0

0.008

0.006 0.007

0.009

0.009

0.011

0.007

0.004

0.003

6. For 6th trial of porcupine field model layout (figure 4.23), porcupines are placed 10^0 inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.3$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

0.245

0.245

0.246

0.243

0.241

0.24

Here 8 kg of sediment(sediment 1) was injected.

1.5

2

2.5

3

3.5

4

Table 4.20: Measurement of	seunne	in depos	sition at	0 tilai					
	Ls	55; Lr :	50; Lc 1	65 sedime	nt 8kg				
Distance along the length	Point	gauge re	eading	Point g	auge rea	Height of ripple of			
of the channel	with	out porc	upine	with po	orcupine	sand (m)			
(m)	field (m)				(m)				
	A	В	C	А	В	C	А	В	C
0	0.241	0.246	0.245	0.256	0.257	0.253	0.015	0.011	0.00
0.5	0.243	0.247	0.244	0.259	0.257	0.25	0.016	0.01	0.00
1	0.244	0.246	0.245	0.259	0.254	0.252	0.015	0.008	0.00

0.24

0.239

0.239

0.24

0.242

0.241

0.245

0.243

0.245

0.246

0.249

0.248

0.259

0.259

0.256

0.249

0.245

0.242

0.246

0.243

0.243

0.243

0.243

0.241

0.254

0.252

0.256

0.253

0.253

0.251

0.014

0.014

0.01

0.006

0.004

0.002

Table 4 26. Measurement of sediment denosition at 6th trial

Figure 4.26: Layout of porcupine field for trial 6

Figure 4.27: Porcupine field for 6th trial

Figure 4.28: Channel bed after experimental run for 6thtrial

7. For 7th trial of porcupine field model layout (figure 4.26), porcupines are placed 20⁰ inclined towards upstream,following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.45$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 5 kg of sediment(sediment 1) was injected.

Table 4.27: Measurement of sediment deposition at 7th trial

Ls 55; Lr 50; Lc 110 sediment 5kg											
Distance along the	Point	gauge rea	ading	Point gau	ge readi	ng with	Height of ripple of sand				
length of thechannel (m)	without	porcupii	ne field	porcu	oine field	(m)	(m)				
		(m)									
	A	В	С	А	В	С	A	В	C		
0	0.243	0.251	0.241	0.253	0.259	0.245	0.01	0.008	0.004		
0.5	0.242	0.25	0.24	0.25	0.257	0.245	0.008	0.007	0.005		
1	0.244	0.252	0.24	0.254	0.258	0.246	0.01	0.006	0.006		
1.5	0.243	0.253	0.235	0.25	0.259	0.241	0.007	0.006	0.006		
2	0.243	0.252	0.241	0.251	0.255	0.248	0.008	0.003	0.007		
2.5	0.24	0.253	0.242	0.246	0.255	0.246	0.006	0.002	0.004		
3	0.241	0.253	0.243	0.245	0.255	0.246	0.004	0.002	0.003		
3.5	0.241	0.258	0.241	0.243	0.259	0.242	0.002	0.001	0.001		
4	0.24	0.257	0.241	0.241	0.257	0.242	0.001	0	0.001		

Figure 4.29: Layout of porcupine field for trial 7

Figure 4.30: Porcupine field for 7th trial

Figure 4.31: Channel bed after experimental run for 7thtrial

8. For 8th trial of porcupine field model layout (figure 4.29), porcupines are placed 10⁰ inclined towards upstream, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.45$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 8 kg of sediment(sediment 1) was injected

Table 4.28: Measurement of sediment deposition at 8th trial

Ls 55; Lr 50; Lc 110 sediment 8kg											
Distance along the	Point gauge reading			Point gaug	Point gauge reading with			Height of ripple of			
length of the	with	out porc	upine	porcup	ine field	(m)	sand (m)				
channel (m)		field (m)								
	A	В	C	A	В	C	А	В	C		
0	0.245	0.254	0.24	0.26	0.265	0.248	0.015	0.011	0.008		
0.5	0.244	0.253	0.239	0.257	0.263	0.246	0.013	0.01	0.007		
1	0.245	0.254	0.24	0.257	0.263	0.245	0.012	0.009	0.005		
1.5	0.245	0.255	0.24	0.256	0.262	0.247	0.011	0.007	0.007		
2	0.243	0.252	0.241	0.253	0.258	0.25	0.01	0.006	0.009		
2.5	0.241	0.251	0.238	0.249	0.255	0.248	0.008	0.004	0.01		
3	0.24	0.249	0.237	0.245	0.251	0.242	0.005	0.002	0.005		
3.5	0.239	0.248	0.239	0.242	0.25	0.243	0.003	0.002	0.004		
4	0.238	0.247	0.24	0.239	0.248	0.243	0.001	0.001	0.003		

Figure 4.32: Layout of porcupine field for trial 8

Figure 4.33: Porcupine field for 8th trial

Figure 4.34: Channel bed after experimental run for 8thtrial

9. For 9th trial of porcupine field model layout (figure 4.32), porcupines are placed perpendicular to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.45$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 5 kg of sediment(sediment 1) was injected.

Table 4.29: Measurement of sediment deposition at 9th trial

Ls 55; Lr 50; Lc 110 sediment 5kg											
Distance along the	Point	gauge re	eading	Point gau	ge readi	ng with	Height of ripple of				
length of the channel	with	out porc	upine	porcup	ine field	(m)	sand (m)				
(m)		field (m)								
	A	В	С	А	В	C	А	В	C		
0	0.239	0.245	0.239	0.252	0.257	0.241	0.013	0.012	0.002		
0.5	0.236	0.244	0.235	0.248	0.255	0.239	0.012	0.011	0.004		
1	0.235	0.246	0.237	0.246	0.256	0.242	0.011	0.01	0.005		
1.5	0.233	0.246	0.236	0.243	0.255	0.242	0.01	0.009	0.006		
2	0.233	0.248	0.235	0.241	0.254	0.242	0.008	0.006	0.007		
2.5	0.236	0.251	0.234	0.243	0.256	0.24	0.007	0.005	0.006		
3	0.235	0.25	0.233	0.238	0.254	0.238	0.003	0.004	0.005		
3.5	0.232	0.245	0.234	0.234	0.248	0.236	0.002	0.003	0.002		
4	0.231	0.246	0.231	0.231	0.247	0.233	0	0.001	0.002		

Figure 4.36: Porcupine field for 9th trial

Figure 4.37: Channel bed after experimental run for 9thtrial

10.For 10th trial of porcupine field model layout (figure 4.32), porcupines are placed perpendicularto

the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.3$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 8 kg of sediment(sediment 1) was injected.

Table 4.30: Measurement of sediment deposition at 10th trial

				ediment 5kg					
Distanc e along the length of the channel (m)	Point ga por	uge reading cupine field	g without (m)	Point ; por	gauge readi cupine field	ng with (m)	Height of ripple of sand (m)		
	A	В	С	А	В	C	А	В	C
0	0.243	0.247	0.243	0.259	0.262	0.244	0.016	0.015	0.001
0.5	0.242	0.245	0.244	0.257	0.26	0.246	0.015	0.015	0.002
1	0.244	0.246	0.245	0.256	0.26	0.249	0.012	0.014	0.004
1.5	0.243	0.241	0.242	0.254	0.253	0.248	0.011	0.012	0.006
2	0.243	0.239	0.243	0.252	0.249	0.251	0.009	0.01	0.008
2.5	0.24	0.238	0.245	0.246	0.247	0.251	0.006	0.009	0.006
3	0.241	0.24	0.246	0.245	0.245	0.249	0.004	0.005	0.003
3.5	0.241	0.239	0.246	0.242	0.242	0.248	0.001	0.003	0.002
4	0.24	0.237	0.245	0.241	0.239	0.246	0.001	0.002	0.001

Fig 4.38: Layout of porcupine field for trial 10

EXPERIMENTAL WORK

Figure 4.39: Porcupine field for 10th trial

Figure 4.40: Channel bed after experimental run for 10thtrial

11. For 11thtrial of porcupine field model layout (figure 4.17), porcupines are placed perpendicular

to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.7$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 5 kg of sediment(Sediment 1) was injected.

Table 4.31: Measurement of sediment deposition at 11th trial

			Ls	35; Lr 50	; Lc 70 sed	iment 5kg	g		
Distance along the length of the channel (m)	Point gau porc	uge reading supine field	g without l (m)	Point g porc	auge readi supine field	ng with l (m)	(m)		
	A	В	С	А	В	C	А	В	C
0	0.239	0.245	0.239	0.251	0.256	0.242	0.012	0.011	0.003
0.5	0.236	0.244	0.235	0.247	0.254	0.24	0.011	0.01	0.005
1	0.235	0.246	0.237	0.244	0.256	0.241	0.009	0.01	0.004
1.5	0.233	0.246	0.236	0.241	0.255	0.242	0.008	0.009	0.006
2	0.233	0.248	0.235	0.24	0.256	0.242	0.007	0.008	0.007
2.5	0.236	0.251	0.234	0.241	0.258	0.243	0.005	0.007	0.009
3	0.235	0.25	0.233	0.239	0.256	0.239	0.004	0.006	0.006
3.5	0.232	0.245	0.234	0.234	0.248	0.239	0.002	0.003	0.005
4	0.231	0.246	0.231	0.231	0.247	0.233	0	0.001	0.002

Fig 4.41: Layout of porcupine field for trial 11

Figure 4.42: Porcupine field for 11th trial

Figure 4.43: Channel bed after experimental run for 11thtrial

12. For 12thtrial of porcupine field model layout (figure 4.17), porcupines are placed perpendicular

to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.47$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 8 kg of sediment(Sediment 1) was injected.

Table 4.32: Measurement of sediment deposition at 12th trial

		Ls 35; Lr 50; Lc 105 sediment 8kg											
Distance along the length of the channel (m)	Point gat without ((m)	uge readir porcupine	ıg field	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)						
	Α	В	С	Α	В	С	А	В	С				
0	0.243	0.247	0.243	0.258	0.263	0.244	0.015	0.016	0.001				
0.5	0.242	0.245	0.244	0.255	0.26	0.245	0.013	0.015	0.001				
1	0.244	0.246	0.245	0.256	0.26	0.248	0.012	0.014	0.003				
1.5	0.243	0.241	0.242	0.254	0.253	0.247	0.011	0.012	0.005				
2	0.243	0.239	0.243	0.252	0.249	0.25	0.009	0.01	0.007				
2.5	0.24	0.238	0.245	0.246	0.246	0.25	0.006	0.008	0.005				
3	0.241	0.241 0.24 0.246			0.245	0.249	0.004	0.005	0.003				
3.5	0.241	0.241 0.239 0.246			0.242	0.248	0.001	0.003	0.002				
4	0.24	0.24 0.237 0.245			0.239	0.246	0.001	0.002	0.001				

Fig 4.44: Layout of porcupine field for trial 12

Figure 4.45: Porcupine field for 12th trial

Figure 4.46: Channel bed after experimental run for 12th trial

13. For 13th trial of porcupine field model layout (figure 4.20), porcupines are placed perpendicular

to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.45$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 3 kg of sediment(Sediment 2) was injected.

Table 4.33: Measurement of sediment deposition at 13th trial

			Ι	Ls 55; Lr 5	60; Lc 110	sediment	3kg		
Distance along the length of the channel (m)	Poin withou	t gauge re at porcupi (m)	ading ne field	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)		
	А	В	С	А	В	С	А	В	С
0	0.224	0.252	0.228	0.237	0.264	0.236	0.013	0.012	0.003
0.5	0.226	0.25	0.23	0.238	0.261	0.236	0.012	0.011	0.004
1	0.229	0.251	0.229	0.24	0.261	0.236	0.011	0.01	0.006
1.5	0.23	0.25	0.226	0.239	0.258	0.235	0.009	0.008	0.008
2	0.229	0.252	0.225	0.237	0.258	0.234	0.008	0.006	0.009
2.5	0.228	0.251	0.228	0.233	0.255	0.239	0.005	0.004	0.007
3	0.23	0.248	0.231	0.232	0.249	0.238	0.002	0.001	0.005
3.5	0.23	0.23 0.248 0.231			0.249	0.235	0	0.001	0.002
4	0.226	0.25	0.226	0.225	0.25	0.229	-0.001	0	0.001

Fig 4.47: Layout of porcupine field for trial 13

Figure 4.48: Porcupine field for 13th trial

Figure 4.49: Channel bed after experimental run for 13th trial

14. For 14th trial of porcupine field model layout (figure 4.20), porcupines are placed perpendicular

to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.3$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg of sediment(Sediment 2) was injected.

Table 4.34: Measurement of sediment deposition at 14th trial

				Ls 55; Lr	5 sediment	5kg			
Distance along the length of the channel (m)	Point gauge reading without porcupine field (m)			Point g porc	auge readi cupine field	ing with 1 (m)	Height of ripple of sand (m)		
	А	В	C	A	В	C	A	В	C
0	0.236	0.248	0.24	0.249	0.259	0.248	0.013	0.011	0.008
0.5	0.238	0.249	0.238	0.25	0.259	0.248	0.012	0.01	0.01
1	0.237	0.25	0.237	0.248	0.258	0.248	0.011	0.008	0.011
1.5	0.237	0.252	0.236	0.247	0.258	0.249	0.01	0.006	0.013
2	0.239	0.25	0.236	0.245	0.254	0.251	0.006	0.004	0.015
2.5	0.241	0.251	0.238	0.244	0.255	0.252	0.003	0.004	0.014
3	0.24	0.251	0.24	0.242 0.254 0.252			0.002	0.003	0.012
3.5	0.238	0.248	0.241	0.238 0.249 0.252			0	0.001	0.011
4	0.238	0.249	0.237	0.237 0.249 0.247			-0.001	0	0.01
		1							

Fig 4.50: Layout of porcupine field for trial 14

Figure 4.51: Porcupine field for 14th trial

Figure 4.52: Channel bed after experimental run for 14^{th} trial

15. For 15th trial of porcupine field model layout (figure 4.29), porcupines are placed perpendicular

to the bank ,following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c=0.45$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 3 kg of sediment(Sediment 3) was injected.

Table 4.35: Measurement of sediment deposition at 15th trial

	Ls 55; Lr 50; Lc 110 sediment 3kg									
Distanc e along the length of the channel (m)	Poin without	t gauge re: porcupine	ading field (m)	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)			
	А	В	С	А	В	С	А	В	С	
0	0.24	0.248	0.242	0.253	0.259	0.247	0.013	0.011	0.005	
0.5	0.239	0.25	0.243	0.251	0.259	0.249	0.012	0.009	0.006	
1	0.24	0.252	0.246	0.251	0.26	0.254	0.011	0.008	0.008	
1.5	0.24	0.249	0.242	0.248	0.254	0.252	0.008	0.005	0.01	
2	0.241	0.248	0.241	0.247	0.253	0.252	0.006	0.005	0.011	
2.5	0.238	0.253	0.242	0.241	0.256	0.251	0.003	0.003	0.009	
3	0.237 0.253 0.243			0.239	0.255	0.252	0.002	0.002	0.009	
3.5	0.239 0.252 0.243			0.24	0.253	0.249	0.001	0.001	0.006	
4	0.24 0.251 0.24			0.24	0.251	0.244	0	0	0.004	

Fig 4.53: Layout of porcupine field for trial 15

Figure 4.54: Porcupine field for 15th trial

Figure 4.55: Channel bed after experimental run for 15th trial

16. For 16th trial of porcupine field model layout (figure 4.29), porcupines are placed perpendicular

to the bank ,following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 0.9$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.3$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg of sediment(Sediment 3) was injected.

Table 4.36: Measurement of sediment deposition at 16th trial

				Ls 55; Lr 5	0; Lc 165 s	sediment 51	кg		
Distance	Point ga	auge readin	g without	Point g	auge readi	ng with	Height of ripple of sand (m)		
along the	por	cupine fiel	d (m)	porcupine field (m)					
length of									
the									
channel									
(m)									
	А	В	C	A	В	С	A	В	C
0	0.242	0.251	0.239	0.258	0.266	0.249	0.016	0.015	0.01
0.5	0.241	0.25	0.24	0.256	0.264	0.249	0.015	0.014	0.009
1	0.242	0.251	0.238	0.255	0.259	0.245	0.013	0.008	0.007
1.5	0.242	0.252	0.239	0.253	0.258	0.249	0.011	0.006	0.01
2	0.24	0.249	0.241	0.25	0.255	0.252	0.01	0.006	0.011
2.5	0.238	0.25	0.24	0.245	0.255	0.25	0.007	0.005	0.01
3	0.237	0.237 0.252 0.239			0.255	0.247	0.005	0.003	0.008
3.5	0.236	0.236 0.248 0.238			0.25	0.243	0.003	0.002	0.005
4	0.235	0.235 0.249 0.237			0.25	0.241	0.002	0.001	0.004

Fig 4.56: Layout of porcupine field for trial 16

Figure 4.57: Porcupine field for 16th trial

Figure 4.58: Channel bed after experimental run for 16th trial

17. For 17th trial of porcupine field model layout (figure 4.8), porcupines were placed

perpendicular to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.7$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 3 kg(Sediment 2) of sediment was injected.

Table 4.37: Measurement of sediment deposition at 17th trial

				Ls 35; Lr	50; Lc 70	sediment 3	Bkg			
Distance along the length of the channel (m)	Poi witho	nt gauge r out porcup (m)	eading bine field	Point g porc	auge readi cupine field	ing with d (m)	Height of ripple of sand (m)			
	A	В	C	A	В	С	A	В	C	
0	0.233	0.246	0.238	0.247	0.257	0.242	0.014	0.011	0.004	
0.5	0.236	0.247	0.235	0.249	0.257	0.238	0.013	0.01	0.003	
1	0.235	0.246	0.237	0.247	0.253	0.243	0.012	0.007	0.006	
1.5	0.232	0.246	0.236	0.243	0.252	0.243	0.011	0.006	0.007	
2	0.233	0.25	0.233	0.241	0.256	0.241	0.008	0.006	0.008	
2.5	0.234	0.251	0.234	0.24	0.256	0.243	0.006	0.005	0.009	
3	0.235	0.235 0.25 0.233			0.252	0.238	0.005	0.002	0.005	
3.5	0.232 0.258 0.234			0.233	0.259	0.236	0.001	0.001	0.002	
4	0.231	0.259	0.236	0.231	0.259	0.237	0	0	0.001	

Fig 4.59: Layout of porcupine field for trial 17

Figure 4.60: Porcupine field for 17th trial

Figure 4.61: Channel bed after experimental run for 17th trial

18. For 18th trial of porcupine field model layout (figure 4.8), porcupines were placed

perpendicular to the bank, following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.47$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg(Sediment 2) of sediment was injected.

Table 4.38: Measurement of sediment deposition at 18th trial

			Ι	.s 35; Lr 5	0; Lc 105 s	sediment 5	kg		
Distance along the length of the channel (m)	Poir witho	it gauge re ut porcupi (m)	ading ne field	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)		
	А	В	С	А	В	C	А	В	С
0	0.241	0.246	0.245	0.256	0.257	0.253	0.015	0.011	0.008
0.5	0.243	0.247	0.244	0.259	0.257	0.25	0.016	0.01	0.006
1	0.244	0.246	0.245	0.259	0.254	0.252	0.015	0.008	0.007
1.5	0.245	0.24	0.245	0.259	0.246	0.254	0.014	0.006	0.009
2	0.245	0.239	0.243	0.259	0.243	0.252	0.014	0.004	0.009
2.5	0.246	0.239	0.245	0.256	0.243	0.256	0.01	0.004	0.011
3	0.243	0.243 0.24 0.246			0.243	0.253	0.006	0.003	0.007
3.5	0.241 0.242 0.249			0.245	0.243	0.253	0.004	0.001	0.004
4	0.24 0.241 0.248			0.242	0.241	0.251	0.002	0	0.003

Fig 4.62: Layout of porcupine field for trial 18

Figure 4.63: Porcupine field for 18th trial

Figure 4.64: Channel bed after experimental run for 18th trial

19. For 19thtrial of porcupine field model layout (figure 4.17), porcupines are placed perpendicular

to the bank ,following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.7$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.5$

Here 3 kg of sediment(Sediment 3) was injected.

Table 4.39: Measurement of sediment deposition at 19th trial

]	Ls 35; Lr 5	50; Lc 70 s	ediment 3	kg		
Distance along the length of the channel (m)	Poir witho	it gauge re ut porcupi (m)	ading ne field	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)		
	А	В	С	А	В	С	А	В	С
0	0.243	0.251	0.241	0.257	0.263	0.246	0.014	0.012	0.005
0.5	0.242	0.25	0.24	0.254	0.262	0.247	0.012	0.012	0.007
1	0.244	0.252	0.24	0.255	0.263	0.248	0.011	0.011	0.008
1.5	0.243	0.253	0.235	0.253	0.261	0.244	0.01	0.008	0.009
2	0.243	0.252	0.241	0.251	0.257	0.25	0.008	0.005	0.009
2.5	0.24	0.253	0.242	0.246	0.255	0.246	0.006	0.002	0.004
3	0.241	0.241 0.253 0.243			0.255	0.246	0.004	0.002	0.003
3.5	0.241	0.241 0.258 0.241			0.259	0.242	0.002	0.001	0.001
4	0.24 0.257 0.241			0.241	0.257	0.242	0.001	0	0.001

Fig 4.65: Layout of porcupine field for trial 19

Figure 4.66: Porcupine field for 19th trial

Figure 4.67: Channel bed after experimental run for 19th trial

20. For 19th trial of porcupine field model layout (figure 4.17), porcupines are placed

perpendicular to the bank ,following values of the indices described above are adopted-

Porcupine Field Density Index (PFDI) = $L_r / L_s = 1.4$

Porcupine Compartment Density Index (PCDI) = $L_r / L_c = 0.47$

Porcupine Field Length Factor (PFLF) = $L_s / L_c = 0.33$

Here 5 kg of sediment(Sediment 3) was injected.

Table 4.40: Measurement of sediment deposition at 20th trial

			\mathbf{L}	s 35; Lr 5(); Lc 105 s	ediment 5	kg		
Distanc e along the length of the channel (m)	Poin without	t gauge rea porcupine	ading field (m)	Point gauge reading with porcupine field (m)			Height of ripple of sand (m)		
	А	В	C	A	В	C	A	В	С
0	0.245	0.254	0.24	0.261	0.269	0.247	0.016	0.015	0.007
0.5	0.244	0.253	0.239	0.259	0.266	0.247	0.015	0.013	0.008
1	0.245	0.254	0.24	0.258	0.266	0.248	0.013	0.012	0.008
1.5	0.245	0.255	0.24	0.256	0.265	0.249	0.011	0.01	0.009
2	0.243	0.252	0.241	0.253	0.261	0.252	0.01	0.009	0.011
2.5	0.241	0.251	0.238	0.249	0.257	0.248	0.008	0.006	0.01
3	0.24 0.249 0.237			0.245	0.253	0.242	0.005	0.004	0.005
3.5	0.239 0.248 0.239			0.242	0.25	0.243	0.003	0.002	0.004
4	0.238	0.247	0.24	0.239	0.248	0.243	0.001	0.001	0.003

Fig 4.68: Layout of porcupine field for trial 20

Figure 4.69: Porcupine field for 20th trial

Figure 4.70: Channel bed after experimental run for 20th trial

4.15 Calculation of Sediment Deposition for Each Trial

For 1st trial of porcupine field model layout

Table 4.41 :	Estimation	of sediment	deposition	in the p	oorcupine	field at section A	for 1st trial
			1	1	1		

Distance along the	Ripple Height	Radius of	Total Volume	Volume of	Weight of sand
length of the flume	'h' (m)	Cone (r) in	of sand V=(sand taking	trapped (kg)
(m)		(m) r=h/tan Ø	$\prod r^2 h)/3$	porosity into	$W = \partial V'$
		Ø=29°		consideration	$\partial = 2040$
				$(m^3) V' = V-$	Kg/m ³
				34% V	
0	0.012	0.0218	0.000005979	0.000003946	0.0080501
0.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
1	0.01	0.0182	0.000003460	0.000002284	0.0046586
1.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
2	0.004	0.0073	0.000000221	0.000000146	0.0002982
2.5	0.003	0.0055	0.000000093	0.000000062	0.0001258
3	0.001	0.0018	0.000000003	0.000000002	0.0000047
3.5	0	0.0000	0.000000000	0.000000000	0.000000
5.5		0.0000	0.000000000	0.000000000	0.0000000
<u>A</u>	-0.001	-0.0018	-0.00000003	-0.000000002	-0.0000047
1	0.001	0.0010	0.000000000	0.00000002	0.0000017
	1				0.02018
					0.02010

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan \emptyset \emptyset = 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) $W = \partial V'$ $\partial = 2040$ Kg/m ³
0	0.01	0.0182	0.000003460	0.000002284	0.0046586
0.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
1	0.007	0.0127	0.000001187	0.000000783	0.0015979
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.004	0.0073	0.000000221	0.000000146	0.0002982
2.5	0.003	0.0055	0.000000093	0.00000062	0.0001258
3	0.001	0.0018	0.000000003	0.000000002	0.0000047
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.01008

Table 4.42: Estimation of sediment deposition in the porcupine field at section B for 1st trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 35% V	Weight of sand trapped $(kg) W= \partial V'$ $\partial = 2570$ Kg/m^3
0	0.004	0.0073	0.000000221	0.000000146	0.0002982
0.5	0.002	0.0036	0.00000028	0.000000018	0.0000373
1	0.004	0.0073	0.000000221	0.000000146	0.0002982
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.008	0.0145	0.000001772	0.000001169	0.0023852
2.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
3	0.005	0.0091	0.000000433	0.000000285	0.0005823
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.00703

Table 4.43: Estimation of sediment deposition in the porcupine field at section C for 1st trial

Total weight of sand deposited in the first trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.02018 + 0.01008 + 0.00703) kg = 0.03729 kg

For 2nd Trial,

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.014	0.0255	0.000009494	0.000006266	0.0127832
0.5	0.012	0.0218	0.000005979	0.000003946	0.0080501
1	0.011	0.0200	0.000004605	0.000003040	0.0062006
1.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
2	0.006	0.0109	0.00000747	0.000000493	0.0010063
2.5	0.004	0.0073	0.00000221	0.000000146	0.0002982
3	0.002	0.0036	0.00000028	0.00000018	0.0000373
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4.00000000	-0.001	-0.0018	-0.00000003	-0.000000002	-0.00000466
					0.03303

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration $(m^3) V' = V-$ 34% V	Weight of sand trapped (kg) $W=\partial V'$ $\partial = 2040$ Kg/m ³
0	0.011	0.0200	0.000004605	0.000003040	0.0062006
0.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
1	0.006	0.0109	0.000000747	0.000000493	0.0010063
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.004	0.0073	0.000000221	0.000000146	0.0002982
2.5	0.004	0.0073	0.000000221	0.000000146	0.0002982
3	0.003	0.0055	0.000000093	0.00000062	0.0001258
3.5	0.001	0.0018	0.000000003	0.000000002	0.0000047
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.01360

Table 4.45: Estimation of sediment deposition in the porcupine field at section B for 2nd trial

Distance along	Ripple	Radius of	Total	Volume of sand	Weight of
the length of	Height 'h'	Cone (r) in $(m) = h/ton$	Volume of	taking porosity	sand trapped $(1x_{\alpha}) W = \partial V'$
theriume (m)	(11)	$\alpha \alpha = 29^{\circ}$	sand $V = ($	consideration	$\partial = 2040$
			$\prod r^2 n/3$	(m^3) V' = V-	Kg/m ³
				34% V	118
0	0.007	0.0127	0.000001187	0.00000783	0.00160
0.5	0.01	0.0182	0.000003460	0.000002284	0.00466
1	0.011	0.0200	0.000004605	0.000003040	0.00620
1.5	0.012	0.0226	0.00007(02	0.00005017	0.01022
1.5	0.013	0.0236	0.000007602	0.000005017	0.01023
2	0.015	0.0273	0.000011678	0.00007707	0.01572
	0.015	0.0275	0.000011078	0.000007707	0.01372
2.5	0.016	0.0291	0.000014172	0.000009354	0.01908
3	0.014	0.0255	0.000009494	0.000006266	0.01278
3.5	0.013	0.0236	0.000007602	0.000005017	0.01023
4	0.01	0.0182	0.000003460	0.000002284	0.00466
					0.00.51.5
					0.08517
		1			

Total weight of sand deposited in the second trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.03303 + 0.01360 + 0.08517) kg = 0.13181

For 3rd Trial,

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.01	0.0182	0.000003460	0.000002284	0.0046586
0.5	0.009	0.0164	0.000002522	0.000001665	0.0033961
1	0.008	0.0145	0.000001772	0.000001169	0.0023852
1.5	0.007	0.0127	0.000001187	0.000000783	0.0015979
2	0.006	0.0109	0.000000747	0.000000493	0.0010063
2.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
3	0.001	0.0018	0.000000003	0.00000002	0.0000047
3.5	0	0.0000	0.000000000	0.000000000	0.0000000
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.01317

Distance along	Ripple Height	Radius of Cone	Total Volume	Volume of sand	Weight of sand
the length of	'h' (m)	(\mathbf{r}) in (\mathbf{m})	of sand V=(taking porosity	trapped (kg)
the flume (m)		r=h/tan 0 0=	$1 (r^2 h)/3$	into	W = O V' O =
		29		$(m^3) V' = V$	2040 Kg/m ³
				$(11)^{V} = V^{-}$	
				5170 4	
0	0.007	0.0127	0.000001187	0.000000771	0.00198
0.5	0.007	0.0127	0.000001187	0.000000771	0.00198
1	0.006	0.0109	0.000000747	0.000000486	0.00125
1.5	0.005	0.0091	0.000000433	0.00000281	0.00072
	0.00.7	0.0001	0.000000400	0.000000000	
2	0.005	0.0091	0.000000433	0.00000281	0.00072
2.5	0.003	0.0055	0.000000093	0.000000061	0.00016
	0.000	0.0026	0.00000000	0.00000010	0.0000
3	0.002	0.0036	0.000000028	0.00000018	0.00005
2.5	0.001	0.0010	0.00000002	0.00000000	0.00001
3.5	0.001	0.0018	0.000000003	0.00000002	0.00001
4	0	0.0000	0.00000000	0.00000000	0.00000
4	U	0.0000	0.0000000000000000000000000000000000000	0.000000000	0.00000
					0.00697
					0.00087

Table 4.48: Estimation of sediment deposition in the porcupine field at section B for 3rd trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) $W= \partial V' \partial =$ 2040 Kg/m ³
0	0.004	0.0073	0.00000221	0.000000144	0.00037
0.5	0.005	0.0091	0.000000433	0.00000281	0.00072
1	0.007	0.0127	0.000001187	0.000000771	0.00198
1.5	0.007	0.0127	0.000001187	0.000000771	0.00198
2	0.008	0.0145	0.000001772	0.000001152	0.00296
2.5	0.009	0.0164	0.000002522	0.000001640	0.00421
3	0.007	0.0127	0.000001187	0.000000771	0.00198
3.5	0.004	0.0073	0.000000221	0.000000144	0.00037
4	0.003	0.0055	0.000000093	0.000000061	0.00016
					0.01474

Table 4.49: Estimation of sediment determined	eposition in t	the porcupine f	ield at section (C for 3rd trial
---	----------------	-----------------	-------------------	-----------------

Total weight of sand deposited in the third trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.01317 + 0.00687 + 0.0474) kg = 0.03478kg

For 4th Trial

Table 4.50: Estimation of sediment deposition in the porcupine field at section A for 4th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.016	0.0291	0.000014172	0.000009354	0.01908
0.5	0.014	0.0255	0.000009494	0.000006266	0.01278
1	0.013	0.0236	0.000007602	0.000005017	0.01023
1.5	0.011	0.0200	0.000004605	0.000003040	0.00620
2	0.01	0.0182	0.000003460	0.000002284	0.00466
2.5	0.007	0.0127	0.000001187	0.00000783	0.00160
3	0.005	0.0091	0.000000433	0.00000285	0.00058
3.5	0.003	0.0055	0.000000093	0.00000062	0.00013
4	0.002	0.0036	0.00000028	0.00000018	0.00004
					0.05530

Distance	Ripple Height	Radius of	Total Volume	Volume of	Weight of
along the	'h' (m)	Cone (r) in	of sand V=(sand taking	sand trapped
length of the		(m) r=h/tan Ø	$\prod r^2 h)/3$	porosity into	(kg) $W = \partial V'$
flume (m)		Ø=29°		consideration	$\partial = 2040$
				$(m^3) V' = V-$	Kg/m ³
				34% V	8
0	0.01	0.0182	0.000003460	0.000002284	0.00466
	0.011		0.0000.4 <i>5</i> 0 .7	0.00000000000	0.00(00)
0.5	0.011	0.0200	0.000004605	0.000003040	0.00620
	0.000	0.0145	0.00001550	0.0000011.00	0.00000
1	0.008	0.0145	0.000001772	0.000001169	0.00239
1.5	0.006	0.0100	0.00000747	0.00000402	0.00101
1.5	0.006	0.0109	0.000000747	0.000000493	0.00101
2	0.006	0.0100	0.00000747	0.00000402	0.00101
2	0.000	0.0109	0.000000747	0.000000493	0.00101
2.5	0.005	0.0091	0.000000433	0.00000285	0.00058
2.5	0.005	0.0091	0.000000433	0.000000285	0.00038
3	0.003	0.0055	0.00000093	0.00000062	0.00013
5	0.005	0.00000	0.0000000000	0.000000002	0.00015
3.5	0.002	0.0036	0.00000028	0.000000018	0.00004
	0.002	0.0000			0.0000.
4	0.001	0.0018	0.00000003	0.000000002	0.00000
					0.01601

Table 4.51: Estimation of sediment deposition in the porcupine field at section B for 4th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.005	0.0091	0.000000433	0.00000285	0.00058
0.5	0.005	0.0091	0.000000433	0.00000285	0.00058
1	0.007	0.0127	0.000001187	0.00000783	0.00160
1.5	0.01	0.0182	0.000003460	0.000002284	0.00466
2	0.011	0.0200	0.000004605	0.000003040	0.00620
2.5	0.01	0.0182	0.000003460	0.000002284	0.00466
3	0.008	0.0145	0.000001772	0.000001169	0.00239
3.5	0.005	0.0091	0.000000433	0.00000285	0.00058
4	0.004	0.0073	0.00000221	0.00000146	0.00030
					0.02155

Table 4	4.52	Estimat	tion of	f sediment	denos	sition	in the	porcupin	e field	at section	C for	4th	trial
I abic .	1.34	LSuma	uon oi	scument	ucpos	shion	in the	porcupin	ic neiu	at section	C 101	τιιι	ulai

Total weight of sand deposited in the forth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.05530 + 0.01601 + 0.02155) kg =**0.09286kg**

For 5th trial,

Table 4.53: Estimation of sedim	ent deposition in the por	rcupine field at section A for 5th trial
---------------------------------	---------------------------	--

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.011	0.0200	0.000004605	0.000003040	0.00620
0.5	0.009	0.0164	0.000002522	0.000001665	0.00340
1	0.01	0.0182	0.000003460	0.000002284	0.00466
1.5	0.007	0.0127	0.000001187	0.00000783	0.00160
2	0.006	0.0109	0.000000747	0.000000493	0.00101
2.5	0.004	0.0073	0.000000221	0.000000146	0.00030
3	0.004	0.0073	0.000000221	0.000000146	0.00030
3.5	0.001	0.0018	0.00000003	0.00000002	0.00000
4	0	0.0000	0.000000000	0.000000000	0.00000
					0.01746
Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
--	--------------------------	--	---	--	---
0	0.008	0.0145	0.000001772	0.000001169	0.0023852
0.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
1	0.007	0.0127	0.000001187	0.00000783	0.0015979
1.5	0.004	0.0073	0.00000221	0.00000146	0.0002982
2	0.003	0.0055	0.00000093	0.00000062	0.0001258
2.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
3	0.001	0.0018	0.00000003	0.00000002	0.0000047
3.5	0	0.0000	0.00000000	0.00000000	0.0000000
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.00614

Table 4.54: Estimation of sediment deposit	sition in the porcup	oine field at section	B for 5th trial
--	----------------------	-----------------------	-----------------

Distance along	Ripple Height	Radius of Cone	Total Volume	Volume of	Weight of sand
the length of	'h' (m)	(r) in (m)	of sand V=(sand taking	trapped (kg)
the flume (m)		r=h/tan Ø Ø=	$\int [r^2 h)/3$	porosity into	$W = \partial V' \partial =$
		29°		consideration	2040 Kg/m ³
				$(m^3) V' = V -$	
				34% V	
0	0.003	0.0055	0.00000093	0.00000062	0.0001258
	0.005	0.0055	0.0000000000	0.000000002	0.0001250
0.5	0.001	0.0018	0.000000003	0.000000002	0.0000047
1	0.001	0.0018	0.00000003	0.00000002	0.0000047
1.5	0.004	0.0073	0.00000221	0.000000146	0.0002982
2	0.007	0.0127	0.000001187	0.00000783	0.0015979
2.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
3	0.005	0.0091	0.000000433	0.00000285	0.0005823
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.000000003	0.000000002	0.0000047
					0.00504
					0.00504

Table 4.55 :	Estimation	of sediment	deposition	in the	porcupine	field a	t section	C for	5th trial
			a poblicion		p • • • • • p · · · •				

Total weight of sand deposited in the fifth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.01746+0.00614+0.00504) kg =0.02864kg

For 6th trial,

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.015	0.0273	0.000011678	0.000007707	0.01572
0.5	0.016	0.0291	0.000014172	0.000009354	0.01908
1	0.015	0.0273	0.000011678	0.000007707	0.01572
1.5	0.014	0.0255	0.000009494	0.000006266	0.01278
2	0.014	0.0255	0.000009494	0.000006266	0.01278
2.5	0.01	0.0182	0.000003460	0.000002284	0.00466
3	0.006	0.0109	0.00000747	0.000000493	0.00101
3.5	0.004	0.0073	0.00000221	0.000000146	0.00030
4	0.002	0.0036	0.00000028	0.00000018	0.00004
					0.08209

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) $W= \partial V' \partial =$ 2040 Kg/m ³
0	0.011	0.0200	0.000004605	0.000003040	0.0062006
0.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
1	0.008	0.0145	0.000001772	0.000001169	0.0023852
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.004	0.0073	0.000000221	0.000000146	0.0002982
2.5	0.004	0.0073	0.000000221	0.000000146	0.0002982
3	0.003	0.0055	0.00000093	0.00000062	0.0001258
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.01498

Table 4.57: Estimation of sediment deposition in the porcupine field at section B for 6th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.008	0.0145	0.000001772	0.000001169	0.00239
0.5	0.006	0.0109	0.000000747	0.000000493	0.00101
1	0.007	0.0127	0.000001187	0.00000783	0.00160
1.5	0.009	0.0164	0.000002522	0.000001665	0.00340
2	0.009	0.0164	0.000002522	0.000001665	0.00340
2.5	0.011	0.0200	0.000004605	0.000003040	0.00620
3	0.007	0.0127	0.000001187	0.00000783	0.00160
3.5	0.004	0.0073	0.00000221	0.000000146	0.00030
4	0.003	0.0055	0.00000093	0.00000062	0.00013
					0.02000

Table 4.58: Estimation of sediment deposition in the porcupine field at section C for 6th trial

Total weight of sand deposited in the sixth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.08209 + 0.01498 + 0.02000) kg =**0.11708kg**

For 7[™] trial,

Table 4.59: Est	imation of sedimen	t deposition in the p	orcupine field at secti	on A for 7th trial
-----------------	--------------------	-----------------------	-------------------------	--------------------

Distance along the length of	Ripple Height 'h' (m)	Radius of Cone (r) in (m)	Total Volume of sand V=(Volume of sand taking porosity	Weight of sand trapped (kg)
the flume (m)	()	r=h/tan Ø Ø=	$\prod r^2 h)/3$	into	$W = \partial V' \partial =$
		29°		consideration	2040 Kg/m ³
				$(m^3) V' = V - 34\% V$	
				5470 V	
0	0.01	0.0182	0.000003460	0.000002284	0.0046586
0.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
1	0.01	0.0182	0.00003460	0.000002284	0.0046586
1	0.01	0.0102	0.00000000000	0.000002204	0.0040500
1.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
2	0.008	0.0145	0.000001772	0.000001169	0.0023852
	0.000	0.0100	0.00000747	0.000000402	0.00100.62
2.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
3	0.004	0.0073	0.00000221	0.00000146	0.0002982
5	0.001	0.0075	0.000000221	0.000000110	0.0002902
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
	1				0.01702
					0.017/03

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.008	0.0145	0.000001772	0.000001169	0.0023852
0.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
1	0.006	0.0109	0.000000747	0.000000493	0.0010063
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.003	0.0055	0.00000093	0.00000062	0.0001258
2.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
3	0.002	0.0036	0.00000028	0.00000018	0.0000373
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.00620

Table 4.60: Estimation of sediment deposition in the porcupine field at section B for 7th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=($\prod r^2 h$)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 35% V	Weight of sand trapped (kg) $W = \partial V'$ $\partial = 2570$ Kg/m ³
0	0.004	0.0073	0.000000221	0.000000146	0.0002982
0.5	0.005	0.0091	0.000000433	0.00000285	0.0005823
1	0.006	0.0109	0.000000747	0.000000493	0.0010063
1.5	0.006	0.0109	0.00000747	0.000000493	0.0010063
2	0.007	0.0127	0.000001187	0.00000783	0.0015979
2.5	0.004	0.0073	0.000000221	0.000000146	0.0002982
3	0.003	0.0055	0.00000093	0.00000062	0.0001258
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0.001	0.0018	0.000000003	0.000000002	0.0000047
					0.00492

	Table 4.61: Estimation	of sediment de	eposition in the	porcupine field at	section C for 7th trial
--	------------------------	----------------	------------------	--------------------	-------------------------

Total weight of sand deposited in the seventh trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.01703 + 0.00620 + 0.00492) kg =**0.02816**kg

For 8th Trial,

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.015	0.0273	0.000011678	0.000007707	0.0157228
0.5	0.013	0.0236	0.000007602	0.000005017	0.0102350
1	0.012	0.0218	0.000005979	0.000003946	0.0080501
1.5	0.011	0.0200	0.000004605	0.000003040	0.0062006
2	0.01	0.0182	0.000003460	0.000002284	0.0046586
2.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
3	0.005	0.0091	0.000000433	0.00000285	0.0005823
3.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.04797

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.011	0.0200	0.000004605	0.000003040	0.0062006
0.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
1	0.009	0.0164	0.000002522	0.000001665	0.0033961
1.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
2	0.006	0.0109	0.00000747	0.000000493	0.0010063
2.5	0.004	0.0073	0.00000221	0.000000146	0.0002982
3	0.002	0.0036	0.00000028	0.00000018	0.0000373
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.01724

trial
t

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration $(m^3) V' = V-$ 35% V	Weight of sand trapped (kg) $W= \partial V' \partial =$ 2570 Kg/m ³
0	0.008	0.0145	0.000001772	0.000001169	0.0023852
0.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
1	0.005	0.0091	0.000000433	0.000000285	0.0005823
1.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
2	0.009	0.0164	0.000002522	0.000001665	0.0033961
2.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
3	0.005	0.0091	0.000000433	0.00000285	0.0005823
3.5	0.004	0.0073	0.000000221	0.000000146	0.0002982
4	0.003	0.0055	0.00000093	0.00000062	0.0001258
					0.01522

Table 4.64: Estimation of sediment deposition in the porcupine field at section C for 8th trial

Total weight of sand deposited in the eighth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.04797 + 0.01724 + 0.01522) kg = **0.08043** kg

For 9th Trial,

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=($\prod r^2 h$)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) $W= \partial V' \partial =$ 2040 Kg/m ³
0	0.013	0.0236	0.000007602	0.000005017	0.0102350
0.5	0.012	0.0218	0.000005979	0.000003946	0.0080501
1	0.011	0.0200	0.000004605	0.000003040	0.0062006
1.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
2	0.008	0.0145	0.000001772	0.000001169	0.0023852
2.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
3	0.003	0.0055	0.00000093	0.00000062	0.0001258
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0	0.0000	0.00000000	0.00000000	0.0000000
					0.03329

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.012	0.0218	0.000005979	0.000003946	0.0080501
0.5	0.011	0.0200	0.000004605	0.000003040	0.0062006
1	0.01	0.0182	0.000003460	0.000002284	0.0046586
1.5	0.009	0.0164	0.000002522	0.000001665	0.0033961
2	0.006	0.0109	0.00000747	0.000000493	0.0010063
2.5	0.005	0.0091	0.000000433	0.00000285	0.0005823
3	0.004	0.0073	0.000000221	0.000000146	0.0002982
3.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.02432

Table 4.66: Estimation of sediment deposition in the porcupine field at section B for 9th trial

Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan ØØ= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V- 35% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2570 Kg/m ³
0.002	0.0036	0.00000028	0.00000018	0.0000373
0.004	0.0073	0.00000221	0.000000146	0.0002982
0.005	0.0091	0.00000433	0.00000285	0.0005823
0.006	0.0109	0.00000747	0.000000493	0.0010063
0.007	0.0127	0.000001187	0.00000783	0.0015979
0.006	0.0109	0.000000747	0.000000493	0.0010063
0.005	0.0091	0.00000433	0.00000285	0.0005823
0.002	0.0036	0.00000028	0.00000018	0.0000373
0.002	0.0036	0.00000028	0.00000018	0.0000373
				0.00519
	Ripple Height 'h' (m) 0.002 0.004 0.005 0.006 0.007 0.005 0.005 0.005 0.007 0.005 0.002 0.002 0.002	Ripple Height 'h' (m)Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°0.0020.00360.0020.00360.0040.00730.0050.00910.0060.01090.0050.001270.0060.01090.0050.00910.0050.00910.0050.00910.0050.00910.0050.00360.0020.00360.00360.0036	Ripple Height 'h' (m)Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°Total Volume of sand V=(∏r² h)/30.0020.00360.000000280.0040.00730.0000002210.0050.00910.0000004330.0060.01090.0000007470.0070.01270.0000007470.0050.00910.0000007470.0050.00910.0000007470.0060.01090.0000007470.0050.00910.0000007470.0050.00910.0000007470.0050.00910.0000007430.0050.00910.0000007430.0020.00360.000000280.0020.00360.00000028	Ripple Height 'h' (m)Radius of Cone (r) in (m) r=h/tan $O O=$ 29°Total Volume of sand V=(Π^2 h)/3Volume of sand taking porosity into consideration (m³) V' = V- 35% V0.0020.00360.000000280.000000180.0040.00730.0000002210.0000001460.0050.00910.0000004330.0000002850.0060.01090.0000007470.0000004930.0060.01090.0000007470.0000004930.0050.00910.0000007470.0000004930.0050.00910.0000007470.0000004930.0050.00910.0000007470.0000004930.0050.00910.0000004330.0000002850.0020.00360.000000280.000000180.0020.00360.000000280.000000180.0020.00360.000000280.00000018

Table 4.67:	Estimation	of sediment	deposition	in the	porcupine	field at	t section	C for	9th tria	ıl

Total weight of sand deposited in the ninth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.03329 + 0.02432 + 0.00519) kg = 0.06280 kg

For 10th Trial,

Table 4.68: Estimation of sediment deposition in the porcupine field at section A for 10th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W=∂V'∂= 2040 Kg/m ³
0	0.016	0.0291	0.000014172	0.000009354	0.0190817
0.5	0.015	0.0273	0.000011678	0.000007707	0.0157228
1	0.012	0.0218	0.000005979	0.000003946	0.0080501
1.5	0.011	0.0200	0.000004605	0.000003040	0.0062006
2	0.009	0.0164	0.000002522	0.000001665	0.0033961
2.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
3	0.004	0.0073	0.000000221	0.000000146	0.0002982
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.05377

Distance along the length of the flume (m)	Ripple Height 'h'	Radius of Cone (r) in (m) r=h/tan Ø	Total Volume of sand V=($\Box r^2 h)/3$	Volume of sand taking porosity into consideration (m ³) V'	Weight of sand trapped (kg) W= ∂ V' ∂ =
	(11)	$\emptyset = 29^{\circ}$		= V-34% V	2040 Kg/m ³
0	0.015	0.0273	0.000011678	0.000007707	0.0157228
0.5	0.015	0.0273	0.000011678	0.000007707	0.0157228
1	0.014	0.0255	0.000009494	0.000006266	0.0127832
1.5	0.012	0.0218	0.000005979	0.000003946	0.0080501
2	0.01	0.0182	0.000003460	0.000002284	0.0046586
2.5	0.009	0.0164	0.000002522	0.000001665	0.0033961
2.5	0.009	0.0101	0.000002522	0.00001002	0.0033701
3	0.005	0.0091	0.000000433	0.000000285	0.0005823
3.5	0.003	0.0055	0.00000093	0.000000062	0.0001258
4	0.002	0.0026	0.00000028	0.00000018	0.0000272
4	0.002	0.0030	0.00000028	0.00000018	0.0000375
					0.06108

Table 4.69: Estimation of sediment deposition in the porcupine field at section B for 10th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.001	0.0018	0.00000003	0.00000002	0.0000047
0.5	0.002	0.0036	0.00000028	0.000000018	0.0000373
1	0.004	0.0073	0.000000221	0.000000146	0.0002982
1.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
2	0.008	0.0145	0.000001772	0.000001169	0.0023852
2.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
3	0.003	0.0055	0.000000093	0.00000062	0.0001258
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.00491

Table 4.70: Estimation of sediment deposition in the porcupine field at section C for 10th trial

Total weight of sand deposited in the tenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.05377 + 0.06108 + 0.00491) kg = 0.11975 kg

For 11th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of sand	Volume of sand	Weight of
along	'h' (m)) in (m) r=h/tan Ø	V=(∏r² h)/3	taking porosity into	sand
the		Ø= 29°		consideration (m ³)	trapped
length				V' = V-34% V	(kg) W= ∂ V'
of the					∂ = 2040
flume					Kg/m ³
(m)					
0	0.012	0.0219	0.000005070	0.00002046	0.0080501
0	0.012	0.0218	0.000005979	0.000003946	0.0080501
0.5	0.011	0.0200	0.000004605	0.000003040	0.0062006
1	0.009	0.0164	0.000002522	0.000001665	0.0033961
1.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
2	0.007	0.0127	0.000001187	0.00000783	0.0015979
2.5	0.005	0.0091	0.00000433	0.00000285	0.0005823
3	0.004	0.0073	0.00000221	0.00000146	0.0002982
35	0.002	0.0036	0.00000028	0.00000018	0.0000373
5.5	0.002	0.0000	0.00000020	0.00000010	0.0000070
4	0	0,0000	0.00000000	0.0000000	0.000000
4	0	0.0000	0.00000000	0.00000000	0.0000000
					0.00055
					0.02255

Table 4.71: Estimation of sediment deposition in the porcupine field at section A for 11th trial

Distance	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
length of	(m)	r=h/tan Ø Ø=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2040
the flume		29°		V-34% V	Kg/m ³
(m)					
0	0.011	0.0200	0.000004605	0.000003040	0.0062006
0.5	0.01	0.0182	0.000003460	0.000002284	0.0046586
1	0.01	0.0182	0.000003460	0.00002284	0.0046586
1.5	0.009	0.0164	0.000002522	0.000001665	0.0033961
2	0.008	0.0145	0.000001772	0.000001169	0.0023852
2.5	0.007	0.0127	0.000001187	0.00000783	0.0015979
3	0.006	0.0109	0.000000747	0.00000493	0.0010063
3.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.02403

Table 4.72: Estimation of sediment deposition in the porcupine field at section B for 11th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along the	Height 'h'	(r) in (m)	sand V=(∏r ² h)/3	taking porosity into	trapped (kg) W=
length of	(m)	r=h/tan ØØ=		consideration (m ³) V'	∂ V' ∂ = 2040
the flume		29°		= V-34% V	Kg/m ³
(m)					
0	0.003	0.0055	0.00000093	0.00000062	0.0001258
U	0.005	0.0035	0.0000000000	0.00000002	0.0001250
0.5	0.005	0.0001	0.00000422	0.00000285	0.0005.833
0.5	0.005	0.0091	0.00000455	0.00000285	0.0003825
	0.004	0.0070	0.000000000	0.00000146	0.000000
1	0.004	0.0073	0.00000221	0.00000146	0.0002982
1.5	0.006	0.0109	0.00000747	0.000000493	0.0010063
2	0.007	0.0127	0.000001187	0.00000783	0.0015979
2.5	0.009	0.0164	0.000002522	0.000001665	0.0033961
3	0.006	0.0109	0.00000747	0.000000493	0.0010063
3.5	0.005	0.0091	0.00000433	0.00000285	0.0005823
4	0.002	0.0036	0.00000028	0.00000018	0.0000373
					0.00863

Table 4.73 : Estimation of sediment	t deposition	in the porcupine	field at section	C for 11th trial
--	--------------	------------------	------------------	------------------

Total weight of sand deposited in the eleventh trial = Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.02255+0.02403+0.00863) kg = 0.05521kg

For 12th Trial,

Table 4.74: Estimation of sediment deposition in the porcupine field at section A for 12th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2040 Kg/m ³
0	0.015	0.0273	0.000011678	0.000007707	0.0157228
0.5	0.013	0.0236	0.000007602	0.000005017	0.0102350
1	0.012	0.0218	0.000005979	0.000003946	0.0080501
1.5	0.011	0.0200	0.000004605	0.000003040	0.0062006
2	0.009	0.0164	0.000002522	0.000001665	0.0033961
2.5	0.006	0.0109	0.000000747	0.000000493	0.0010063
3	0.004	0.0073	0.000000221	0.000000146	0.0002982
3.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.04492

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 29°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂V'∂=2040 Kg/m ³
0	0.016	0.0291	0.000014172	0.000009354	0.0190817
0.5	0.015	0.0273	0.000011678	0.000007707	0.0157228
1	0.014	0.0255	0.000009494	0.000006266	0.0127832
1.5	0.012	0.0218	0.000005979	0.000003946	0.0080501
2	0.01	0.0182	0.000003460	0.000002284	0.0046586
2.5	0.008	0.0145	0.000001772	0.000001169	0.0023852
3	0.005	0.0091	0.00000433	0.00000285	0.0005823
3.5	0.003	0.0055	0.00000093	0.00000062	0.0001258
4	0.002	0.0036	0.00000028	0.00000018	0.0000373
					0.06343

Table 4.75: Estimation of sediment deposition in the porcupine field at section B for 12th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	sand V=(∏r ² h)/3	porosity into	trapped (kg) W= ∂
length of	(m)	r=h/tan ØØ=		consideration (m ³) V'	V'∂=2040 Kg/m³
the flume		29°		= V-34% V	
(m)					
0	0.001	0.0018	0.00000003	0.00000002	0.0000047
0.5	0.001	0.0018	0.00000003	0.00000002	0.0000047
1	0.003	0.0055	0.00000093	0.00000062	0.0001258
15	0.005	0.0091	0.00000433	0.00000285	0.0005823
1.5	0.005	0.0051	0.00000433	0.00000205	0.0003823
	0.007				
2	0.007	0.0127	0.000001187	0.00000783	0.0015979
2.5	0.005	0.0091	0.000000433	0.00000285	0.0005823
3	0.003	0.0055	0.00000093	0.00000062	0.0001258
3.5	0.002	0.0036	0.00000028	0.00000018	0.0000373
4	0.001	0.0018	0.00000000	0.00000000	0.0000047
4	0.001	0.0018	0.00000003	0.00000002	0.0000047
					0.00307

Table 4.76: Estimation of sediment deposition in the porcupine field at section C for 12th trial

Total weight of sand deposited in the twelveth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.04492 + 0.06343 + 0.00307) kg = 0.11141 kg

For 13th Trial,

Distance	Ripple Height	Radius of Cone	Total Volume of	Volume of sand	Weight of
along	'h' (m)	(r) in (m)	sand V=(∏r²h)/3	taking porosity into	sand trapped
the		r=h/tan Ø, Ø=		consideration (m ³)	(kg) W= ∂ V' ∂
length		28°		V' = V-34% V	= 2046 Kg/m ³
of the					
flume					
(m)					
0	0.013	0.0245	0.000008186	0.000005403	0.0110544
0.5	0.012	0.0226	0.000006439	0.000004250	0.0086946
1	0.011	0.0208	0.000004959	0.000003273	0.0066971
1.5	0.009	0.0170	0.000002716	0.000001793	0.0036680
2	0.008	0.0151	0.000001908	0.000001259	0.0025762
2.5	0.005	0.0094	0.00000466	0.00000307	0.0006290
3	0.002	0.0038	0.00000030	0.00000020	0.0000403
2.5		0.0000	0.00000000		
3.5	0	0.0000	0.000000000	0.000000000	0.0000000
4	0.001	0.0010	0.00000004	0.00000000	
4	-0.001	-0.0019	-0.00000004	-0.00000002	-0.0000050
					0.03335
					0.03333
	I		I		1

Table 4.78: Estimation of sediment deposition in the porcupine field at section A for 13th trial

Distance	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
length of	(m)	r=h/tan Ø Ø=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2046
the flume		28°		V-34% V	Kg/m ³
(m)					_
0	0.012	0.0226	0.000006439	0.000004250	0.0086946
0.5	0.011	0.0208	0.000004959	0.00003273	0.0066971
1	0.01	0.0189	0.00003726	0.00002459	0.0050316
_	0.01	0.0100	0100000720		0.0000010
15	0.008	0.0151	0 00001908	0.00001259	0.0025762
1.5	0.008	0.0131	0.00001908	0.000001255	0.0025702
2	0.006	0.0112	0.00000805	0.00000531	0.0010868
2	0.006	0.0113	0.00000805	0.00000531	0.0010868
2.5	0.004	0.0075	0.00000238	0.00000157	0.0003220
3	0.001	0.0019	0.00000004	0.00000002	0.0000050
3.5	0.001	0.0019	0.00000004	0.00000002	0.000050
4	0	0.0000	0.000000000	0.00000000	0.0000000
					0.02442

Table 4.79: Estimation of sediment deposition in the porcupine field at section B for 13th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 28°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂V'∂ = 2046 Kg/m ³
0	0.003	0.0057	0.00000101	0.00000066	0.0001359
0.5	0.004	0.0075	0.00000238	0.000000157	0.0003220
1	0.006	0.0113	0.00000805	0.00000531	0.0010868
1.5	0.008	0.0151	0.000001908	0.000001259	0.0025762
2	0.009	0.0170	0.000002716	0.000001793	0.0036680
2.5	0.007	0.0132	0.000001278	0.00000844	0.0017258
3	0.005	0.0094	0.000000466	0.00000307	0.0006290
3.5	0.002	0.0038	0.00000030	0.00000020	0.0000403
4	0.001	0.0019	0.000000004	0.00000002	0.0000050
					0.01019

Table 4.80: Estimation of sediment deposition in the porcupine field at section C for 13th trial

Total weight of sand deposited in the thirteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.03335 + 0.02442 + 0.01019) kg = 0.06796 kg

For 14th Trial,

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of
along the	Height 'h'	(r) in (m)	sand V=(∏r²h)/3	taking porosity	sand trapped
length of	(m)	r=h/tan Ø Ø=		into consideration	(kg) W=∂V'∂
the flume		28°		(m ³) V' = V-34% V	= 2046 Kg/m ³
(m)					
0	0.013	0.0245	0.000008186	0.000005403	0.0110544
0.5	0.012	0.0226	0.000006439	0.000004250	0.0086946
1	0.011	0.0208	0.000004959	0.000003273	0.0066971
1.5	0.01	0.0189	0.000003726	0.000002459	0.0050316
2	0.006	0.0113	0.00000805	0.00000531	0.0010868
2.5	0.003	0.0057	0.00000101	0.00000066	0.0001359
2.5	0.003	0.0037	0.00000101		0.0001333
2	0.002	0.0028	0.00000020	0.000000000	0.0000402
5	0.002	0.0038	0.000000030	0.00000020	0.0000403
3.5	0	0.0000	0.000000000	0.000000000	0.0000000
4.0000000	-0.001	-0.0019	-0.000000004	-0.00000002	-0.00000503
					0.03274

Table 4.81: Estimation of sediment deposition in the porcupine field at section A for 14th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 28°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2046 Kg/m ³
0	0.011	0.0208	0.000004959	0.000003273	0.0066971
0.5	0.01	0.0189	0.000003726	0.000002459	0.0050316
1	0.008	0.0151	0.000001908	0.000001259	0.0025762
1.5	0.006	0.0113	0.00000805	0.00000531	0.0010868
2	0.004	0.0075	0.00000238	0.00000157	0.0003220
2.5	0.004	0.0075	0.00000238	0.00000157	0.0003220
3	0.003	0.0057	0.000000101	0.00000066	0.0001359
3.5	0.001	0.0019	0.000000004	0.00000002	0.0000050
4	0	0.0000	0.000000000	0.00000000	0.0000000
					0.01618

Table 4.82: Estimation of sediment deposition in the porcupine field at section B for 14th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along the	Height 'h'	(r) in (m)	sand V=(∏r ² h)/3	taking porosity into	trapped (kg) W=
length of	(m)	r=h/tan Ø Ø=		consideration (m ³) V'	∂ V' ∂ = 2046
the flume		28°		= V-34% V	Kg/m ³
(m)					
0	0.008	0.0151	0.000001908	0.000001259	0.00258
0.5	0.01	0.0189	0.000003726	0.00002459	0.00503
1	0.011	0.0208	0.000004959	0.00003273	0.00670
1.5	0.013	0.0245	0.000008186	0.000005403	0.01105
2	0.015	0.0283	0.000012576	0.00008300	0.01698
2.5	0.014	0.0264	0.000010224	0.000006748	0.01381
3	0.012	0.0226	0.000006439	0.000004250	0.00869
3.5	0.011	0.0208	0.000004959	0.00003273	0.00670
4	0.01	0.0189	0.00003726	0.000002459	0.00503
					0.07657

Table 4.83: Estimation of sediment deposition in the porcupine field at section C for 14th trial

Total weight of sand deposited in the fourteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.03274+0.01618+0.07657) kg = 0.12548 kg

For 15th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of	Volume of sand	Weight of
along	'h' (m)) in (m) r=h/tan	sand V=(∏r²h)/3	taking porosity into	sand trapped
the		Ø Ø= 27°		consideration (m ³)	(kg) W= ∂ V' ∂
length				V' = V-35% V	= 2052 Kg/m ³
of the					
flume					
(m)					
0	0.013	0.0255	0.000008841	0.000005747	0.0117920
0.5	0.012	0.0235	0.00006954	0.000004520	0.0092748
1	0.011	0.0216	0.000005356	0.00003481	0.0071439
1.5	0.008	0.0157	0.00002060	0.000001339	0.0027481
	0.000	0.0140	0.00000000	0.00000565	0.0044500
2	0.006	0.0118	0.00000869	0.00000565	0.0011593
2.5	0.003	0.0059	0.00000109	0.00000071	0.0001449
3	0.002	0.0039	0.00000032	0.00000021	0.0000429
3.5	0.001	0.0020	0.000000004	0.00000003	0.0000054
4	0	0.0000	0.00000000	0.00000000	0.000000
-		0.0000	3.00000000	5.00000000	0.0000000
					0.03231

Table 4.84: Estimation of sediment deposition in the porcupine field at section A for 15th trial

Distance	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
length of	(m)	r=h/tan ØØ=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2052
the flume		27°		V-35% V	Kg/m ³
(m)					
0	0.011	0.0200	0.000004605	0.000002993	0.00769
0.5	0.009	0.0164	0.000002522	0.000001640	0.00421
1	0.008	0.0145	0.000001772	0.000001152	0.00296
15	0.005	0.0091	0 000000433	0.00000281	0.00072
2	0.005	0.0001	0.00000422	0.00000281	0.00072
2	0.005	0.0091	0.000000433	0.00000281	0.00072
2.5	0.003	0.0055	0.00000093	0.00000061	0.00016
3	0.002	0.0036	0.00000028	0.00000018	0.00005
3.5	0.001	0.0018	0.00000003	0.00000002	0.00001
A	0	0.0000	0.00000000	0.00000000	0.0000
	Ū	0.0000	0.000000000	0.000000000	0.00000
					0.01050
					0.01652

Table 4.85: Estimation of sediment deposition in the porcupine field at section B for 15th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 27°	Total Volume of sand V=(∏r ² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-35% V	Weight of sand trapped (kg) W= ∂V'∂ = 2052 Kg/m ³
0	0.005	0.0091	0.000000433	0.00000281	0.00072
0.5	0.006	0.0109	0.00000747	0.00000486	0.00125
1	0.008	0.0145	0.000001772	0.000001152	0.00296
1.5	0.01	0.0182	0.000003460	0.000002249	0.00578
2	0.011	0.0200	0.000004605	0.000002993	0.00769
2.5	0.009	0.0164	0.000002522	0.000001640	0.00421
3	0.009	0.0164	0.000002522	0.000001640	0.00421
3.5	0.006	0.0109	0.00000747	0.000000486	0.00125
4	0.004	0.0073	0.00000221	0.00000144	0.00037
					0.02845

Table 4.86: Estimation of sediment deposition in the porcupine field at section C for 15th trial

Total weight of sand deposited in the fifteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.03231 + 0.01652 + 0.02845) kg = 0.07728 kg

For 16th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of	Volume of sand	Weight of
along	'h' (m)) in (m) r=h/tan	sand V=(∏r²h)/3	taking porosity into	sand trapped
the		Ø Ø= 27°		consideration (m ³)	(kg) W=∂ V'∂
length				V' = V-35% V	= 2052 Kg/m ³
of the					
flume					
(m)					
0	0.016	0.0314	0.000016483	0.000010714	0.02198
0.5	0.015	0.0294	0.000013581	0.00008828	0.01811
1	0.013	0.0255	0.00008841	0.000005747	0.01179
1.5	0.011	0.0216	0.000005356	0.000003481	0.00714
2	0.01	0.0196	0.000004024	0.000002616	0.00537
2.5	0.007	0.0137	0.000001380	0.00000897	0.00184
3	0.005	0.0098	0.00000503	0.00000327	0.00067
3.5	0.003	0.0059	0.00000109	0.00000071	0.00014
4	0.002	0.0039	0.00000032	0.00000021	0.00004
					0.06710

Table 4.87: Estimation of sediment deposition in the porcupine field at section A for 16th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 27°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-35% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2052 Kg/m ³
0	0.015	0.0294	0.000013581	0.000008828	0.01811
0.5	0.014	0.0275	0.000011042	0.000007177	0.01473
1	0.008	0.0157	0.000002060	0.000001339	0.00275
1.5	0.006	0.0118	0.00000869	0.00000565	0.00116
2	0.006	0.0118	0.00000869	0.00000565	0.00116
2.5	0.005	0.0098	0.000000503	0.00000327	0.00067
3	0.003	0.0059	0.000000109	0.00000071	0.00014
3.5	0.002	0.0039	0.00000032	0.00000021	0.00004
4	0.001	0.0020	0.000000004	0.00000003	0.00001
					0.03877

Table 4.88: Estimation of sediment deposition in the porcupine field at section B for 16th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along	Height 'h'	(r) in (m)	sand V=(∏r ² h)/3	taking porosity into	trapped (kg) W=
the	(m)	r=h/tan Ø Ø=		consideration (m ³) V'	∂ V' ∂ = 2052
length		27°		= V-35% V	Kg/m ³
of the					
flume					
(m)					
0	0.01	0.0196	0.000004024	0.00002616	0.00537
0.5	0.009	0.0176	0.000002934	0.000001907	0.00391
1	0.007	0.0137	0.000001380	0.00000897	0.00184
1.5	0.01	0.0196	0.000004024	0.000002616	0.00537
2	0.011	0.0216	0.000005356	0.000003481	0.00714
2.5	0.01	0.0196	0.000004024	0.000002616	0.00537
3	0.008	0.0157	0.000002060	0.000001339	0.00275
3.5	0.005	0.0098	0.00000503	0.00000327	0.00067
4	0.004	0.0078	0.00000258	0.00000167	0.00034
					0.03276

Table 4.89: Estimation of sediment deposition in the porcupine field at section C for 16th trial

Total weight of sand deposited in the sixteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.06710+ 0.03877+ 0.03276) kg = 0.13864 kg

For 17th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of	Volume of sand	Weight of
along	'h' (m)) in (m) r=h/tan	sand V=(∏r²h)/3	taking porosity into	sand trapped
the		Ø Ø= 28°		consideration (m ³)	(kg) W= ∂ V' ∂
length				V' = V-34% V	= 2046 Kg/m ³
of the					
flume					
(m)					
0	0.014	0.0264	0.000010224	0.00006748	0.01381
0.5	0.013	0.0245	0.000008186	0.000005403	0.01105
1	0.012	0.0226	0.000006439	0.000004250	0.00869
1.5	0.011	0.0208	0.000004959	0.000003273	0.00670
2	0.008	0.0151	0.000001908	0.000001259	0.00258
2.5	0.006	0.0113	0.00000805	0.00000531	0.00109
3	0.005	0.0094	0.00000466	0.00000307	0.00063
3.5	0.001	0.0019	0.00000004	0.00000002	0.00001
4	0	0.0000	0.000000000	0.00000000	0.00000
					0.04455

Table 4.90: Estimation of sediment deposition in the porcupine field at section A for 17th trial
	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
Distance	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
along the	(m)	r=h/tan Ø Ø=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2046
length of		28°		V-34% V	Kg/m ³
the flume					_
(m)					
0	0.011	0.0208	0.000004959	0.000003273	0.0066971
0.5	0.01	0.0189	0.000003726	0.00002459	0.0050316
1	0.007	0.0132	0.000001278	0.00000844	0.0017258
1 5	0.006	0.0112	0.00000805	0.00000521	0.0010969
1.5	0.000	0.0115	0.000000805	0.000000551	0.0010808
2	0.006	0.0113	0.00000805	0.00000531	0.0010868
2.5	0.005	0.0094	0.000000466	0.00000307	0.0006290
3	0.002	0.0038	0.00000030	0.00000020	0.0000403
3.5	0.001	0.0019	0.000000004	0.00000002	0.000050
5.5	0.001	0.0015	0.000000004	0.00000002	0.0000000
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.01630

Table 4.91: Estimation of sediment deposition in the porcupine field at section B for 17th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along the	Height 'h'	(r) in (m)	sand V=(∏r ² h)/3	taking porosity into	trapped (kg) W= ∂
length of	(m)	r=h/tan ØØ=		consideration (m ³) V'	V'∂=2046 Kg/m³
the flume		28°		= V-34% V	
(m)					
0	0.004	0.0075	0.00000238	0.00000157	0.0003220
0.5	0.003	0.0057	0.00000101	0.00000066	0.0001359
1	0.006	0.0113	0.00000805	0.00000531	0.0010868
1.5	0.007	0.0132	0.000001278	0.00000844	0.0017258
2	0.008	0.0151	0.000001908	0.000001259	0.0025762
2.5	0.009	0.0170	0.000002716	0.000001793	0.0036680
3	0.005	0.0094	0.00000466	0.00000307	0.0006290
3.5	0.002	0.0038	0.00000030	0.00000020	0.0000403
4	0.001	0.0019	0.00000004	0.00000002	0.0000050
					0.01019

Table 4.92:	Estimation	of sediment	deposition	in the	porcupine	field at	section (c for	17th	trial
1 abit 4.72.	Louination	of seament	deposition	in the	porcupine	nonu ai	section c	/ 101	1 / ui	uiai

Total weight of sand deposited in the seventeenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.04445 + 0.01630 + 0.01019) kg = 0.07104 kg

For 18th Trial,

Distance	Ripple Height	Radius of Cone	Total Volume of	Volume of sand	Weight of
along	'h' (m)	(r) in (m)	sand V=(∏r²h)/3	taking porosity into	sand trapped
the		r=h/tan Ø Ø=		consideration (m ³)	(kg) W=∂ V'∂
length		28°		V' = V-34% V	= 2046 Kg/m ³
of the					
flume					
(m)					
	0.015	0.0202	0.000012576	0.000000000	0.01600
0	0.015	0.0283	0.000012576	0.000008300	0.01698
0.5	0.016	0.0302	0.000015262	0.000010073	0.02061
0.5	0.010	0.0002	0.000015202		0.02001
1	0.015	0.0283	0.000012576	0.00008300	0.01698
1.5	0.014	0.0264	0.000010224	0.00006748	0.01381
2	0.014	0.0264	0.000010224	0.000006748	0.01381
2.5	0.01	0.0189	0.000003726	0.000002459	0.00503
3	0.006	0.0113	0.00000805	0.00000531	0.00109
3.5	0.004	0.0075	0.00000238	0.00000157	0.00032
4	0.000	0.0028	0.000000000	0.000000000	0.00004
4	0.002	0.0058	0.00000050	0.00000020	0.00004
					0.08867

Table 4.93: Estimation of sediment deposition in the porcupine field at section A for 18th trial

Distance	Ripple	Radius of	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	Cone (r) in	of sand V=(porosity into	trapped (kg)
length of	(m)	(m) r=h/tan Ø	∏r² h)/3	consideration (m ³) V ¹	W=∂V'∂=
the flume		Ø= 28°		= V-34% V	2046 Kg/m ³
(m)					
	0.011	0.0208	0.000004050	0.00002272	0.0066071
U	0.011	0.0208	0.000004959	0.000003273	0.0066971
0.5	0.01	0.0189	0.000003726	0.000002459	0.0050316
1	0.008	0.0151	0.000001908	0.000001259	0.0025762
1.5	0.006	0.0113	0.00000805	0.00000531	0.0010868
2	0.004	0.0075	0.00000238	0.00000157	0.0003220
2.5	0.004	0.0075	0.00000238	0.00000157	0.0003220
3	0.003	0.0057	0.000000101	0.00000066	0.0001359
_					
3.5	0.001	0.0019	0.00000000	0.00000002	0.000050
5.5	0.001	0.0015	0.000000004	0.00000002	0.0000000
	0	0.0000	0.00000000	0.00000000	0.000000
4	0	0.0000	0.000000000	0.00000000	0.0000000
					0.01618

Table 4.94: Estimation of sediment deposition in the porcupine field at section B for 18th trial

Distance along the length of the flume (m)	Ripple Height 'h' (m)	Radius of Cone (r) in (m) r=h/tan Ø Ø= 28°	Total Volume of sand V=(∏r² h)/3	Volume of sand taking porosity into consideration (m ³) V' = V-34% V	Weight of sand trapped (kg) W= ∂ V' ∂ = 2046 Kg/m ³
0	0.008	0.0151	0.000001908	0.000001259	0.00258
0.5	0.006	0.0113	0.00000805	0.00000531	0.00109
1	0.007	0.0132	0.000001278	0.00000844	0.00173
1.5	0.009	0.0170	0.000002716	0.000001793	0.00367
2	0.009	0.0170	0.000002716	0.000001793	0.00367
2.5	0.011	0.0208	0.000004959	0.000003273	0.00670
3	0.007	0.0132	0.000001278	0.00000844	0.00173
3.5	0.004	0.0075	0.00000238	0.000000157	0.00032
4	0.003	0.0057	0.000000101	0.00000066	0.00014
					0.02161

Table 4.95: Estimation of sediment deposition in the porcupine field at section C for 18th trial

Total weight of sand deposited in the eighteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.08867+0.01618+0.02161) kg = 0.12645 kg

For 19th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of	Volume of sand	Weight of
along	'h' (m)) in (m) r=h/tan	sand V=(∏r ² h)/3	taking porosity into	sand trapped
the		Ø Ø= 27°		consideration (m ³)	(kg) W=∂ V'∂
length				V' = V-35% V	= 2052 Kg/m ³
of the					
flume					
(m)					
0	0.014	0.0275	0.000011042	0.000007177	0.0147280
0.5	0.012	0.0235	0.000006954	0.000004520	0.0092748
1	0.011	0.0216	0.00005356	0.000003481	0.0071439
1.5	0.01	0.0196	0.000004024	0.000002616	0.0053673
2	0.008	0.0157	0.00002060	0.000001339	0.0027481
2.5	0.006	0.0118	0.00000869	0.00000565	0.0011593
3	0.004	0.0078	0.00000258	0.00000167	0.0003435
3.5	0.002	0.0039	0.00000032	0.00000021	0.0000429
4	0.001	0.0020	0.00000004	0.00000003	0.0000054
					0.04081

Distance	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
length of	(m)	r=h/tan ØØ=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2052
the flume		27°	11 "	V-35% V	Kg/m ³
(m)		27			1.6/111
(11)					
0	0.012	0.0235	0.000006954	0.000004520	0.0092748
0.5	0.012	0.0235	0.000006954	0.000004520	0.0092748
1	0.011	0.0216	0.000005356	0.00003481	0.0071439
_		0.010			
1 5	0.009	0.0157	0.000000000	0.00001220	0.0027491
1.5	0.008	0.0157	0.00002060	0.00001339	0.0027481
2	0.005	0.0098	0.000000503	0.00000327	0.0006709
2.5	0.002	0.0039	0.00000032	0.00000021	0.0000429
3	0.002	0.0039	0.00000032	0.00000021	0.0000429
_					
2.5	0.001	0.0020	0.00000004	0.0000003	0.000054
5.5	0.001	0.0020	0.00000004	0.00000005	0.0000034
4	0	0.0000	0.000000000	0.000000000	0.0000000
					0.02920

Table 4.97: Estimation of sediment deposition in the porcupine field at section B for 19th trial

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along the	Height 'h'	(r) in (m)	sand V=(∏r ²	taking porosity into	trapped (kg) W=
length of	(m)	r=h/tan Ø Ø=	h)/3	consideration (m ³) V'	∂ V' ∂ = 2052
the flume		27°		= V-35% V	Kg/m ³
(m)					
0	0.005	0.0098	0.00000503	0.00000327	0.0006709
_					
0.5	0.007	0.0137	0.000001380	0.00000897	0.0018410
1	0.008	0.0157	0.00002060	0.000001339	0.0027481
1.5	0.009	0.0176	0.000002934	0.000001907	0.0039128
	0.000	0.0176	0.000000000	0.00001007	0.0000100
2	0.009	0.0176	0.00002934	0.00001907	0.0039128
2.5	0.004	0.0078	0.00000258	0.00000167	0.0003435
2.5	0.004	0.0070	0.00000250	0.00000107	0.0003433
3	0.003	0.0059	0.00000109	0.00000071	0.0001449
3.5	0.001	0.0020	0.00000004	0.00000003	0.0000054
4	0.001	0.0020	0.00000004	0.00000003	0.0000054
					0.01358

Total weight of sand deposited in the nineteenth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.04081+0.02920+0.01358) kg = 0.08360 kg

For 20th Trial,

Distance	Ripple Height	Radius of Cone (r	Total Volume of	Volume of sand	Weight of sand
along	'h' (m)) in (m) r=h/tan	sand V=(∏r ² h)/3	taking porosity into	trapped (kg)
the		Ø Ø= 27°		consideration (m ³)	W=∂V'∂=
length				V' = V-35% V	2052 Kg/m ³
of the					
flume					
(m)					
0	0.016	0.0214	0.000016482	0.000010714	0.0210846
0	0.010	0.0514	0.00010485	0.000010714	0.0219840
0.5	0.015	0.0204	0.000012581	0.00008838	0.0191149
0.5	0.015	0.0294	0.000013581	0.0000828	0.0181148
	0.010	0.0055	0.000000.44	0.0000057.47	0.0117020
1	0.013	0.0255	0.00008841	0.000005747	0.0117920
1.5	0.011	0.0216	0.000005356	0.000003481	0.0071439
2	0.01	0.0196	0.000004024	0.000002616	0.0053673
2.5	0.008	0.0157	0.00002060	0.000001339	0.0027481
3	0.005	0.0098	0.00000503	0.00000327	0.0006709
3.5	0.003	0.0059	0.00000109	0.00000071	0.0001449
4	0.001	0.0020	0.00000004	0.00000003	0.0000054
					0.06797

Table 4.99: Estimation of sediment deposition in the porcupine field at section A for 20th trial

EXPERIMENTAL WORK

Table 4.100: Estimation of sediment deposition in the porcupine field at section B for 20th trial

Distance	Ripple	Radius of Cone	Total Volume	Volume of sand taking	Weight of sand
along the	Height 'h'	(r) in (m)	of sand V=(porosity into	trapped (kg) W=
length of	(m)	r=h/tan Ø Ø=	∏r² h)/3	consideration (m ³) V' =	∂ V' ∂ = 2052
the flume		27°		V-35% V	Kg/m ³
(m)					
0	0.015	0.0204	0.000012581	0.00000838	0.0101140
0	0.015	0.0294	0.000013581	0.00008828	0.0181148
0.5	0.013	0.0255	0.000008841	0.000005747	0.0117920
1	0.012	0.0235	0.000006954	0.000004520	0.0092748
1.5	0.01	0.0196	0.000004024	0.00002616	0.0053673
2	0.009	0.0176	0.000002934	0.00001907	0.0039128
_					
25	0.006	0.0118	0 00000869	0.00000565	0.0011593
2.5	0.000	0.0118	0.000000809	0.000000505	0.0011393
3	0.004	0.0078	0.000000258	0.000000167	0.0003435
3.5	0.002	0.0039	0.00000032	0.00000021	0.0000429
4	0.001	0.0020	0.00000004	0.00000003	0.0000054
					0.05001

EXPERIMENTAL WORK

Table 4.101: Estimation	of sediment deposition	in the porcupine f	field at section C for 20th trial
	1	1 I	

Distance	Ripple	Radius of Cone	Total Volume of	Volume of sand	Weight of sand
along the	Height 'h'	(r) in (m)	sand V= $(\Pi r^2 h)/3$	taking norosity into	tranned (kg) W=
length of	(m)	r=h/tan Ø Ø=		consideration (m ³) V	O V' O = 2052
the flume		27°		= V-35% V	Kg/m ³
(m)					
(11)					
		0.0107			
0	0.007	0.0137	0.000001380	0.00000897	0.0018410
0.5	0.000	0.0457	0.000000000	0.00001220	0.0007404
0.5	0.008	0.0157	0.000002060	0.00001339	0.0027481
1	0.009	0.0157	0.000000000	0.00001220	0.0027481
L T	0.008	0.0157	0.000002060	0.00001339	0.0027481
1 5	0.000	0.0176	0.000000000	0.00001007	0.0020129
1.5	0.009	0.0176	0.00002934	0.00001907	0.0039128
2	0.011	0.0216	0.00005356	0.00003481	0.0071/130
2	0.011	0.0210	0.000005550	0.000003481	0.0071439
2.5	0.01	0.0196	0.000004024	0.00002616	0.0053673
2.5	0.01	0.0150	0.000004024	0.000002010	0.0055075
3	0.005	0.0098	0.00000503	0.00000327	0.0006709
	0.005	0.0050	0.000000000	0.00000027	0.0000705
35	0.004	0.0078	0.00000258	0.00000167	0.0003435
0.0	0.001	0.0070	0.00000230	0.00000107	
4	0.003	0.0059	0.00000109	0.00000071	0.0001449
					0.02492

Total weight of sand deposited in the twenteeth trial= Sand deposited at A + Sand deposited at B + Sand deposited at C = (0.06797 + 0.05001 + 0.02492) kg = 0.14291 kg

Chapter 5

RESULTS AND DISCUSSIONS

5.1 Velocity Index

Porcupine Field Velocity Index, $PFVI = (\frac{u/s - mid}{mid - d/s})$ is calculated for each experimental trial.

Table 5.1: Velocity Index calculation

Trial No.	Sediment Concentration	PFDI	Velocity			PFVI
			upstream	mid	downstream	
1	300	1.4	0.1798	0.138	0.0942	0.95
2	600	1.4	0.1677	0.1382	0.0911	0.63
3	300	1.4	0.1754	0.132	0.098	1.28
4	600	1.4	0.1771	0.1311	0.095	1.27
5	300	0.9	0.1812	0.1318	0.0951	1.35
6	600	0.9	0.1736	0.1385	0.091	0.74
7	300	0.9	0.1622	0.1239	0.099	1.54
8	600	0.9	0.1781	0.1265	0.0985	1.84
9	300	0.9	0.1724	0.1391	0.097	0.79
10	600	0.9	0.1734	0.1381	0.0981	0.72
11	300	1.4	0.1726	0.132	0.0973	0.75
12	600	1.4	0.1808	0.138	0.0975	0.62
13	300	0.9	0.1752	0.1386	0.0982	1.02
14	600	0.9	0.1742	0.1388	0.0977	1.14
15	300	0.9	0.1782	0.1351	0.0963	1.11
16	600	0.9	0.1752	0.1364	0.0965	0.97
17	300	1.4	0.1758	0.1318	0.0975	1.08
18	600	1.4	0.1718	0.1312	0.0921	1.16
19	300	1.4	0.1799	0.1341	0.0976	1.17
20	600	1.4	0.1715	0.1338	0.0983	1.06

RESULTS AND DISCUSSIONS

5.2 Calculation of Trap Efficiency (Phase 1)

 Table 5.2: Trap Efficiency calculation

Trial No.	Angle of porcupine placed	PCDI (L _r /L _c)	PFLF (L _s /L _c)	PFDI (L _r /L _s)	Velocity Index	Water Depth (cm)	Sediment Concentration q _s (ppm)	Weight of sand deposited(kg)	Weightof sand injected (kg)	Trap Efficiency(%)
1	20 ⁰ towards upstream	0.47	0.33	1.4	0.95	21	300	0.03729	5	0.75
2	10º towards upstream	0.47	0.33	1.4	0.63	21	600	0.13181	8	1.65
3	20 ⁰ towards upstream	0.7	0.5	1.4	1.28	21	300	0.03478	5	0.70
4	10 ⁰ towards upstream	0.7	0.5	1.4	1.27	21	600	0.09286	8	1.16
5	20 ⁰ towards upstream	0.3	0.33	0.9	1.35	21	300	0.02864	5	0.57
6	10 ⁰ towards upstream	0.3	0.33	0.9	0.74	21	600	0.11708	8	1.46
7	20 ⁰ towards upstream	0.45	0.5	0.9	1.54	21	300	0.02816	5	0.56
8	10 ⁰ towards upstream	0.45	0.5	0.9	1.84	21	600	0.08043	8	1.01
9	90° to the bank	0.45	0.5	0.9	0.79	21	300	0.06280	5	1.26
10	90° to the bank	0.3	0.33	0.9	0.88	21	600	0.11975	8	1.49
11	90° to the bank	0.7	0.5	1.4	0.75	21	300	0.05521	5	1.84
12	90° to the bank	0.47	0.33	1.4	0.62	21	600	0.11141	8	2.23

5.3 Comparison of Trap Efficiency with Different Indices and Their Graphical Representation

PFDI	Trap Efficiency (%) for q _s = 300 ppm	Trap Efficiency (%) for q _s = 600 ppm
0.9	0.56	1.01
1.4	0.70	1.16

Table 5.3: PFDI versus Trap efficiency for $q_s = 300$ ppm and $q_s = 600$ ppm

Fig.5.1: Plot of Trap efficiency versus PFDI

Series 1 represents plot of trap efficiency versus PFDI for $q_s = 300$ ppm

Series 2 represents plot of trap efficiency versus PFDI for $q_s = 600$ ppm

Conclusion: From figure 5.1, it is observed that there is more deposition of sediment for more sediment concentration and vice-versa. This means that trap efficiency increases with increase in sediment concentration, i.e. trap efficiency is directly proportional to sediment concentration

Table 5.4: PFDI versus Trap efficiency for PFLF = 0.5 and PFLF = 0.33, when 8 kg of sediment was injected

PFDI	Trap Efficiency (%) for PFLF = 0.33	Trap Efficiency (%) for PFLF = 0.5
0.9	1.46	1.01
1.4	1.65	1.16

Fig 5.2: PFDI versus Trap efficiency for PFLF = 0.5 and PFLF = 0.33, when 8 kg of sediment

Series 1 represents plot of trap efficiency versus PFDI for PFLF = 0.33, when 8 kg of sediment was injected

Series 2 represents plot of trap efficiency versus PFDI for PFLF = 0.5, when 8 kg of sediment was injected

Table 5.5: PFDI versus Trap efficiency for PFLF = 0.5 and PFLF = 0.33, when 5 kg of sediment was injected

PFDI	Trap Efficiency (%) for PFLF = 0.33	Trap Efficiency (%) for PFLF = 0.5
0.9	0.57	0.56
1.4	0.75	0.70

Fig 5.3: PFDI versus Trap efficiency for PFLF = 0.5 and PFLF = 0.33, when 5 kg of sediment was injected

Series 1 represents plot of trap efficiency versus PFDI for PFLF = 0.33, when 5 kg of sediment was injected

Series 2 represents plot of trap efficiency versus PFDI for PFLF = 0.5, when 5 kg of sediment was injected

Conclusion: From figure 5.2 and 5.3, it is observed that trap efficiency decreases with increase in PFLF i.e., trap efficiency is inversely proportional to PFLF

Table 5.6: PFDI versus Trap efficiency for PFLF = 0.5, when 5 kg and 8 kg of sediment was injected

PFDI	Trap Efficiency (%), when 5 kg sediment was injected	Trap Efficiency (%) when 8 kg sediment was injected
0.9	0.56	1.01
1.4	0.70	1.16

Fig 5.4: PFDI versus Trap efficiency for PFLF = 0.5, when 5 kg and 8 kg of sediment was injected

Series 1 represents plot of trap efficiency versus PFDI for PFLF = 0.5, when 5 kg of sediment was injected

Series 2 represents plot of trap efficiency versus PFDI for PFLF = 0.5, when 8 kg of sediment was injected

Table 5.7: PFDI versus Trap efficiency for PFLF = 0.33, when 5 kg and 8 kg of sediment was injected

PFDI	Trap Efficiency (%), when 5 kg sediment was injected	Trap Efficiency (%) when 8 kg sediment was injected
0.9	0.57	1.46
1.4	0.75	1.65

Fig 5.5: PFDI versus Trap efficiency for PFLF = 0.33, when 5 kg and 8 kg of sediment was injected

Series 1 represents plot of trap efficiency versus PFDI for PFLF = 0.33, when 5 kg of sediment was injected

Series 2 represents plot of trap efficiency versus PFDI for PFLF = 0.33, when 8 kg of sediment was injected

Conclusion: From figure 5.4 and 5.5, it is observed that trap efficiency increases with increase in amount of sediment injected i.e., trap efficiency is directly proportional to amount of sediment injected.

PFVI	Trap Efficiency (%)
0.75	1.84
0.79	1.26
0.95	0.75
1.28	0.70
1.35	0.57
1.54	0.56

Fig 5.6: PVFI versus Trap efficiency for $q_s = 300$ ppm

PFVI	Trap Efficiency (%)
0.62	2.23
0.63	1.65
0.72	1.49
0.74	1.46
1.27	1.16
1.84	1.01

Table 5.9 : PFVI versus Trap efficiency for $q_s = 600$

Fig 5.7: PVFI versus Trap efficiency for $q_s = 600$ ppm

Conclusion: From figure 5.6 and 5.7, it is observed that trap efficiency decreases with increase in PFVI and vice-versa i.e., trap efficiency is inversely proportional to PFVI. Also it is observed that velocity decreases with increase in sediment concentration and vice-versa.

Table 5.10: PFLF versus Trap efficiency for **PFDI** = 1.4, when porcupine is laid at 10^{0} and 20^{0} towards upstream and perpendicular to the bank

DFI F	Trap Efficiency					
ITLI	Perpendicular 10 ⁰		20 ⁰			
0.33	2.23	1.65	0.75			
0.5	1.84	1.16	0.70			

Fig. 5.8 PFLF versus Trap efficiency for PFDI = 1.4, when porcupine is laid at 10^0 and 20^0 towards upstream and perpendicular to the bank

Table 5.11: PFLF versus Trap efficiency for **PFDI** = **0.9**, when porcupine is laid at 10^{0} and 20^{0} towards upstream and perpendicular to the bank

DFI F	Trap Efficiency					
	Perpendicular 10 ⁰		20 ⁰			
0.33	1.49	1.46	0.57			
0.5	1.26	1.01	0.56			

Fig. 5.9 PFLF versus Trap efficiency for PFDI = 0.9, when porcupine is laid at 10^{0} and 20^{0} towards upstream and perpendicular to the bank

Conclusion: From fig 5.8 and 5.9 it is observed that trap efficiency decreases with increase in PFLF i.e trap efficiency is inversely proportional to PFLF. On the other hand, porcupines kept perpendicular to the bank resulted in higher efficiency compared to those inclined at 10^0 and 20^0 towards the upstream direction. So, the highest trap efficiency is observed when porcupines are perpendicular to the bank and the lowest trap efficiency observed when porcupines are placed 20^0 towards upstream.

5.4 Comparison of Trap efficiency with different sediment sample (Phase 2)

Since porcupine placed perpendicular to the bank has higher trap efficiency then the porcupine placed 10⁰ and 20⁰ towards upstream (result got from phase 1), therefore all the porcupine fields at Phase 2 are placed perpendicular to the bank. **Table 5.12**: Trap efficiency calculation

Trial No.	Angle of porcupine	Sediment Sample	PCDI	PFLF	PFDI	Velocity Index	Water Depth	Sediment Concentration	Weight of sand deposited	Weight of sand	Trap Efficiency
	placed	Ĩ				(PVFI)	(cm)	(ppm)	(kg)	injected (kg)	(%)
9	90^0 to the bank	Sediment 1	0.45	0.5	0.9	0.79	21	300	0.06280	5	1.26
10	90^0 to the bank	Sediment 1	0.3	0.33	0.9	0.88	21	600	0.11975	8	1.49
11	90^0 to the bank	Sediment 1	0.7	0.5	1.4	0.75	21	300	0.05521	5	1.84
12	90^0 to the bank	Sediment 1	0.47	0.33	1.4	0.62	21	600	0.11141	8	2.23
13	90^0 to the bank	Sediment 2	0.45	0.5	0.9	0.91	21	300	0.06796	3	2.27
14	90^0 to the bank	Sediment 2	0.3	0.33	0.9	0.86	21	600	0.12548	5	2.51
15	90^0 to the bank	Sediment 3	0.45	0.5	0.9	1.11	21	300	0.07728	3	2.58
16	90^0 to the bank	Sediment 3	0.3	0.33	0.9	0.97	21	600	0.13864	5	2.77
17	90^0 to the bank	Sediment 2	0.7	0.5	1.4	1.28	21	300	0.07104	3	2.37
18	90^0 to the bank	Sediment 2	0.47	0.33	1.4	1.04	21	600	0.12645	5	2.53
19	90^0 to the bank	Sediment 3	0.7	0.5	1.4	1.17	21	300	0.08360	3	2.79
20	90^0 to the bank	Sediment 3	0.47	0.33	1.4	1.06	21	600	0.14291	5	2.86

149 page

Table 5.13: PFLF versus Trap efficiency for **PFDI** = **1.4** for different Sediment Sample when porcupine is laid perpendicular to the bank

PFLF	Trap Efficiency					
	Sediment 1	Sediment 2	Sediment 3			
0.33	2.23	2.53	2.86			
0.5	1.84	2.37	2.79			

Fig. 5.10 PFLF versus Trap efficiency for PFDI = 1.4 for different Sediment Sample when porcupine is laid perpendicular to the bank

Table 5.14: PFLF versus Trap efficiency for **PFDI** = **0.9** for different Sediment Sample when porcupine is laid perpendicular to the bank

PFI F	Trap Efficiency					
	Sediment 1	Sediment 2	Sediment 3			
0.33	1.49	2.51	2.77			
0.5	1.26	2.27	2.58			

Fig. 5.11 PFLF versus Trap efficiency for PFDI = 0.9 for different Sediment Sample when porcupine is laid perpendicular to the bank

Conclusion: From fig 5.10 and 5.11 it is observed that for constant PFDI, trap efficiency decreases with increases in PFLF. On the other hand for constant PFDI Sediment 3 has higher trap efficiency than Sediment 1 and Sediment 2 i.e. Sediment 1 the has lowest trap efficiency and Sediment 3 has the highest trap efficiency.

Chapter 6

CONCLUSIONS AND FURTHER SCOPE OF THE STUDY

6.1 Conclusions

Twenty-four experiments were carried out to study the impact of various factors on sediment deposition patterns, including the length and spacing of retards, sediment concentration, water depth, and the inclination angle of porcupines towards the upstream direction. The sediment deposition patterns were calculated and visualized using contour plots created with Surfer software. The velocity was measured using the Acoustic Doppler Velocimeter (ADV) and the results were analysed to determine the relationship between different indices and trap efficiency. The results were then graphically represented to better understand the findings.

The results of the experiments showed that:

- 1. The trap efficiency increased proportionally with the increase in sediment concentration.
- 2. The trap efficiency decreased as the Porcupine Field Length Factor (PFLF) increased.
- 3. The trap efficiency was directly proportional to the amount of sediment injected.
- 4. The trap efficiency decreased as the Porcupine Field Velocity Index (PFVI) increased.
- 5. The Porcupine Field Velocity Index (PFVI) decreased inversely with the increase in sediment concentration.
- 6. The porcupines kept perpendicular to the bank resulted in higher trap efficiency compared to those inclined at 10^0 and 20^0 towards the upstream direction. So, the highest trap efficiency is observed when porcupines are perpendicular to the bank and the lowest trap efficiency observed when porcupines are placed 20^0 towards upstream.
- 7. Increasing sediment size increases the trap efficiency of sediment. For sediment 3 trap efficiency is the highest and for sediment 1 trap efficiency is the lowest.

The use of the porcupine system has been proven to be an efficient and cost-effective method for river training. It helps prevent scouring by promoting sediment deposition through the reduction of flow intensity caused by the decrease in flow velocity from the porcupines. The construction of these structures is straightforward and requires only basic materials such as concrete and steel rods, along with a limited number of nuts and bolts. The installation process is uncomplicated, involving simply placing the structures successively and connecting them using wire rope, requiring no specialized labour.

6.2 Further Scope

- 1. To create a comprehensive model for predicting sediment deposition patterns, and to evaluate its accuracy by comparing the results obtained from the model with those from various theoretical approaches.
- 2. To expand the scope of the experimental trials to include a wider range of variables, in order to gain a more thorough understanding of sediment deposition patterns in different conditions.
- 3. To investigate the effect of different porcupine shapes, such as prismatic shapes, on sediment deposition patterns. This could help to optimize the design of porcupine systems for specific river training application.

REFRENCES

- Foley, M.G. (1979), Mechanics of sediment transportation and alluvial stream problems, R. J. Garde and K. G. Ranga Raju, Halsted Press, New York (Wiley Eastern Limited, New Delhi), 1977. No. of pages: 483. Earth Surf. Process., 4: 304-305. https://doi.org/10.1002/esp.3290040321
- 2. Rijn, L. C. V. (1984). Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641.
- Nicholas, A. P. (2003). Modelling and monitoring flow and suspended sediment transport in lowland river flood plain. Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances, 45.
- 4. Singh, B., &Goswami, R. K. (2012). Anthropogenic influence on flow and sediment regime of a river basin. Int. J. Eng. Sci. Technol, 4, 30-37.
- 5. Aamir, M. and Sharma, N. (2014), "Sediment trap efficiency of porcupine systems for river bank protection", ISH- HYDRO 2014 INTERNATIONAL
- Aamir, M. and Sharma, N. (2015), "Efficiency of triangular and prismatic porcupines in capturing sediment for river training", HYDRO 2015 INTERNATIONAL, 20th International Conference on Hydraulics, Water Resources and River Engineering, IIT Roorkee, India
- Aamir, M. and Sharma, N. (2015), "River bank protection with porcupine systems: development of rational design methodology", ISH Journal of Hydraulic Engineering, 2015, Vol. 21, No. 3, 317–332
- 8. Brahmaputra board, (2012) "Protection of Majuli Island from floods and erosion"