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ABSTRACT 

 

 
In light of Guwahati's susceptibility to landslides, which annually impact human lives, there is an 

urgent necessity for effective risk mitigation strategies. Recognizing the critical importance of 

mapping landslide susceptibility zones, this study utilizes the Analytical Hierarchy Process (AHP) 

method within ArcGIS. The research integrates causative factor data sourced from diverse and 

credible sources to comprehensively map landslide-prone areas in Guwahati. In conjunction with 

this mapping effort, a slope stability analysis was conducted using SlopeW software. This analysis 

considered varying slope angles pertinent to Guwahati's terrain, alongside elevated seismic 

coefficients and adjustments in pore water pressure values. 

The combined results underscore the complex interplay of geological, hydrological, and seismic 

factors influencing slope stability. The study identifies 17 out of Guwahati's 60 municipality wards 

as highly susceptible to landslides, emphasizing the gravity of the situation and stressing the need 

for targeted intervention and mitigation measures. By integrating findings from both AHP-based 

susceptibility mapping and detailed slope stability analyses, this research provides a robust 

framework for informed decision-making and proactive management of landslide risks in 

Guwahati.
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

 

Landslides are geological phenomena characterized by the downward movement of rock, 

soil, and debris along a slope. They are natural hazards that occur when the stability of a 

slope is compromised, leading to the displacement of materials. Landslides can vary in 

scale, from small, localized events to large, catastrophic occurrences that can cause 

significant damage to the environment, infrastructure, and communities. 

 

 

 

Fig 1: A mudslide from the hills entirely demolished a house in Boragaon, 

Guwahati. The house was engulfed in flames, trapping four people inside 

Source: https://www.indiatodayne.in/assam/story/assam-landslides-guwahati- 

atleast-4-dead-388098-2022-06-14 

http://www.indiatodayne.in/assam/story/assam-landslides-guwahati-
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Fig 2: Five people of a family including three child died in landslide incident at 

Rakhaldubi area in Hailakandi district of Barak Valley. 

Source: https://www.thehansindia.com/posts/index/National/2016-05-18/Five-of- 
a-family-die-in-Assam-landslides/228841 

 

 

Landslides represent a significant geological hazard in India, affecting diverse landscapes 

from the Himalayan region to the Western Ghats. This susceptibility is underscored by the 

country's unique geological setting and climatic conditions. Several studies have delved 

into understanding the causes, characteristics, and implications of landslides in India, 

contributing to the body of knowledge on this complex natural phenomenon. 

India's geological diversity, notably the collision between the Indian and Eurasian tectonic 

plates, makes the Himalayan region prone to landslides. Studies by researchers such as 

Gupta et al. (2018) [1] have emphasized the link between tectonic activity and slope 

instability in these areas. The monsoon season plays a pivotal role in triggering landslides 

across the country. The study conducted by Singh and Patel (2019) [2] investigated the 

relationship between rainfall patterns and landslide occurrences, particularly in the 

Western Ghats and northeastern states. Anthropogenic activities have increasingly 

contributed to landslide risks. The work of Sharma et al. (2020) [3] highlighted the impact 

of deforestation and improper land use planning on landslide occurrences in hilly terrains. 

Historical landslide events have been extensively documented in literature, shedding light 

on their consequences and the need for effective 

http://www.thehansindia.com/posts/index/National/2016-05-18/Five-of-
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mitigation strategies. The analysis by Reddy and Kumar (2015) [4] of the Kedarnath 

disaster in 2013 provides valuable insights into the complex interplay of geological factors 

during such catastrophic events. 

Landslides pose a significant geohazard in Northeast India, where the combination of 

complex geological structures, high rainfall, and hilly terrains contributes to the 

susceptibility of the region. The city of Guwahati, being a prominent urban center in the 

Northeast, is particularly vulnerable to landslide events. Understanding the causes, 

patterns, and mitigation strategies specific to this region is crucial for sustainable 

development and risk reduction. The Northeastern region of India is characterized by 

intricate geological formations, with tectonic activity playing a significant role. Studies by 

researchers such as Sen et al. (2017) [5] have highlighted the geological complexities in 

the region and their influence on slope stability. The monsoon season, with its heavy and 

prolonged rainfall, exacerbates landslide risks in Northeast India. The work of Baruah and 

Das (2019) [6] investigated the monsoonal influences on landslide occurrences, 

emphasizing the need for a thorough understanding of precipitation patterns. Guwahati, as 

a rapidly growing urban center in the region, faces unique challenges concerning 

landslides. Studies by Bora et al. (2020) [7] explored the impact of urbanization on 

landslide susceptibility in the Guwahati region, underscoring the importance of responsible 

land-use planning. While historical landslide incidents have occurred in various parts of 

Northeast India, specific events in and around Guwahati have been documented. The 

analysis by Saikia and Hazarika (2018) [8] of historical landslide incidents in the Guwahati 

region provides insights into the local dynamics and consequences. 

1.2 GIS APPLICATIONS IN LANDSLIDE RESEARCH 

 
Landslides, as dynamic geological events, present complex challenges for research and 

hazard management. The integration of Geographic Information Systems (GIS) has 

significantly enhanced our understanding of landslide processes. This literature review 

explores key studies that highlight the diverse applications of GIS in landslide research, 

ranging from spatial analysis to decision support systems. 

GIS's ability to integrate diverse spatial datasets has been crucial in landslide research. 
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Researchers such as Lee et al. (2016) [9] emphasized the importance of incorporating 

topographical, geological, and hydrological data for a comprehensive understanding of 

landslide susceptibility. Terrain analysis is a cornerstone of GIS applications in landslide 

research. The work by Van Den Eeckhaut et al. (2012) [10] demonstrated the significance 

of DEM-based slope analysis in characterizing terrain features influencing landslide 

occurrence. GIS-based landslide susceptibility mapping has seen significant 

advancements. Studies by Guzzetti et al. (2006) [11] and Ohlmacher and Davis (2003) 

[12] utilized GIS to develop susceptibility models, integrating various factors such as land 

cover, slope, and lithology. The capability of GIS in change detection and monitoring has 

been underscored by researchers. Brabb and Harrod (2004) [13] highlighted the importance 

of GIS in detecting changes in land cover and terrain morphology as precursors to landslide 

events. GIS provides a robust platform for risk assessment and decision support. Recent 

work by Pourghasemi et al. (2019) [14] emphasized the integration of GIS with multi-

criteria decision analysis for a comprehensive landslide risk assessment. GIS facilitates the 

monitoring of changes in land cover, land use, and terrain over time. By comparing 

historical and current spatial data, researchers can identify areas susceptible to changes that 

might trigger landslides. This capability is essential for early warning systems and 

adaptive management strategie 
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CHAPTER 2 

LITERATURE REVIEW 

 

 
2.1 INTRODUCTION 

The literature work carried out by the researchers related to the field of the present study 

is in the section. Each of the literature is briefly described with its own outcome to support 

the undertaking of the present topic of interest 

2.2 DEFINITION: 

 
Varnes (1978) [15], proposed a seminal classification system, categorizing landslides into 

falls, slides, flows, and topples. This classification laid the groundwork for a systematic 

approach to understanding landslide processes. 

Hutchinson (1988) [16], emphasized the significance of slope movement, introducing key 

factors like shear strength and stress conditions as essential in the geological definition of 

landslides. 

Glade et al. (2000) [17], expanded the definition to include societal activities, land-use 

changes, and climate influences, reflecting a comprehensive understanding of the 

interactions shaping landslide occurrences. 

Crozier (2010) [18], highlighted the importance of incorporating remote sensing data for 

detecting, monitoring, and analyzing landslide events, emphasizing the role of technology 

in refining definitions. 

2.3 CLASSIFICATION 

 
Landslides are generally classified based on their movement, the type of material involved, 

and the specific triggering factors. Here is a general classification 

2.3.1 Based on Movement 

 

2.3.1.1 Rockslides: 
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Involving the sliding or falling of individual rock fragments. 

 

2.3.1.2 Rockfalls: 

 

Sudden, free-fall movement of individual rock blocks. 

 

2.3.1.3 Debris Flows: 

 

Rapid downslope movement of a mixture of soil, rock, water, and organic material. 

 

2.3.1.4 Mudslides: 

 

Movement of fine-grained, wet soil or earth material. 

 

2.3.1.5 Lahars: 

 

Specifically volcanic mudflows, often triggered by volcanic activity. 

 

2.3.2 Based on Material 

 

2.3.2.1 Rock Landslides: 

 

Involving primarily rock material. 

 

2.3.2.2 Earth Landslides: 

 

Involving soil and other unconsolidated materials. 

 

2.3.2.3 Debris Landslides: 

 

Comprising a mixture of rocks, soil, and other materials. 

 

2.3.3 Based on Triggering Factors: 

 

2.3.3.1 Rainfall-Triggered Landslides 

 

Caused by excessive rainfall, leading to saturation of soil. 

 

2.3.3.2 Earthquake-Induced Landslides: 

 

Triggered by seismic activity, often due to ground shaking. 
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2.3.3.3 Human-Induced Landslides: 

 

Resulting from human activities like excavation, construction, or deforestation. 

 

2.3.3.4 Volcanic Landslides: 

 

Associated with volcanic eruptions, including pyroclastic flows and lahars. 

 

2.4 TRIGGERING FACTORS OF LANDSLIDE: 

 
Kirschbaum et al. (2015) [19], provided an integrated framework considering both 

precipitation-induced and earthquake-triggered landslides. This approach acknowledges 

the diverse factors initiating slope failures. Their work highlights the importance of 

understanding the triggering mechanisms for effective landslide hazard assessment. 

Montgomery et al. (2003) [20], Focusing on rainfall-induced landslides, Montgomery et 

al. examined the role of antecedent soil moisture conditions. Their study emphasized the 

significance of the initial soil moisture content in influencing the susceptibility of slopes 

to rainfall-triggered landslides. 

Crozier (2010) [21], work delved into the impact of climate change on landslide activity. 

Changes in precipitation patterns and intensities associated with climate change were 

identified as potential triggers for increased landslide occurrences. This study underscores 

the importance of considering long-term climatic trends. 

Guzzetti et al. (2008) [22], conducted a comprehensive analysis of landslide-triggering 

rainfall events. Their study identified critical rainfall thresholds for different regions, 

emphasizing the importance of rainfall intensity, duration, and cumulative rainfall as 

triggering factors. 

Gariano and Guzzetti (2016) [23], extended the research on rainfall-triggered landslides 

by proposing an early warning model. Their work incorporates real-time rainfall data to 

assess the potential for landslide occurrence, contributing to proactive risk management. 

Caine (1980) [24], focused on seismic triggers for landslides. The study highlighted the 

influence of ground shaking, acceleration, and slope angle on earthquake-induced slope 
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failures. Understanding the seismic parameters involved is crucial for assessing landslide 

susceptibility in seismic-prone regions. 

Schuster and Highland (2001) [25], examined the triggering mechanisms of landslides in 

volcanic terrains. They identified volcanic activity, such as eruptions and lava flow 

interactions, as significant triggers for slope instability. This research expands our 

understanding of the diverse factors influencing landslide occurrence. 

Crosta and Frattini (2003) [26], investigated the role of human activities in landslide 

initiation. Their study emphasized the impact of excavation, deforestation, and 

urbanization on slope stability, highlighting the need for sustainable land-use practices to 

mitigate landslide risk. 

Bovenga et al. (2018) [27], explored the influence of soil moisture variations detected by 

satellite-based Synthetic Aperture Radar (SAR) on landslide occurrence. Their research 

showcased the potential of remote sensing technologies in monitoring and understanding 

the temporal dynamics of landslide-triggering factors. 

Hungr et al. (2014) [28], investigated the role of rapid snowmelt in slope failures. Their 

study underscored how the rapid release of snowpack water content can contribute to 

increased pore pressures, influencing landslide initiation. 

2.5 STUDY APPROACH OF LANDSLIDES: 

 
Hungr et al. (2014) [29], Hungr and co-authors provided a comprehensive update on the 

Varnes classification of landslide types, presenting an essential framework for 

understanding and categorizing landslides. The Varnes classification system offers a 

systematic approach that considers the type and rate of movement, providing a basis for 

landslide hazard assessment. This classification has been widely accepted and utilized by 

researchers, geologists, and practitioners globally, serving as a fundamental tool for 

characterizing landslide events based on their distinctive features. 

Sassa (1999) [30], Sassa's work focused on the study approach of landslides from a 

geotechnical engineering perspective. The research proposed a simplified system based on 

geotechnical concepts, emphasizing terms like liquefaction and pre-shearing of clays. 
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This approach facilitates a better understanding of the mechanical behavior of slopes, 

contributing to the assessment of landslide susceptibility and risk in geotechnically 

challenging terrains. 

Bovenga et al. (2018) [31], Bovenga and colleagues approached landslide studies by 

leveraging advanced technologies, particularly remote sensing. Their research showcased 

the potential of Synthetic Aperture Radar (SAR) for monitoring soil moisture variations, 

offering a valuable tool for understanding the temporal dynamics of landslides. This study 

highlights the importance of integrating remote sensing techniques into the study approach 

for enhanced landslide detection and monitoring capabilities. 

Montgomery et al. (2003) [32], Montgomery and team contributed to the study approach 

by investigating rainfall-induced landslides. Their research emphasized the role of 

antecedent soil moisture conditions as a critical factor influencing landslide susceptibility. 

This approach enhances our understanding of the hydrological aspects of landslides, 

particularly the relationship between rainfall patterns and slope stability. 

Kirschbaum et al. (2015) [33], Kirschbaum et al. presented an integrated study approach 

that considers both precipitation-induced and earthquake-triggered landslides. Their 

research emphasized the need for a holistic understanding of landslide triggers for effective 

hazard assessment. By combining various triggering mechanisms, this approach provides 

a more comprehensive view of landslide occurrences, aiding in the development of robust 

landslide risk management strategies. 

Sidle et al. (2017) [34], Sidle and colleagues contributed to the study approach by 

investigating the impacts of deforestation on landslide occurrence. Their research 

highlighted the importance of land-use practices in influencing slope stability, emphasizing 

the need for sustainable land management to mitigate landslide risk. 

Crozier (2010) [35], Crozier's work delved into the impact of climate change on landslide 

activity. Changes in precipitation patterns and intensities associated with climate change 

were identified as potential triggers for increased landslide occurrences. This study 

underscores the importance of considering long-term climatic trends. 

Gariano and Guzzetti (2016) [36], In a further development, Gariano and Guzzetti 
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extended the research on rainfall-triggered landslides by proposing an early warning 

model. Their work incorporates real-time rainfall data to assess the potential for landslide 

occurrence, contributing to proactive risk management. 

Guzzetti et al. (2008) [37], Guzzetti and collaborators conducted a comprehensive analysis 

of landslide-triggering rainfall events. Their study identified critical rainfall thresholds for 

different regions, emphasizing the importance of rainfall intensity, duration, and 

cumulative rainfall as triggering factors. 

2.6 LANDSLIDE SUSCEPTIBILITY: 

 
Van Westen et al. (2003) [38], Van Westen and colleagues provided a foundational 

definition of landslide susceptibility, emphasizing the concept as a measure of the 

likelihood of a location to experience landslides. Their work highlighted the importance of 

understanding the spatial distribution and interaction of various factors contributing to 

landslide occurrence. 

Guzzetti et al. (2006) [39], Guzzetti and co-authors contributed to the definition by 

considering landslide susceptibility as a spatial probability assessment based on the 

presence of conditioning factors. Their study emphasized the need for quantitative models 

to express susceptibility, incorporating factors such as slope, lithology, and land use. 

Ayalew and Yamagishi (2005) [40], Ayalew and Yamagishi defined landslide 

susceptibility as the inherent predisposition of an area to landslides based on geological, 

geomorphological, and environmental factors. Their research emphasized the use of GIS 

and statistical models to quantify and map susceptibility for effective hazard assessment. 

Van Den Eeckhaut et al. (2006) [41], Van Den Eeckhaut and colleagues extended the 

definition by incorporating dynamic factors such as climate and land-use changes into the 

assessment of landslide susceptibility. Their work highlighted the evolving nature of 

susceptibility over time and the importance of considering temporal aspects in 

susceptibility definitions. 

Ohlmacher and Davis (2003) [42], Ohlmacher and Davis contributed to the definition by 
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introducing the Weight of Evidence method for landslide susceptibility assessment. They 

emphasized the concept of evidence weightings based on the spatial relationships between 

conditioning factors and landslide occurrences. 

Carrara et al. (1999) [43], Carrara and collaborators defined landslide susceptibility as a 

measure of the likelihood of slope failure based on the spatial distribution of factors that 

influence slope stability. Their work underscored the integration of various data types, 

including remote sensing and GIS, to enhance the accuracy of susceptibility assessments. 

Chung and Fabbri (2000) [44], Chung and Fabbri's work added a fuzzy set theory 

perspective to the definition of landslide susceptibility. They defined susceptibility as a 

degree of membership in a fuzzy set representing the potential for landslides, 

acknowledging the uncertainty and imprecision inherent in susceptibility assessments. 

Pradhan (2010) [45], Pradhan extended the definition by introducing machine learning 

approaches, such as Artificial Neural Networks (ANNs), for landslide susceptibility 

assessment. The definition emphasized the ability of these models to capture complex 

relationships among conditioning factors. 

2.7 ADVANCEMENTS IN LANDSLIDE SUSCEPTIBILITY 

MAPPING: 

Lee et al. (2004) [46], Lee and co-authors conducted a pioneering study on landslide 

susceptibility mapping using a GIS-based approach. Their research focused on the 

integration of various factors, including slope, lithology, land use, and precipitation, to 

assess and map landslide susceptibility. This work laid the foundation for subsequent 

studies in the field of landslide susceptibility mapping. 

Van Westen et al. (2008) [47], Van Westen and colleagues contributed significantly to the 

advancement of landslide susceptibility assessment by introducing the Analytical 

Hierarchy Process (AHP) method. Their research emphasized the importance of 

integrating expert knowledge to assign weights to different susceptibility factors, providing 

a more accurate and robust landslide susceptibility mapping approach. 

Guzzetti et al. (1999) [48], Guzzetti and team explored the use of statistical models, 
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particularly logistic regression, for landslide susceptibility mapping. Their study 

demonstrated the effectiveness of incorporating conditioning factors such as land cover, 

lithology, and slope angle to develop a quantitative model for assessing landslide 

susceptibility. 

Ohlmacher and Davis (2003) [49], Ohlmacher and Davis contributed to the field by 

introducing a statistical index known as the Weight of Evidence (WoE) method for 

landslide susceptibility assessment. Their study emphasized the significance of considering 

the spatial distribution of conditioning factors and their relationships with landslide 

occurrences. 

Ayalew and Yamagishi (2005) [50], Ayalew and Yamagishi conducted research on 

landslide susceptibility mapping in the Upper Blue Nile River basin, Ethiopia, using a 

combination of GIS and remote sensing techniques. Their study highlighted the potential 

of satellite imagery and GIS-based approaches in delineating susceptible areas and 

assessing landslide susceptibility. 

Pradhan (2013) [51], Pradhan's work focused on the application of machine learning 

algorithms, particularly the Artificial Neural Network (ANN), for landslide susceptibility 

mapping. This research demonstrated the capability of ANN models in capturing complex 

relationships among landslide-related factors, leading to improved accuracy in 

susceptibility assessments. 

Hong et al. (2004) [52], Hong and co-authors explored the integration of rainfall-induced 

landslides and susceptibility mapping. Their study emphasized the temporal dynamics of 

landslide susceptibility, particularly during heavy rainfall events, providing insights into 

the importance of considering dynamic factors in susceptibility assessments. 

Chung and Fabbri (1999) [53], Chung and Fabbri's research laid the groundwork for fuzzy 

logic-based approaches in landslide susceptibility mapping. Their study introduced the 

Fuzzy Algebraic Sum Model, showcasing the potential of fuzzy set theory in handling 

uncertainties and incorporating expert knowledge for more realistic susceptibility 

assessments. 
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2.8 GIS FOR LANDSLIDE ANALYSIS 

 
Carrara et al. (1991) [54], laid the foundation for the application of Geographic Information 

Systems (GIS) in mapping landslide hazard. The study emphasized the significance of GIS 

technology in integrating various spatial data, including terrain parameters, geological 

information, and land cover, to assess and map areas prone to landslides. This work marked 

a pivotal moment in utilizing GIS for landslide analysis. 

Guzzetti et al. (1999) [55], provided a comprehensive review of landslide hazard 

evaluation techniques, focusing on a multi-scale study in Central Italy. The research 

emphasized the role of GIS in analyzing and synthesizing diverse spatial data for landslide 

susceptibility assessment. The study underscored the importance of GIS in understanding 

landslide processes at different scales. 

Lee and Talib (2005) [56], contributed to the literature by exploring probabilistic methods 

for landslide susceptibility mapping using GIS. The study incorporated factor effect 

analysis, highlighting the role of GIS in handling spatial data and assessing the influence 

of various factors on landslide occurrence. Probabilistic approaches within GIS provide a 

valuable framework for quantifying landslide susceptibility. 

Van Westen et al. (2003) [57], focused on the integration of geomorphological information 

in indirect landslide susceptibility assessment through GIS. The study emphasized the 

importance of utilizing GIS for processing and analyzing geomorphic data to enhance the 

accuracy of landslide susceptibility assessments. GIS played a crucial role in incorporating 

landscape characteristics into the analysis. 

Ohlmacher and Davis (2003) [58], demonstrated the effectiveness of multiple logistic 

regression and GIS technology in predicting landslide hazard. The study, conducted in 

northeast Kansas, USA, showcased the integration of GIS for spatial analysis and 

modeling, incorporating factors such as slope, land use, and soil properties in landslide 

susceptibility assessments. 

2.9 APPLICATIONS OF GIS SOFTWARE IN SPATIAL DATA 

ANALYSIS AND MAPPING: 
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Geographic Information System (GIS) software, essential for spatial data analysis and 

mapping, encompasses a variety of applications, including proprietary solutions like 

ArcGIS by ESRI, open-source alternatives such as QGIS and GRASS GIS, cloud-based 

platforms like Google Earth Engine, statistical computing with R, and collaborative 

mapping through OpenStreetMap. 

2.10 ARC GIS: 

 
ArcGIS by ESRI is a widely recognized GIS software known for its comprehensive 

functionalities. Researchers leverage its capabilities for landslide susceptibility mapping, 

integrating various factors such as terrain, geology, and land use to produce accurate and 

informative susceptibility models. 

Lee et al. (2003) [59], employed ArcGIS in their study, utilizing likelihood ratio and 

logistic regression models for landslide susceptibility mapping in Janghung, Korea. The 

research demonstrated the effectiveness of ArcGIS in handling complex spatial analyses 

for susceptibility assessments. Pradhan et al. (2010) [60], utilized ArcGIS for GIS-based 

landslide susceptibility mapping, incorporating probabilistic likelihood ratio and spatial 

autocorrelation weight methods. The study showcased the usability of ArcGIS in 

integrating diverse modeling techniques for accurate susceptibility assessments. Yilmaz 

(2009) [61], applied ArcGIS alongside various methods such as frequency ratio, logistic 

regression, and artificial neural networks for landslide susceptibility mapping in Tokat, 

Turkey. The research highlighted ArcGIS's compatibility with different modeling 

approaches in landslide studies. Hong et al. (2007) [62], incorporated ArcGIS in their 

global landslide susceptibility mapping, emphasizing the integration of satellite remote 

sensing data. The study underscored the significance of ArcGIS in handling large-scale 

data for comprehensive susceptibility assessments. Ayalew and Yamagishi (2005) [63], 

employed ArcGIS in their study, utilizing logistic regression for landslide susceptibility 

mapping in the Kakuda-Yahiko Mountains, Central Japan. The research illustrated the 

usability of ArcGIS in logistic regression modeling for localized susceptibility 

assessments. 
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2.11 ANALYTICAL HIERARCHY PROCESS (AHP): 

 
The Analytical Hierarchy Process (AHP) is a multi-criteria decision-making method that 

helps in dealing with complex decisions involving multiple criteria and alternatives. It was 

introduced by Thomas L. Saaty in the 1970s. 

Thomas L. Saaty's (1980) [64] foundational work provides the fundamental principles and 

methodologies of the AHP. This book introduces the AHP as a decision-making tool for 

complex problems, emphasizing its application in planning, priority setting, and resource 

allocation. Saaty, T. L. (1990) [65], delves into the detailed process of utilizing AHP for 

decision-making. The paper provides insights into the step-by-step methodology, 

emphasizing its practical application in real-world scenarios. Saaty, T. L. (2008) [66], 

explores decision-making applications of the AHP in various service sectors. The article 

discusses the flexibility and adaptability of the AHP across different domains, showcasing 

its versatility as a decision support tool. Ishizaka, A., & Labib, A. (2009) [67], critically 

examine the benefits and limitations of the AHP in their paper. This contribution provides 

a comprehensive understanding of the method's strengths and challenges, contributing to 

the ongoing discourse on AHP. Opricovic, S., & Tzeng, G. H. (2004) [68], extends the 

discussion to comparative analyses of AHP with other Multiple Criteria Decision Making 

(MCDM) methods, shedding light on its relative effectiveness in decision-making 

processes. 

2.12 WEIGHT OVERLAY METHOD: 

 
The Weight Overlay Method is a GIS technique used for combining and analyzing multiple 

spatial datasets by assigning different weights to each layer based on their relative 

importance. 

Ishizaka, A., & Labib, A. (2009) [69], critically examines the benefits and limitations of 

the Weight Overlay Method. The paper provides insights into the method's practical 

applications in decision-making scenarios, offering a comprehensive understanding of its 

strengths and challenges. Opricovic, S., & Tzeng, G. H. (2004) [70], contribute to the 

discourse by presenting a comparative analysis of compromise solutions using Multiple 

Criteria Decision Making (MCDM) methods, including the Weight Overlay Method. The 
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analysis sheds light on the method's effectiveness in providing compromise solutions. 

Saaty, T. L. (1980) [71], work on the Analytic Hierarchy Process (AHP) also discusses the 

Weight Overlay Method as part of a broader decision-making framework. Saaty's 

contribution provides a foundational understanding of the method's integration within the 

AHP. Saaty, T. L. (1990) [72], delves into the detailed process of utilizing the Weight 

Overlay Method for decision-making. The paper emphasizes the step-by-step 

methodology, offering practical insights into its application in various real-world 

scenarios. Saaty, T. L. (2008) [73], explores decision-making applications of the Weight 

Overlay Method in various service sectors. The article discusses the method's flexibility 

and adaptability across different domains, showcasing its versatility as a decision support 

tool. 

2.13 INDIAN STANDARD CODE PROVISIONS 

 
The Bureau of Indian Standards (BIS) has outlined guidelines for the macro-level landslide 

hazard zonation in India, specifically detailed in IS 14496 Part 2: 1998 (Reaffirmed 2002). 

This standard adopts a heuristic approach for landslide hazard assessment, employing a 

factor rating scheme to evaluate susceptibility in a 1:50,000 scale. The framework 

incorporates six key causative factors essential for hazard zonation, namely lithology, 

geological structure, slope characteristics, land morphology, land use patterns, land cover 

attributes, and hydrological conditions. 

2.14 Slope Stability Analysis 

Slope stability analysis is a critical area of geotechnical engineering aimed at assessing the 

stability of natural and engineered slopes under various conditions. Understanding factors 

influencing slope stability is crucial for infrastructure development, environmental 

management, and hazard mitigation. 

2.15 OBJECTIVE 

 
The primary objective of this study is to generate a landslide susceptibility map for 

Guwahati city. To achieve the primary objective, the study encompasses the following key 

aspects: 

a. Undertake a thorough investigation into the causative factors influencing landslides, 
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including geological, topographical, and anthropogenic elements. Explore and analyze data 

extraction techniques from diverse authentic sources to ensure the acquisition of accurate 

and reliable information for landslide susceptibility mapping. 

b. Develop a comprehensive understanding of the ArcGIS application, emphasing 

functionalities, tools, and capabilities relevant to landslide susceptibility mapping. 

c. Apply the acquired knowledge to perform landslide analysis within the ArcGIS software, 

utilizing appropriate methodologies and tools for accurate susceptibility assessment. 

d. Validate the generated landslide susceptibility map by comparing it with the existing 

landslide inventory data specific to Guwahati city, ensuring the accuracy and reliability of 

the developed map. 

e. Conduct a slope stability analysis using SlopeW software to evaluate various slope 

angles relevant to Guwahati City, considering elevated seismic coefficients and varying 

pore water pressure values.
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CHAPTER 3 

STUDY AREA AND METHODOLOGY 

 
3.2. AREA OF INTEREST 

Guwahati, the largest city in Assam, India, is situated at approximately (26°4’45’’ - 26°14’) 

N latitude and (91°33’ - 91°52’6”) E longitude along the southern bank of the Brahmaputra 

River. Administered through a total of 60 municipal wards, covering an expansive area of 

about 328 square kilometers, Guwahati is characterized by its undulating terrain, 

surrounded by prominent hills like Jalukbari/Lankeswar, Fatasil, Gotanagar, Kharguli, 

Navagraha, Noon mati, Kamakhya/Nilachal, Kalapahar, Narangi, Hangrabari, Sarania, 

Narakashur, Sunsali, Kainadhara, Khanapara, and Garbhanga. The city's topography, 

coupled with a monsoon climate, exposes it to landslide risks, particularly in areas with 

steep slopes and loose soil. Notably, Nilachal Hill hosts the Kamakhya Temple, a cultural 

and spiritual landmark. Guwahati's unique geographical features and susceptibility to 

landslides underscore the importance of comprehensive mapping and risk mitigation 

strategies for sustainable urban development. 
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Fig 3: Guwahati Municipality Ward Map of 2022 

(Source: Guwahati Municipal Corporation) 
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3.3 HISTORY OF LANDSLIDE OCCURANCE 

Situated amidst the scenic landscapes of northeastern India, Guwahati has been shaped by 

its unique topography, featuring lush hills, intermontane valleys, and the mighty 

Brahmaputra River. In the backdrop of this dynamic terrain, landslides have become a 

recurrent natural event, leaving a significant imprint on the city's history. Examining the 

historical record of landslides is essential for understanding the city's vulnerability and 

formulating effective strategies for risk mitigation. 

The documented history of landslides in Guwahati offers valuable insights into the 

patterns, frequencies, and spatial distribution of these events. Drawing on data from 

NASA's comprehensive landslide inventory, which meticulously catalogues instances of 

landslides, our exploration aims to uncover the historical nuances that have influenced the 

city's susceptibility to such geological phenomena. 

This retrospective analysis not only illuminates the natural processes contributing to 

landslides but also underscores the human factors that may intensify the risk. As we embark 

on this journey, a thorough understanding of Guwahati's historical landslide occurrences 

becomes the cornerstone for our contemporary endeavors in landslide susceptibility 

mapping. This knowledge forms the basis for developing proactive measures to protect the 

city's residents and infrastructure from the ongoing challenges posed by landslides. 

 
Table 1: Landslide inventory of Guwahati City occurred during 2007 to 2017 (Source: NASA) 

 

Sl. No Date Source Place Trig Factor 

1 7/19/2007 Saharas Samay Guwahati Rain 

2 9/13/2007 Saharas Samay Guwahati Rain 

3 
4/20/2010 

Assam Tribune 
Raj Bhavan Guwahati, 

Assam 
Downpour 

4 
4/20/2010 

Assam Tribune 
Kharghuli, Guwahati, 

Assam 
Downpour 

5 
9/23/2011 

Nbtvlive 
Maighuli, Guwahati, 

Meghalaya 
Downpour 

6 6/2/2012 Ibnlive.in Guwahati , Assam Downpour 

7 6/20/2012 twocircles.net Lalunggaon, Downpour 
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   Guwahati, Assam  

8 6/22/2012 thesop.org Gorchuk area Downpour 

9 
5/11/2013 articles.timesofindi 

a.indiatimes.com 

Sarania Hills, North 

Guwahati , Guwahati 
Rain 

10 

5/11/2013 
articles.timesofindi 

a.indiatimes.com 

Nursery, North 
Guwahati, Guwahati, 

Assam 
Rain 

11 
10/6/2013 articles.timesofindi 

a.indiatimes.com 
Nilachal Hill, 

Guwahati, Assam 
Downpour 

12 
10/6/2013 articles.timesofindi 

a.indiatimes.com 
Batahguli, Guwahati, 

Assam 
Downpour 

13 6/26/2014 Two Circles Narakasur Continuous _ rain 

14 6/26/2014 Two Circles Bamunimaidam Continuous _rain 

15 6/27/2014 Assam Times Bhangagarh, Assam Rain 

16 
6/28/2014 

Assam Times 
Kharghuli Hills, 

Assam 
Rain 

17 9/22/2014 Assam Tribune VIP Road Rain 

18 9/22/2014 Assam Tribune Dakhingaon Rain 

19 9/22/2014 Assam Tribune Noonmati Rain 

20 9/22/2014 Assam Tribune Dhirenpara Rain 

21 9/22/2014 Assam Tribune Batahghuli Rain 

22 9/22/2014 Assam Tribune Lalmati Rain 

23 2/14/2015 Telegraph Kailashpur Hill Mining 

24 9/23/2015 Assam Times Kamakhya Temple Continuous_rain 

25 6/22/2016 NYOOOZ Piyali Phukan Nagar Downpour 

26 

7/14/2016 

Indian Express 

Pub sarania hill, South 

Sarania, Guwahati, 

Assam, India 
Monsoon 

 

27 

7/14/2016 
 

Indian Express 

Noonmati Nijarapar 

area of the city, 

Guwahati, Assam, 
India 

 

Monsoon 

28 
7/20/2016 

Times of India 
Noonmati, Guwahati, 

Assam,India 
Rain 

29 
12/15/201 

6 
NBC Daily 

Landslide at Pub 
Sarania Hill 

Unknown 

30 
12/15/201 

6 
NBC Daily 

Landslide at Noonmati 
Nijarapar 

Unknown 

31 
7/6/2017 

DY365 
Landslide crushes 

house 
Continuous_rain 

32 
7/10/2017 The Assam 

Tribune 
Landslide damages 

house 
Continuous_rain 

33 
7/10/2017 The Assam 

Tribune 
Landslide in 
Chandmari 

Continuous _rain 
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Fig 4: Landslide inventory of Guwahati City occurred during 2007 to 2017 

(Source: NASA) 
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3.3 CAUSATIVE FACTORS CONSIDERED FOR THE LANDSLIDE 

SUSCEPTIBILITY MAPPING 

3.3.1 Slope 

Slope steepness is a critical factor influencing landslides. Steeper slopes are generally more 

prone to instability, as gravitational forces act more strongly on inclined surfaces, leading 

to increased potential for slope failure. Ishizaka, A., & Labib, A. (2009) [74], conducted a 

comprehensive study on the influence of slope on landslide occurrence. Their research 

highlighted the correlation between slope steepness and the likelihood of landslides. 

3.3.2 Aspect 

Aspect, or the orientation of slopes, plays a role in landslide susceptibility. Certain aspects 

receive more sunlight and precipitation, affecting soil moisture and erosion rates, thus 

influencing landslide occurrence. Van Den Eeckhaut et al. (2007) [75], explored the impact 

of aspect on landslide susceptibility. Their study emphasized how the orientation of slopes 

contributes to variations in landslide occurrence 

3.3.3 Roughness 

Surface roughness refers to the irregularity of terrain. Rougher terrains may provide more 

opportunities for water retention and soil entrapment, influencing landslide initiation and 

movement. Xie et al. (2011) [76], investigated the role of surface roughness in landslide 

initiation. Their research demonstrated how variations in terrain roughness influence slope 

stability. 

3.3.4 Hill Shade 

Hill shade represents the shading effect on terrain features due to sunlight. It influences the 

distribution of solar radiation, affecting soil moisture, temperature, and vegetation, thereby 

impacting landslide susceptibility. Sun, Wu, and Su (2013) [77], focused on the 

significance of hill shade in landslide susceptibility mapping. Their study highlighted the 

shading effects on terrain features and their relation to landslide-prone areas. 

3.3.5 Average Rainfall 

Precipitation, especially in the form of heavy rainfall, can saturate soils and increase pore 

water pressure, reducing soil cohesion. High average rainfall is a key trigger for 
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landslides. Chen et al. (2015) [78], delved into the influence of average rainfall on landslide 

occurrence. Their research emphasized the role of precipitation patterns and intensity in 

triggering landslides. 

3.3.6 Land Use and Land Cover 

Human activities, land development, and changes in land cover can alter the stability of 

slopes. Deforestation, urbanization, and agricultural practices contribute to increased 

landslide susceptibility. Pan et al. (2015) [79], investigated the impact of land use and land 

cover on landslide susceptibility. Their study highlighted the role of human activities and 

vegetation in slope stability. 

3.3.7 Lithology 

Geological characteristics, such as rock type and composition, influence landslide 

susceptibility. Weaker lithologies are more prone to slope failures, and different rock types 

respond differently to external forces. Ayalew, Yamagishi, and Ugawa (2004) [80] 

explored the influence of lithology on landslide susceptibility. Their research emphasized 

how geological characteristics contribute to slope instability. 

3.3.8 Geomorphology 

Landforms and geomorphic features can indicate past and potential landslide areas. Certain 

landforms, such as steep cliffs or concave slopes, are more predisposed to landslides. 

Günther and Reichenbach (2003) [81], studied the relationship between geomorphology 

and landslides. Their research highlighted how specific landforms contribute to landslide 

occurrence. 

3.3.9 Distance from Road 

Roads can alter the natural drainage patterns and stability of slopes. Excavations during 

road construction, as well as increased water runoff, can contribute to landslide 

susceptibility near roads. Chen, Lee, and Chang(2016) [82], investigated the impact of 

distance from road on landslide susceptibility. Their study emphasized the influence of 

road construction and maintenance on slope stability. 

3.3.10 Distance from Railway 

Similar to roads, railways can impact slope stability. Cut-and-fill operations during railway 

construction, as well as changes in drainage patterns, can influence landslide occurrence 

near railway tracks. Tien Bui et al. (2016) [83], explored the influence of distance from 

railway on landslide susceptibility. Their research highlighted how railway 
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infrastructures can affect slope stability. 

 

 

3.4 BASICS OF ARCGIS 

ArcGIS, developed by Esri, is a powerful Geographic Information System (GIS) software widely utilized 

for spatial analysis, mapping, and geospatial data management. Understanding the basics of ArcGIS is 

foundational for integrating geospatial technology into landslide susceptibility mapping. 

3.4.1 Introduction to Key Terms 

3.4.1.1 Vector Data 

In the realm of ArcGIS, spatial data is categorized into two main types: vector and raster. 

Vector data represents geographic features using points, lines, and polygons. Points denote 

specific locations, lines represent linear features, and polygons enclose areas. This format 

is highly suitable for representing discrete features, such as roads, rivers, or administrative 

boundaries. Vector data maintains precision in representing the spatial relationships 

between features. 

 

3.4.1.2 Raster Data 

Contrasting with vector data, raster data employs a grid of cells to represent geographic 

features. Each cell in the grid contains a value, creating a pixelated representation of the 

landscape. This format is ideal for continuous data, such as elevation or temperature, where 

values change gradually across space. Raster data is efficient for large-scale mapping and 

spatial analysis, providing a different perspective on geographic phenomena. 

 

3.4.1.3 Shapefile 

A fundamental concept in ArcGIS is the shapefile, a common geospatial vector data 

format. A shapefile comprises multiple files that collectively store geometric and attribute 

information. Geometric data includes points, lines, or polygons defining spatial features, 

while attribute data provides additional information related to these features. Shapefiles 

are versatile and widely used for storing and sharing geographic information due to their 

simplicity and compatibility with various GIS applications. 



26 

 

 

3.4.1.4 Thematic Maps 

Thematic maps are graphical representations of spatial data that highlight and illustrate a 

specific theme, variable, or attribute across a geographic area. The primary purpose of 

thematic maps is to visually communicate spatial patterns and relationships of a chosen 

theme, facilitating a better understanding of geographic phenomena. 

 

3.5 ANALYTICAL HIERARCHY PROCESS 

The Analytical Hierarchy Process (AHP) stands as a robust and versatile decision- making 

tool, rooted in the realm of multi-criteria analysis. Introduced by mathematician and 

operations researcher Thomas L. Saaty in the late 1970s, AHP has since found widespread 

application across various disciplines, from business to environmental management. 

3.5.1 Key Components of AHP: 

3.5.1.1 Hierarchical Structure: 

AHP organizes decision problems into a hierarchical structure, breaking down complex 

issues into a series of interconnected criteria and alternatives. This structured approach 

provides a systematic framework for decision-makers to evaluate and prioritize elements. 

3.5.1.2 Pairwise Comparisons: 

Central to AHP is the concept of pairwise comparisons. Decision-makers assess the 

relative importance of criteria and alternatives by comparing them in pairs. This process 

establishes a set of numerical values that quantify the preferences and priorities within the 

hierarchy. The goal is to establish a hierarchy of criteria or alternatives based on their 

relative importance. Decision-makers compare each criterion or alternative against every 

other one, indicating which is more important or preferable. A scale is used to express the 

preference or importance of one element over another. The scale is typically a numerical 

scale, often ranging from 1 to 9, with 1 representing equal importance and 9 indicating 

extremely more important. The comparisons are organized into a matrix known as the 

Pairwise Comparison Matrix. If there are 'n' criteria or alternatives, the matrix is an 'n x n' 

matrix. Each cell in the matrix corresponds to the comparison between two elements. If 

comparing criterion i with criterion j, the decision-maker assigns a value that represents 

the importance of i relative to j. 

3.5.1.3 Consistency Check 
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To ensure the reliability of judgments, a consistency check is performed. Inconsistencies 

arise when, for example, A is considered more important than B, and B is considered more 

important than C, but A is considered less important than C. Consistent judgments 

contribute to the reliability of the final results. 

3.5.1.4 Calculating Weight Vectors 

Once the matrix is filled, mathematical processes, often involving eigenvectors and 

eigenvalues, are applied to derive weight vectors. These weight vectors represent the 

relative importance or priority of each criterion or alternative. 

3.5.1.5 Normalization 

The derived weights are normalized to ensure they sum up to 1, providing a meaningful comparison. 

3.5.1.6 Aggregation of Criteria 

The final step involves aggregating these weights in a hierarchical structure to determine the overall 

priorities. 

3.5.1.7 Decision Matrix 

The priorities obtained from the AHP process can be used in decision-making, such as evaluating 

alternatives or ranking criteria. 

3.6 WEIGHT OVERLAY METHOD 

The Weight Overlay Method is a geospatial analysis technique widely used in Geographic 

Information System (GIS) applications for combining and synthesizing different thematic 

maps to create a composite map. The primary objective is to integrate multiple thematic 

maps, each representing a specific criterion or factor, into a single composite map. It is 

often employed in decision-making processes, such as in determining the suitability or 

vulnerability of an area based on various factors. Each thematic map is assigned a weight 

based on its perceived importance or influence on the overall analysis. Weights are 

assigned to each thematic map to reflect the significance of the factor it represents in the 

decision-making process. These weights are usually assigned subjectively or through a 

more objective process, such as the Analytical Hierarchy Process (AHP). Thematic maps 

are overlaid, pixel by pixel, to create a composite map. Each pixel in the resulting map is 

a combination of the values from corresponding pixels in the individual thematic maps, 

weighted according to their assigned importance. The Weight Overlay Method 

commonly uses a weighted sum 
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approach. The value of each pixel in the composite map is calculated as the sum of the 

products of the values in each thematic map and their corresponding weights. To ensure 

that the composite map values are within a meaningful range, normalization may be 

applied. Normalization adjusts the values to a standard scale, often ranging from 0 to 1. 

The final output is a composite map that represents the integrated information from 

multiple thematic maps, reflecting the combined influence of various factors. This map is 

useful for decision-making, such as identifying suitable locations for a particular land use, 

assessing environmental vulnerability, or other spatial analyses. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
4.1 INTRODUCTION 

The Results and Discussion chapter presents the culmination of extensive research and 

analysis, unraveling the intricate spatial patterns of various factors contributing to landslide 

susceptibility in Guwahati City. Each thematic map represents a critical aspect of the city's 

landscape, and their collective synthesis through the Analytical Hierarchy Process (AHP) 

forms the foundation for a comprehensive understanding of landslide susceptibility. 

4.2 INDIVIDUAL THEMATIC MAPS 

4.2.1 Slope 

The Slope thematic map delineates the topographical variations, indicating areas prone to 

steep gradients, a key factor influencing landslide susceptibility. 

 

Table 2: Reclassified values of Slope generated in ArcGIS 
 

 

 
Classification Angle of slope (in degrees)

1 0 – 4.3

2 4.4 – 9.8

3 9.9 - 16

4 17 - 24

5 25 - 45
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Fig 5: Thematic map of Slope of Guwahati City generated in ArcGIS 

 

 

4.2.2 Aspect 

Aspect mapping reveals the directional orientation of slopes, shedding light on how 

different slopes may be exposed to varying sunlight and moisture conditions. 
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Table 3: Reclassified values of Aspect generated in ArcGIS 
 

 

 
Classification Aspect (in degrees)

1 0 – 72

2 72 – 150

3 160 - 210

4 220 - 290

5 300 - 360
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Fig 6: Thematic map of Aspect of Guwahati City generated in ArcGIS 

 

 

 

4.2.3 Roughness 

The Roughness map illustrates the surface irregularities, crucial in identifying areas with 

heightened susceptibility due to complex terrain features. 
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Table 4: Reclassified values of Roughness generated in ArcGIS 
 

 

 
Classification Roughness (unitless) Physical meaning

1 0 – 6.8 Flat or Smooth terrain

2 6.9 - 16 Gentle Slope

3 17 - 26 Hilly or uneven landscape

4 27 - 39 Mountaneous terrain

5 40 - 82 Mountaneous landscapes
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Fig 7: Thematic map of Roughness of Guwahati City generated in ArcGIS 

 

 

 

4.2.4 Hill shade 

Hill shade mapping provides a nuanced representation of the terrain, considering 

illumination angles, aiding in identifying shadowed and illuminated areas. 
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Table 5: Reclassified values of Hillshade generated in ArcGIS 
 

 

 
Classification Rating Physical Meaning

1 1 - 42 Low Hillshade Intensity

2 43 - 110
Moderate to Low 

Hillshade intensity

3 120 - 180
Moderate Hillshade 

Intensity

4 170 - 200
Moderate to High 

Hillshade intensity

5 210 - 260 High Hillshade Intensity
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Fig 8: Thematic map of Hillshade of Guwahati City generated in ArcGIS 

 

 

 

4.2.5 Average Rainfall 

This map incorporates rainfall data, a pivotal factor in landslide initiation, highlighting 
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areas with consistently high precipitation. 

 

Table 6: Reclassified values of Average Rainfall generated in ArcGIS 
 

 

 Classification
Average Rainfall Intensity 

(in mm)

1 950 - 970

2 980 - 990

3 1000

4 1100 - 1000

5 1100
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Fig 9: Thematic map of Average Rainfall of Guwahati City generated in ArcGIS 

 

 

 

4.2.6 Land Use and Land Cover (LULC) 

The Land Use and Land Cover map classifies urban, agricultural, and forested regions, 
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contributing to a holistic understanding of human-induced changes in susceptibility. 

Table 7: Reclassified values of LULC generated in ArcGIS 
 

 
 

Classification Rating Physical Meaning

1 1 Natural or Undisturbed

2 1.1 - 2 Low Intensity Urban

3 2.1 - 5 Moderate Intensity Urban

4 5.1 - 8 High Intensity Urban

5 8.1 - 11
Intensely Developed or 

Built- Up
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Fig 10: Thematic map of Land Use and Land Cover of Guwahati City generated in ArcGIS 

 

 

 

4.2.7 Lithology 

Lithology mapping captures the geological composition, crucial in identifying areas with 

specific rock types prone to instability. 
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Table 8: Reclassified values of Lithology generated in ArcGIS 
 

 
 

Classification Rating Physical Meaning

1 1 - 8 Basic Rock Types

2 8.1 - 19
Specific Sedimentary 

Rocks

3 20 -29 Specific Igneous Rocks

4 30 - 36
Metamorphic Rock and 

Complex Formations

5 37 - 45
Highly Specific 

Lithological Units
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Fig 11: Thematic map of Lithology of Guwahati City generated in ArcGIS 

 

 

 

4.2.8 Geomorphology 

Geomorphological features are highlighted, delineating landforms that significantly 

influence landslide susceptibility. 
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Table 9: Reclassified values of Geomorphology generated in ArcGIS 
 

 

 
Classification Rating Physical Meaning

1 1 - 4
Minimal Topographic 

Variation

2 4 - 8
Moderate Slopes or 

Landform

3 8 - 13 Mix of Landforms

4 13 - 17
Rugged Terrain, Steeper 

Slopes

5 17 - 21 Steep Cliffs, Deep Valeys
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Fig 12: Thematic map of Geomorphology of Guwahati City generated in ArcGIS 

 

 

 

4.2.9 Distance from Railway 

Maps depicting proximity to transportation infrastructure pinpoint areas where human 
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activities and engineering structures may elevate susceptibility. 

Table 10: Reclassified values of Distance from Railway generated in ArcGIS 
 

 

 
Classification Rating Physical Meaning

1 0 – 0.0032 Very Close Proximity

2 0.0033 – 0.0076 Close Proximity

3 0.0077 - 0012 Moderate Proximity

4 0.013 – 0.018 Farther Proximity

5 0.019 – 0.029 Distant Proximity
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Fig 13: Thematic map of Distance from Railway of Guwahati City generated in ArcGIS 

 

 

4.2.10 Distance from Road 

The distance from roads thematic map is crucial in identifying areas influenced by the 

presence of road networks. Additionally, road construction activities and associated cut- 
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and-fill processes may destabilize slopes, making proximity to roads a significant factor 

in landslide assessment. 

Table 11: Reclassified values of Distance from Road generated in ArcGIS 
 

 

 
Classification Rating Physical Meaning

1 2 - 2200 Very Close Proximity

2 2300 - 8000 Close Proximity

3 5200 - 8000 Moderate Proximity

4 8000 - 11000 Farther Proximity

5 12000 - 15000 Distant Proximity
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Fig 14: Thematic map of Distance from Road of Guwahati City generated in ArcGIS 



49 

 

 

4.3 COMPARISON MATRIX AND WEIGHTS 

The pairwise comparison matrix and calculated weights for each thematic map unveil the 

relative significance assigned through the AHP, providing a quantitative understanding of 

their contributions. 

4.3.1 Scoring Scale 

The comparison is being done using Saaty's scale, which assigns numerical values to the 

strength of preference. The scale looks like this: 

1: Equal importance 

3: Moderate importance of one over another 

5: Strong importance 

7: Very strong or demonstrated importance 

9: Extreme importance 

2, 4, 6, 8: Intermediate values for judgments that fall between the two adjacent 

judgments. 

4.3.2 Comparision Matrix 

The presented comparison matrix in this report is derived from expert opinions and 

references a range of literature sources. This matrix systematically captures the relative 

importance of different causative factors in the context of landslide susceptibility. It serves 

as a critical foundation for the Analytic Hierarchy Process (AHP), enabling the assignment 

of pairwise values that contribute to the generation of a comprehensive and accurate 

landslide susceptibility map. 
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Table 12: 10 x 10 Comparision Matrix 

 

The pairwise values are formulated into a 10 x 10 matrix, and the normal principal 

eigenvector of this matrix provides the weights of each causative factor. The matrix was 

solved using the numpy library in Python, ensuring precise computation and consistency 

in the determination of these weights. This methodological approach enhances the 

robustness and reliability of the landslide susceptibility analysis presented in this report. 
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Fig 15: Python Code for Inputting a 10x10 Matrix and Calculating the Normalized  

Principal Eigenvector 
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Fig 16: Python Code for Inputting a 10x10 Matrix and Calculating the Normalized  

Principal Eigenvector 
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Fig 17: 

Output Display of the 10x10 Matrix Input and Normalized Principal Eigenvector 

Calculation 

4.3.3 Weight Ovelay 

The subsequent section presents the weight overlay table, a critical output derived from 

the Analytic Hierarchy Process (AHP). This table serves as a pivotal input into the 

ArcGIS software, playing a decisive role in the creation of the final thematic map. The 

values within the weight overlay table signify the relative importance and contribution 

of each causative factor, offering a nuanced understanding of their influence on landslide 

susceptibility. This integration of expert opinions and systematic weights is instrumental 

in producing a robust and informed thematic map. 
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Table 13: Weight overlay values obtained from AHP method 
 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 FINAL LANDSLIDE SUSCEPTIBILITY MAP 

The synthesis of individual thematic maps, considering their weighted contributions, 

culminates in the development of the final Landslide Susceptibility Map for Guwahati 

City. Out of the total 60 municipality wards analyzed, 17 have been identified as falling 

within the high susceptibility zone for landslide, underscoring the significance of targeted 

mitigation efforts in these specific areas. 

 

 

 

Sl. No. Causative Factor Weights

1 Slope 19%

2 Aspect 12%

3 Roughness 13%

4 Hillshade 9%

5 Average Rainfall 10%

6 LULC 7%

7 Lithology 7%

8 Geomorphology 5%

9 Distance from road 9%

10 9%Distance from railway
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Table 14: Table representing the High Susceptible wards of GMC for Landslide 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GMC WARD 

NOS.
GMC WARD NAME

LANDSLIDE 

SUSCEPTIBILITY 

ZONE (AS PER 

FINDINGS)

2 Gotanagar High

8 Kamakhya High

10 Jalukbari High

11 Garchuk High

12 Maligaon High

13 Bharalumukh High

19 Bishnupur High

25 Jyotikuchi High

26 Kahilipara High

27 Rupnagar High

34 Kharghuli High

36 Gandhi Basti High

38 Christian Basti High

40 Ganeshguri High

51 Hengerabari High

52 Bamunimaidam High

60 Khanapara High
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. Fig 18: Thematic map of Final Landslide Susceptibility Map of Guwahati City 

generated in ArcGIS 

 

4.5 Slope  Stability Analysis using SlopeW 

Given that slope emerged as the most critical factor among all the causative factors in our 

landslide susceptibility analysis, we aimed to further investigate its influence by 

incorporating seismic and pore water conditions of the soil. To achieve this, we employed 
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the SlopeW software to conduct a detailed slope stability analysis. This analysis involved 

determining the Factor of Safety (FoS) under various conditions, where the FoS serves as 

an indicator of slope stability—values less than one suggest potential failure, while values 

greater than one indicate stability. By integrating seismic activity and pore water pressure 

into our analysis, we sought to gain a comprehensive understanding of the slope's stability 

and its susceptibility to landslides under these critical conditions. 

4.5.1 Slope Stability Analysis Parameters: 

To accurately assess the stability of slopes in Guwahati under the influence of slope angle, 

including seismic activity and pore water conditions, we employed several constant 

parameters and specific analysis types in the SlopeW software. The following constant 

parameters were used in our analysis: 

Table 15: The list of constant parameters 

Analysis Type Morgenstern-Price 

method 

Staged Pseudo-static 

Analysis Option 

Effective stress strengths 

Direction of Movement Right to left 

Material Model Mohr-Coulomb 

 

Seismic Coefficient: 

Horizontal 

0.36 

Seismic Coefficient,  

Vertical 

0.18 

Cohesion of Soil 15 KPa 

Angle of Internal Friction 28 

Unit Weight of Soil 18 KN/m2 
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4.5.2 Integration of Variable Parameters in Slope Stability Analysis: Impact of Slope  

and Pore Water Ratio (Ru): 

In addition to the constant parameters, the analysis also incorporated several variable 

parameters to examine their effects on slope stability. The variable parameters considered 

were the slope angle and the pore water pressure ratio (Ru value). The analysis was 

conducted for different combinations of these variable parameters to understand their 

impact on the Factor of Safety (FoS). The specific combinations analyzed are detailed 

below: 
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4.5.2.1 Slope Angle 20° 

 

 
Fig 19: SlopeW analysis for Ru = 0 
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Fig 20: SlopeW analysis for Ru = 0.1 

 
Fig 21: SlopeW analysis for Ru = 0.2 
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Fig 22: SlopeW analysis for Ru = 0.3 

 

4.5.2.2 Slope Angle 30° 

 
Fig 23: SlopeW analysis for Ru = 0 
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Fig 24: SlopeW analysis for Ru = 0.1 

 
Fig 25: SlopeW analysis for Ru = 0.2 
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Fig 26: SlopeW analysis for Ru = 0.3 

 

4.5.2.2 Slope Angle 40° 

 
 

Fig 27: SlopeW analysis for Ru = 0 
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Fig 28: SlopeW analysis for Ru = 0.1 

 
 

Fig 29: SlopeW analysis for Ru = 0.2 
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Fig 30: SlopeW analysis for Ru = 0.3 
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4.5.3 Impact of Pore Water Pressure Ratio (Ru) on Factor of Safety 

The analysis of slope stability included a detailed examination of how varying pore water 

pressure ratios (Ru values) affect the Factor of Safety (FoS), while maintaining a constant 

slope angle. The results, depicted graphically below, illustrate the significant influence of 

Ru vlues on the stability of slopes in Guiwahati City. 

 

4.5.3.1 Slope angle 20°  

Table 16: Ru vs FoS values generated for a slope of 20° 

 

 

 

 

Fig 31: Ru vs FoS graph for a slope of 20° 

 

4.5.3.2 Slope angle 30°  

Table 17: Ru vs FoS values generated for a slope of 30° 

 

 

 

20°

Ru 0 0.1 0.2 0.3

FoS 1.215 1.108 1.033 0.937

Slope angle

30°

Ru 0 0.1 0.2 0.3

FoS 0.925 0.87 0.769 0.692

Slope angle
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Fig 32: Ru vs FoS graph for a slope of 30° 

4.5.3.3 Slope angle 40°  

Table 18: Ru vs FoS values generated for a slope of 40° 

 

 

 

Fig 33: Ru vs FoS graph for a slope of 40° 

 

 

40°

Ru 0 0.1 0.2 0.3

FoS 0.711 0.649 0.61 0.535

Slope angle
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4.5.4 Analysis: 

The Factor of Safety (FoS) decreases as the Ru value (pore water pressure ratio) increases 

for all the slope angles. This trend suggests that higher pore water pressures (represented 

by higher Ru values) reduce the stability of the slope. 

 

4.5.4.1 Key Observations 

4.5.4.1.1 Decreasing Factor of Safety 

As Ru increases from 0 to 0.3, the FoS decreases. This indicates that higher pore water 

pressures lead to a lower margin of safety against slope failure. 

 

4.5.4.1.2 Significance of Ru 

Pore water pressure in a high seismic zone such as Guwahati city plays a critical role in 

slope stability. Elevated Ru values signify increased water content or pressure within the 

slope material, which can decrease the effective stress and shear strength of the soil mass, 

thereby reducing stability. 

 

4.5.4.1.3 Implications for Slope Management 

Understanding the sensitivity of slope stability to changes in pore water pressure is 

essential for effective slope management and risk mitigation strategies. Monitoring and 

controlling water infiltration or drainage in slopes can help maintain or improve slope 

stability under varying environmental conditions. 
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CHAPTER 5 

CONCLUSION 

 

5.1 INTRODUCTION 

The integration of various thematic maps, each contributing weighted insights, has 

culminated in the development of the final Landslide Susceptibility Map for Guwahati 

City. This comprehensive analysis has identified 17 out of 60 municipality wards as falling 

within high susceptibility zones for landslides. This underscores the urgent necessity for 

targeted mitigation efforts in these specific areas to protect lives and property. 

To address the heightened susceptibility to landslides, a multifaceted approach is required, 

which includes: 

1. Development of Standard Guidelines: It is crucial to formulate and disseminate 

comprehensive guidelines for landslide management and mitigation, ensuring 

accessibility to all stakeholders, including local communities, in their native language. 

2. Regulation of Construction in High-Risk Zones: Strict regulation and avoidance of 

construction activities in identified high-risk areas are essential to prevent exacerbation 

of slope destabilization. 

3. Retrofitting of Existing Structures: Enhancing the resilience of vulnerable structures 

through retrofitting measures can mitigate the impact of landslides. 

4. Enhancement of Drainage Systems: Implementing scientifically designed drainage 

networks is vital for effective management of surface runoff and erosion control, 

thereby reducing landslide risks. 

5. Implementation of Afforestation and Vegetative Measures: Promoting afforestation 

and ecological management practices to increase vegetation cover can stabilize slopes 

and minimize erosion risks. 

6. Community Awareness and Engagement: Educating local communities about landslide 

causes and prevention measures is critical. Community participation in monitoring and 

reporting unauthorized constructions and other risk factors can significantly bolster 

mitigation efforts. 

In addition to these measures, incorporating findings from slope stability analyses is 



72 

 

 

crucial. The analyses have revealed that higher pore water pressures (Ru values) and 

seismic conditions significantly reduce the Factor of Safety of slopes, thereby increasing 

landslide susceptibility. Understanding these dynamics informs targeted interventions and 

reinforces the importance of comprehensive risk management strategies. 

By implementing these concerted efforts, Guwahati City can effectively mitigate landslide 

risks, safeguard its residents, and promote a resilient urban environment.
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