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ABSTRACT 
 

Landslides represent a significant natural hazard, particularly in regions with vulnerable 
populations. As humans are a critical resource, their exposure to such disasters can create 
considerable gaps in resource availability and disrupt communities. While landslide 
susceptibility maps have been effective in identifying high-risk areas, these maps typically lack 
a detailed, quantitative assessment of how many people are directly vulnerable to such hazards. 
To address this gap, this study focuses on analysing and predicting the vulnerability of 
populations in landslide-prone areas using various regression models. 

The primary goal of the research was to quantify the risk and estimate the percentage of people 
exposed to landslide threats. This was achieved through the application of five key regression 
models: Linear Regression, Lasso Regression, Ridge Regression, Polynomial Regression, and 
Random Forest Regression. These models were applied to a comprehensive dataset, 
incorporating demographic data and landslide occurrences. The dataset was split into a 70-30 
ratio, with 70% of the data allocated for training and 30% for testing to ensure robust 
evaluation of the models' predictive capabilities. 

The findings suggest that, based on the models' predictions, approximately 78% of the 
population residing in landslide-susceptible areas may be classified as vulnerable. These 
percentages reflect the populations at risk but do not directly correlate to mortality rates. 
Instead, they highlight the susceptibility of these regions to landslide impacts, offering 
important insights for decision-makers and disaster response teams. 

Moreover, the results provide valuable guidance for the development of early warning systems 
and disaster management strategies, helping authorities to prioritize regions with higher 
population vulnerabilities. While the models demonstrate strong predictive abilities, there is 
potential to further improve accuracy by incorporating additional data sources or more 
advanced algorithms, such as Artificial Neural Networks (ANNs), which have been shown to 
improve performance in similar studies. Ultimately, this study contributes to enhancing 
landslide risk assessment and ensuring better disaster preparedness in at-risk regions. 

These findings lay the groundwork for more effective disaster mitigation policies and reinforce 
the importance of continuous data collection and model refinement in addressing landslide 
vulnerabilities. 
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CHAPTER 1 
 

1 INTRODUCTION 

1.1 Overview 
 
Landslides are geological phenomena characterized by the downward movement of rock, soil, 
and debris along a slope. They are natural hazards that occur when the stability of a slope is 
compromised, leading to the displacement of materials. Landslides can vary in scale, from 
small, localized events to large, catastrophic occurrences that can cause significant damage to 
the environment, infrastructure, and communities. Landslides represent a significant geological 
hazard in India, affecting diverse landscapes from the Himalayan region to the Western Ghats. 
This susceptibility is underscored by the country's unique geological setting and climatic 
conditions. Several studies have delved into understanding the causes, characteristics, and 
implications of landslides in India, contributing to the body of knowledge on this complex 
natural phenomenon. 
 
 
 

 
 

Figure 1: Mudslides creating havoc in Dima Hasao district of Assam 

Source: https://www.bloomberg.com/news/articles/2022-05-17/heavy-rains-trigger-floods-in-northeast-india-killing-8 
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Figure 2:A mudslide from the hills entirely demolished a house in Boragaon,Guwahati. The house was engulfed in flames, 
trapping four people inside. 

Source: https://www.indiatodayne.in/assam/story/assam-landslides-guwahati-atleast-4-dead-388098-2022-06-14 
 

Studies by researchers such as Gupta et al. (2018), have emphasized the link between tectonic 
activity and slope instability in these areas. The monsoon season plays a pivotal role in 
triggering landslides across the country. The study conducted by Singh and Patel (2019), 
investigated the relationship between rainfall patterns and landslide occurrences, particularly 
in the Western Ghats and Northeastern states. Anthropogenic activities have increasingly 
contributed to landslide risks. The work of Sharma et al. (2020), highlighted the impact of 
deforestation and improper land use planning on landslide occurrences in hilly terrains. 
Historical landslide events have been extensively documented in literature, shedding light on 
their consequences and the need for effective mitigation strategies. The analysis by Reddy and 
Kumar (2015), of the Kedarnath disaster in 2013 provides valuable insights into the complex 
interplay of geological factors during such catastrophic events. 
 
Landslides pose a significant geohazard in Northeast India, where the combination of complex 
geological structures, high rainfall, and hilly terrains contributes to the susceptibility of the 
region. The city of Guwahati, being a prominent urban centre in the Northeast, is particularly 
vulnerable to landslide events. Understanding the causes, patterns, and mitigation strategies 
specific to this region is crucial for sustainable development and risk reduction. The 
Northeastern region of India is characterized by intricate geological formations, with tectonic 
activity playing a significant role. Studies by researchers such as Sen et al. (2017), have 
highlighted the geological complexities in the region and their influence on slope stability. The 
monsoon season, with its heavy and prolonged rainfall, exacerbates landslide risks in Northeast 
India. The work of Baruah and Das (2019), investigated the monsoonal influences on landslide 
occurrences, emphasizing the need for a thorough understanding of precipitation patterns. 
Guwahati, as a rapidly growing urban centre in the region, faces unique challenges concerning 
landslides. The work of Chakraborty and Goswami (2017), shed light to the curious and vast 
scope of ML and ANN through their works in accessing the prediction of slope stability using 
multiple linear regression and artificial neural network. 
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1.2 Problem Statement 

Landslides are one of the most devastating natural hazards, causing significant loss of life, 
damage to infrastructure, and disruption of ecosystems. Despite the complex and multifactorial 
nature of landslides, predicting their occurrence and assessing their susceptibility remains a 
critical challenge for geotechnical engineers, researchers, and policymakers. In recent decades, 
substantial research has been conducted to improve the understanding and prediction of 
landslides, leveraging various traditional techniques such as empirical models, statistical 
methods, and numerical simulations. These methods, while effective to some extent, often fall 
short in predicting landslides accurately due to the inherent complexity and dynamic nature of 
the underlying factors such as soil composition, rainfall intensity, seismic activity, and human 
interventions. Given the increasing frequency and severity of landslides worldwide due to 
climate change and urbanization in vulnerable regions, there is an urgent need to develop more 
reliable and robust predictive models. Traditional methods, though valuable, often rely on static 
data and simplistic assumptions that limit their ability to handle complex and non-linear 
relationships between variables. Furthermore, many of these models are based on site-specific 
studies and are difficult to generalize across different geographic and environmental 
conditions. 

In recent years, machine learning (ML) and artificial intelligence (AI) have emerged as 
promising tools in the prediction and susceptibility analysis of landslides. The ability of AI and 
ML algorithms to process vast amounts of data, recognize patterns, and continuously improve 
prediction accuracy makes them ideally suited for tackling the inherent uncertainty and 
complexity of landslide phenomena. Machine learning techniques such as decision trees, 
support vector machines, random forests, and neural networks have shown significant potential 
in capturing non-linear dependencies between the numerous variables that contribute to 
landslides. Additionally, these models can incorporate real-time data, such as rainfall patterns 
and seismic activity, to improve early warning systems and reduce false predictions. 

While there is no doubt that substantial research has already been conducted in the area of 
landslide prediction, the incorporation of machine learning and AI represents a future direction 
where predictions could be more "rock-solid" and reliable. The growing body of evidence 
supporting the efficacy of ML and AI models demonstrates that these methods can outperform 
traditional approaches in both accuracy and generalizability. However, the application of AI 
and ML to landslide prediction is still in its nascent stages, and much work remains to be done 
in terms of refining algorithms, improving data quality, and integrating diverse datasets across 
regions. 

Encouraging further research in this field is essential to unlocking the full potential of AI and 
ML in landslide prediction. This includes investing in the development of more sophisticated 
models, improving access to high-quality geospatial and environmental data, and fostering 
collaborations between geotechnical engineers, data scientists, and policymakers. By doing so, 
we can advance towards a future where landslide predictions are not only more accurate but 
also more actionable, helping to mitigate the risks associated with these natural disasters and 
protect vulnerable communities around the world. 

 



 15 

 

1.3 Purpose of the study 
 

The devastating impact of landslides on infrastructure and human safety has made their 
accurate prediction a critical challenge in the field of geotechnical engineering. Traditional 
methods, such as limit equilibrium analysis and finite element modelling, often struggle to 
capture the complex and non-linear relationships between the various factors contributing to 
slope instability. In recent years, the advent of machine learning techniques has offered new 
promising avenues for enhancing landslide prediction capabilities. To address this critical 
issue, researchers have leveraged various regression models to predict the likelihood and 
impact of landslides (Reddy et al., 2020) (Irawan et al., 2021) (Pradhan & Kim, 2020) (Sofwan 
et al., 2019).  

The purpose of this research was to compare the performance of five different regression 
models in predicting landslide occurrences: Lasso regression, Ridge regression, Polynomial 
regression, Linear regression, and Random Forest regression. The study considered a range of 
factors known to influence landslide events, including landslide size, category, and setting 
(Pradhan & Kim, 2020) (Sofwan et al., 2019) (Reddy et al., 2020) (Irawan et al., 2021). 

The Lasso regression model, a form of linear regression that applies L1 regularization, was 
utilized to identify the most influential predictors and simplify the model . The Ridge 
regression model, which employs L2 regularization, was employed to address multicollinearity 
among the predictors . Polynomial regression, an extension of linear regression, was explored 
to capture non-linear relationships between the predictors and the landslide outcome .  

In contrast, the Linear regression model assumed a linear relationship between the independent 
variables and the landslide outcome. The Random Forest regression model, a non-parametric 
ensemble learning method, was also implemented to leverage its ability to capture complex, 
non-linear relationships . 

To assess the accuracy of these models a comparison was done with their respective 
performance metrics, such as R-squared ,  Mean Squared Error and Root Mean Squared Error. 
The results were satisfactory, provided with the limited dataset collected from mammoth 
research works and further to increase the accuracy of the models ANN model will be suitable 
for this further study. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

2.1 Introduction 
 
The literature work carried out by the researchers related to the field of the present study 
is in the section. Each of the literature is briefly described with its own outcome to support 
the undertaking of the present topic of interest. 
 

2.2 Definition 
 
Varnes (1978), proposed a seminal classification system, categorizing landslides into falls, 
slides, flows, and topples. This classification laid the groundwork for a systematic approach to 
understanding landslide processes. 
 
Hutchinson (1988), emphasized the significance of slope movement, introducing key factors 
like shear strength and stress conditions as essential in the geological definition of landslides. 
 
Glade et al.,(2000), expanded the definition to include societal activities, land-use changes, and 
climate influences, reflecting a comprehensive understanding of the interactions shaping 
landslide occurrences. 
 
Chakraborty and Goswami (2017), emphasized the significance of using multiple linear 
regression(MLR) and artificial neural network(ANN) and the results were compared it with 
traditional methods like Fellenius method , Bishop’s method , Janbu’s method and Morgenstern 
and Price method. 
 
Reddy et al.,(2020), emphasized the significance of rainfall in inducing landslides using 
machine learning models and its importance. 
 
 

2.3 Classification 
 
Landslides are generally classified based on their movement, the type of material involved, and 
the specific triggering factors. Here is a general classification 
 

2.3.1 Based on movement 
 

2.3.1.1 Rockslides: 
 
Involving the sliding or falling of individual rock fragments. 
 



 17 

2.3.1.2 Rockfalls: 
 
Sudden, free-fall movement of individual rock blocks. 

2.3.1.3 Debris Flows: 
 
Rapid downslope movement of a mixture of soil, rock, water, and organic material. 

2.3.1.4 Mudslides: 
 
Movement of fine-grained, wet soil or earth material. 

2.3.1.5 Lahars: 
 
Specifically volcanic mudflows, often triggered by volcanic activity. 
 

2.3.2 Based on material 
 

2.3.2.1 Rock Landslides: 
 
Involving primarily rock material. 

2.3.2.2 Earth Landslides: 
 
Involving soil and other unconsolidated materials. 
 

2.3.2.3 Debris Landslides: 
 
Comprising a mixture of rocks, soil, and other materials. 
 

2.3.3 Based on Triggering Factors 
 

2.3.3.1 Rainfall-Triggered Landslides: 
 
Caused by excessive rainfall, leading to saturation of soil. 

2.3.3.2 Earthquake-Induced Landslides: 
 
Triggered by seismic activity, often due to ground shaking. 

2.3.3.3 Human-Induced Landslides: 
 
Resulting from human activities like excavation, construction, or deforestation. 
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2.3.3.4 Volcanic Landslides: 
 
Associated with volcanic eruptions, including pyroclastic flows and lahars. 
 

2.3.4 Based on size 
 

2.3.4.1 Small Landslide Size: 
 
The volume of the landslide is less than 100 m3  
 

2.3.4.2 Medium Landslide Size: 
 
The volume of the landslide is in between 100-500 m3  
 

2.3.4.3 Large Landslide Size: 
 
The volume of the landslide is in between 1000-5000 m3  
 

2.3.4.4 Very Large Landslide Size: 
 
The volume of the landslide is more than 5000 m3  
 

2.4 Study Approach of Landslide 
 
Hungr et al. (2014), Hungr and co-authors provided a comprehensive update on the Varnes 
classification of landslide types, presenting an essential framework for understanding and 
categorizing landslides. The Varnes classification system offers a systematic approach that 
considers the type and rate of movement, providing a basis for landslide hazard assessment. 
This classification has been widely accepted and utilized by researchers, geologists, and 
practitioners globally, serving as a fundamental tool for characterizing landslide events based 
on their distinctive features. 
 
Montgomery et al. (2003), Montgomery and team contributed to the study approach by 
investigating rainfall-induced landslides. Their research emphasized the role of antecedent soil 
moisture conditions as a critical factor influencing landslide susceptibility. This approach 
enhances our understanding of the hydrological aspects of landslides, particularly the 
relationship between rainfall patterns and slope stability. 
 
Sidle et al. (2017), Sidle and colleagues contributed to the study approach by investigating the 
impacts of deforestation on landslide occurrence. Their research highlighted the importance of 
land-use practices in influencing slope stability, emphasizing the need for sustainable land 
management to mitigate landslide risk. 
 
Kirschbaum et al. (2015), provided an integrated framework considering both precipitation-
induced and earthquake-triggered landslides. This approach acknowledges the diverse factors 
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initiating slope failures. Their work highlights the importance of understanding the triggering 
mechanisms for effective landslide hazard assessment. 
 
Crozier (2010), work delved into the impact of climate change on landslide activity. Changes 
in precipitation patterns and intensities associated with climate change were identified as 
potential triggers for increased landslide occurrences. This study underscores the importance 
of considering long-term climatic trends. 
 
Guzzetti et al. (2008), conducted a comprehensive analysis of landslide-triggering rainfall 
events. Their study identified critical rainfall thresholds for different regions, emphasizing the 
importance of rainfall intensity, duration, and cumulative rainfall as triggering factors. 
 
Gariano and Guzzetti (2016), extended the research on rainfall-triggered landslides by 
proposing an early warning model. Their work incorporates real-time rainfall data to assess the 
potential for landslide occurrence, contributing to proactive risk management. 
 
Caine (1980), focused on seismic triggers for landslides. The study highlighted the influence 
of ground shaking, acceleration, and slope angle on earthquake-induced slope failures. 
Understanding the seismic parameters involved is crucial for assessing landslide susceptibility 
in seismic-prone regions. 
 
Crosta and Frattini (2003), investigated the role of human activities in landslide initiation. Their 
study emphasized the impact of excavation, deforestation, and urbanization on slope stability, 
highlighting the need for sustainable land-use practices to mitigate landslide risk. 
 

2.5 Study Approach of Landslide using Machine Learning 

Sakellariou and Ferentinou (2005), studied on the idea of prediction analysis and used artificial 
neural network (ANN) to develop a rela- tionship between the various slope parameters. 

Kayesa (2006), used the Geomos slope mon- itoring system (GSMS) to study the slope stability 
prediction of Letlhakane mine. The GSMS is basically an automatic and continuous slope 
monitoring system which runs continuously for 24 h. The system consists of three parts, viz, 
collection of data, transmission of data, and processing and analysis of data. The GSMS 
resulted into avoiding potentially fatal injury, damage to mining equipment, and loss of mining 
production.  

Ahangar-Asr et al. (2010), developed a prediction model based on evolutionary polynomial 
regression (EPR) technique to predict the FOS. The EPR models are developed from the results 
of field data for conditions not used in the model build- ing process, and the results were found 
to be very effective in modeling the behavior of slopes.  

Erzin and Cetin (2012) used ANN and MLR for finding the critical value of FOS for a typical 
artificial slope which is subjected to earthquake forces. The predicted results from both the 
methods were compared with the calculated results and found that the results obtained from 
ANN are having a higher degree of precision when compared to MLR . 
Firmansyah et al. (2016) studied with different soil types to predict the run-out distance of a 
rota- tional slope using the concept of center of mass approach. They found that the soil unit 
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weight can influence to a great extent the depth of sliding zone and the volume of unstable 
material.  
 
Elith et al., (2008), stated that machine learning techniques, a powerful group of data driven 
tools, use algorithms to learn the relationship between a landslide occurrence and landslide 
related predictors, and avoids starting with an assumed structural model. 
 
Romer and Ferentinou (2016) stated that to obtain more reliable results through the statistical 
methods, large amounts of data are required, whereas ML-based models can effectively 
overcome the limitation of data dependent bivariate and multivariate statistical methods. 
 

2.6 About Python 

Python, a versatile and powerful programming language, has come a long way since its 
inception in the late 1980s. Developed by Guido van Rossum, Python was designed to be a 
high-level, general-purpose language that prioritizes simplicity, readability, and ease of use. 
(Kelly, 2016) (Rossum, 1999) Its flexible syntax and robust standard library have made it a 
popular choice for a wide range of applications, from web development and data analysis to 
artificial intelligence and machine learning. 

One of the key advantages of Python is its accessibility to beginners. Its intuitive syntax and 
English-like commands make it a natural choice for those new to programming, allowing them 
to quickly grasp the fundamental concepts of computer science without being bogged down by 
low-level details. As a result, Python has become a widely adopted language in academic 
settings, where it is often used as the primary teaching tool for introductory programming 
courses. 

Python's versatility has also contributed to its widespread adoption in the professional world. 
Its rich ecosystem of libraries and frameworks, such as Keras, TensorFlow, and Pandas, have 
made it a popular choice for data-driven applications, including data analysis, visualization, 
and machine learning.  

Moreover, Python's flexibility and rapid development cycle have made it a valuable tool for 
prototyping and rapid application development.  

2.7 Regression Models 
 
Regression analysis is a fundamental statistical tool used to model the relationship between a 
dependent variable and one or more independent variables. In this study, it explored several 
regression models like Linear Regression, Lasso Regression, Ridge Regression, Polynomial 
Regression and Random Forest Regression to assess their applicability, strengths, and 
limitations in various predictive tasks of landslide. 

2.7.1 Linear Regression 

Draper and N.R. (1998), explained that linear regression analysis is used to predict the value 
of a variable based on the value of another variable. The variable to be predicted is called the 
dependent variable. The variable using to predict the other variable's value is called the 
independent variable. This form of analysis estimates the coefficients of the linear equation, 
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involving one or more independent variables that best predict the value of the dependent 
variable. Linear regression fits a straight line or surface that minimizes the discrepancies 
between predicted and actual output values. There are simple linear regression calculators that 
use a “least squares” method to discover the best-fit line for a set of paired data  then estimate 
the value of X (dependent variable) from Y (independent variable).  

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿$ +⋯+ 𝜷𝒏𝑿𝒏 + 𝝐																																					(𝟏) 

Where: 

• Y is the predicted output (dependent variable). 
• β0 is the intercept. 
• β1,β2,…,βn are the coefficients of the independent variables X1,X2,…,Xn 
• ϵ  is the error term. 

2.7.2 Lasso Regression 
 
Tibsirani and Robert (1996), explained that lasso regression (Least Absolute Shrinkage and 
Selection Operator) is a variant of linear regression that incorporates L1 regularization. It adds 
a penalty to the absolute value of the regression coefficients, encouraging sparsity by reducing 
some coefficients to zero. This allows Lasso to perform feature selection, making it particularly 
useful when dealing with datasets containing many irrelevant features. However, Lasso may 
struggle when multicollinearity is high among predictors, as it can arbitrarily shrink one 
predictor over another. 
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Where: 

• l is the regularization parameter controlling the strength of the penalty. 
• The |βj| term applies L1 regularization, shrinking some coefficients to zero. 

2.7.3 Ridge Regression 
 
Hoerl et al., (1970), stated that ridge regression is similar to Lasso but uses L2 regularization, 
which penalizes the sum of the squares of the coefficients. Unlike Lasso, Ridge does not force 
coefficients to become zero, making it more suited to datasets with multicollinearity issues. By 
introducing a penalty on large coefficients, Ridge reduces model complexity and prevents 
overfitting . It performs well predictors are relevant and have small coefficients. 
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Where: 

• λ is the regularization parameter. 
• The βj2 term applies L2 regularization, shrinking all coefficients but not necessarily 

setting any of them to zero. 

2.7.4 Polynomial Regression 

Kleinbaum et al., (1988), stated that polynomial regression extends linear regression by 
introducing non-linearity to the model. It does so by fitting polynomial terms of the 
independent variables (e.g., squared or cubic terms) to better capture the complex relationships 
between variables. However, polynomial regression is sensitive to overfitting, especially when 
higher-degree polynomials are used . 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿 + 𝜷𝟐𝑿𝟐 +⋯+ 𝜷𝒏𝑿𝒏 + 𝝐																																					(𝟒) 

Where: 

• n is the degree of the polynomial. 
• The model includes polynomial terms X2,Xn to capture non-linear relationships 

between X and Y. 

 

 

2.7.5 Random Forest Regression 
 
Breiman and Leo (2001), stated that random forest regression is a non-parametric ensemble 
learning method that combines the predictions of multiple decision trees to improve accuracy 
and stability. It reduces variance by averaging the predictions from several trees, thus 
preventing overfitting. Random Forest performs well with large, complex datasets and can 
handle both categorical and numerical features. However, it may suffer from interpretability 
issues due to the complexity of the model. 
 

(𝑌>) =
1
𝑇4𝑓-(𝑋)																																																																																(5)

.

-*+

 

 

Where: 

• T is the total number of decision trees in the forest. 
• ft(X) is the prediction made by the t-th decision tree. 
• The final prediction 𝑌>  is the average of predictions from all trees. 
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2.7.6 Mean Squared Error (MSE) 

Montgomery et al., (2021), stated that Mean Squared Error (MSE) is a common measure used 
to evaluate the performance of regression models. It calculates the average of the squared 
differences between the actual values yi and the predicted values 𝑦C& . A lower MSE indicates a 
model that makes more accurate predictions. 

MSE =
1
𝑛4

(𝑦& − 𝑦C&)		$																																																																													(6)
)

&*+

 

 

2.7.7 Root Mean Squared Error (RMSE) 
 
Montgomery et al., (2021), stated that Root Mean Squared Error (RMSE) is the square root of 
the MSE and provides a measure of the average error in the same units as the output variable. 
RMSE is widely used for regression model evaluation because it gives an intuitive measure of 
prediction error. 
 
 

RMSE = I
1
𝑛4

(𝑦& − 𝑦C&)		$	
)

&*+

																																																																	(7) 

 
 
 
 

2.7.8 R-squared(R2) 
 
Montgomery et al., (2021), stated that R-squared (R²) measures the proportion of the variance 
in the dependent variable (y) that is predictable from the independent variables. It ranges from 
0 to 1, where higher values indicate a better fit of the model to the data. An R² of 1 implies 
perfect prediction, while an R² of 0 suggests the model does not explain any variance. 
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CHAPTER 3 
 

3 RESEARCH METHODOLOGY 

In this research, various databases such as the European Landslide Database, Global Fatal 
Landslide Database, NSF Design Safe Storage, NASA Global Landslide Catalog, and the 
Disaster Information Management System, we identified that the NASA Global Landslide 
Catalog contained the most relevant parameters for our study as it had 14533 data from the 
year 2008-2021. The decision to focus on this specific dataset was driven by its availability 
and the practicality of gathering data. Collecting landslide data on a yearly basis is a complex 
and labour-intensive process due to the diverse geographical locations, causes, and types of 
landslides. Hence, from 2008-2021 dataset offered a comprehensive and manageable source of 
information for this analysis. 

 

Figure 3:Excel spreadsheet showing a glimpse of some of the data from overall 14533 data 

The dataset was meticulously curated from various reliable sources, accounting for a total of 
14,533 data . The key aspects of landslide events, categorized into multiple sub-categories, 
including: 

• Landslide Category (LCA): The type of landslide (e.g., mudslide, rockfall, debris flow, 
etc.). 

• Landslide Trigger(LTR): The event or condition that initiated the landslide (e.g., 
rainfall, earthquake, human activity, etc.). 

• Landslide Size(LSI): The magnitude or scale of the landslide. 
• Landslide Setting(LSE): The geographical or infrastructural context of the landslide 

(e.g., natural slopes, engineered slopes). 
• Fatality Count(FCO): The number of fatalities resulting from the landslide. 
• An extra parameter LAC(other factors) was taken into account while performing 

Polynomial and Random Forest Regression models 
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Given the large size of the dataset, a 70-30 split was implemented, where 70% of the data was 
designated for the training dataset, and the remaining 30% was reserved for the testing dataset. 
This approach ensures that the models developed were trained on the majority of the data while 
leaving a significant portion for evaluating their performance on unseen data. 

Since the dataset contained a variety of categorical variables, an essential pre-processing step 
was the conversion of categorical data to numerical form. This transformation was critical for 
enabling the models to interpret and process the data. After this conversion, the dataset was 
analysed using five prominent regression models, implemented in Python. The following 
models were employed: 

1. Linear Regression 
2. Lasso Regression 
3. Ridge Regression 
4. Polynomial Regression 
5. Random Forest Regression 

The objective of this analysis was to examine the relationship between the independent 
variables and the dependent variable . To achieve this, various model outputs were generated 
and analysed: 

 

• Training Dataset: Comparison of actual vs. predicted values for the training data. 
• Testing Dataset: Comparison of actual vs. predicted values for the testing data. 
• Residual Plot: Visualization of the difference between predicted and actual values to 

assess the accuracy of the model. 
• Feature Importance: Identification of the most influential features in predicting 

landslides. Feature importance was assessed based on the absolute coefficient values 
for each model. 

• Residual Distribution: Analysis of how residuals (errors) are distributed, which helps 
assess model performance and identify any bias in the predictions. 

• Model Performance Metrics: Metrics such as Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), R-squared, and other relevant performance measures were used 
to evaluate and compare the accuracy and efficiency of each model. 

Finally, a comparative analysis was conducted on the accuracies of all five regression models. 
The purpose of this comparison was to determine which model offered the best predictive 
performance for landslide-related data, considering both the training and testing phases. This 
approach not only helped in identifying the most effective model for predicting landslides but 
also provided valuable insights into the importance of different variables influencing landslide 
occurrences and their consequences. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

4.1 Model Analysis 

4.1.1 Linear Regression 

Draper and N.R. (1998), explained that linear regression analysis is used to predict the value 
of a variable based on the value of another variable. The variable to be predicted is called the 
dependent variable. The variable using to predict the other variable's value is called the 
independent variable. This form of analysis estimates the coefficients of the linear equation, 
involving one or more independent variables that best predict the value of the dependent 
variable. Linear regression fits a straight line or surface that minimizes the discrepancies 
between predicted and actual output values. There are simple linear regression calculators that 
use a “least squares” method to discover the best-fit line for a set of paired data  then estimate 
the value of X (dependent variable) from Y (independent variable).  

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿$ +⋯+ 𝜷𝒏𝑿𝒏 + 𝝐																																					 

Where: 

• Y is the predicted output (dependent variable). 
• β0 is the intercept. 
• β1,β2,…,βn are the coefficients of the independent variables X1,X2,…,Xn 
• ϵ  is the error term. 

Advantages of Linear Regression Model are: 
 

• Interpretability: One of the primary advantages of linear regression is its simplicity and 
interpretability. Each coefficient βi represents the expected change in the dependent 
variable for a one-unit change in the corresponding independent variable Xi holding all 
other variables constant. 

• Efficiency: Linear regression can be efficiently computed for both small and large 
datasets, making it a highly scalable model. 

• Widespread Use: It is commonly used in various domains, such as economics, biology, 
engineering, and social sciences, to analyse relationships between variables. 

 
Limitations of Linear Regression Model are: 
 

• Linearity Assumption: The primary limitation of linear regression is that it assumes a 
linear relationship between the dependent and independent variables. In cases where 
the true relationship is non-linear, linear regression may perform poorly. 
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• Outliers: Linear regression is sensitive to outliers, which can significantly affect the 
model’s performance. 

• Multicollinearity: If the independent variables are highly correlated (multicollinear), it 
becomes difficult to determine the individual effect of each variable on the dependent 
variable. This can inflate the variance of the coefficient estimates and lead to misleading 
conclusions. 
 

The model equation formed is: 

 
Figure 4: Slope and Bias formed for Linear Regression Model 

 
And the following results obtained are as follows: 
 
 

 
 

Figure 5:Training Plot of Actual vs Predicted FCOs 
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Figure 6:Testing Plot of Actual vs Predicted FCOs 

 
 

Figure 7:Residual Plot 



 29 

 
 

Figure 8: Feature Importance 

 
 

Figure 9: Residual Distribution 
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Figure 10: Model Performance Metrics 

Model Interpretation: 
 
 

Metrics Training Testing Interpretation 
R² 0.070 -1.974 In the training set, 

the model explains 
only 7% of the 

variance in the data. 
The negative R² in 
the testing phase 
indicates that the 

model performs very 
poorly on unseen 

data. 
RMSE 210.213 57.232 The average error 

between predicted 
and actual values in 

the training set is 
210.213, and 57.232 
in the test set. This 
suggests a lower 

error in the test set, 
though the R² score 

indicates poor 
generalization. 

 
 

MAE 28.483 25.222 The average 
absolute difference 
between actual and 
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predicted values is 
relatively low, 
suggesting the 

model’s predictions 
are somewhat close 

on average. 
Residual Plot   The residuals are not 

centred around zero, 
indicating that the 
model may have 

missed some 
underlying patterns 
or relationships in 

the data. 
Feature Importance   LSI has the largest 

absolute coefficient 
value (60), meaning 

it has the most 
significant impact on 

the predictions. 
LAC, LCA, LTR, 

and LSE have minor 
contributions. 

Residual 
Distribution 

  The residuals are 
mostly centred 
around zero but 

show large errors in 
both positive and 

negative directions, 
indicating potential 

outliers or non-linear 
relationships not 
captured by the 
linear model. 

 
 
 
 
 
 
 
 
 
 
 
 

Accuracy 72% 72.3% While the accuracy 
values for both 

training and testing 
are relatively high 
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(72% and 72.3%), 
the low R² scores 

and high error 
metrics like RMSE 

suggest that the 
model is not 

performing well in 
capturing the true 

relationships 
between features and 

the target. It 
indicates that while 
the model makes 

many correct 
predictions, it does 
so with significant 

errors for the cases it 
gets wrong, and it 
may not generalize 
well to new, unseen 

data. 
 

Table 1:Model  Analysis Table of Linear Regression Model 

 
Summary: 
 
It suggests that the model has been reasonably successful in learning the patterns from the 
training data, though 28% of the predictions are incorrect or inaccurate. A 72% accuracy is 
moderate, but combined with the low R² value (0.070), it indicates that the model is capturing 
some trends in the data, but is far from ideal. The testing accuracy is slightly higher at 72.3%, 
meaning the model is able to predict correctly for 72.3% of the unseen test data. This number 
is very close to the training accuracy, which implies that the model is not overfitting or 
underfitting significantly. However, it’s important to note that accuracy alone does not paint 
the complete picture, especially when the R² value for testing is negative (-1.974), which shows 
the model is not explaining the variance well in the test set.  
 
 
 
 
 
 
 
 
 
 

4.1.2 Lasso Regression 
 
Tibsirani and Robert (1996), explained that lasso regression (Least Absolute Shrinkage and 
Selection Operator) is a variant of linear regression that incorporates L1 regularization. It adds 
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a penalty to the absolute value of the regression coefficients, encouraging sparsity by reducing 
some coefficients to zero. This allows Lasso to perform feature selection, making it particularly 
useful when dealing with datasets containing many irrelevant features. However, Lasso may 
struggle when multicollinearity is high among predictors, as it can arbitrarily shrink one 
predictor over another. 
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Where: 

• l is the regularization parameter controlling the strength of the penalty. 
• The |βj| term applies L1 regularization, shrinking some coefficients to zero. 

Advantages of Lasso Regression Model are: 

• Feature Selection: Lasso performs automatic feature selection by shrinking less 
important feature coefficients to zero. This leads to a simpler, more interpretable model, 
as irrelevant or redundant features are effectively removed. 

• Regularization: Lasso applies L1 regularization, which helps to prevent overfitting, 
especially in cases where the number of features is greater than the number of 
observations (high-dimensional data). The penalty term discourages complex models 
with too many parameters, thereby improving generalization. 

• Handling Multicollinearity: Lasso can handle multicollinearity (i.e., when independent 
variables are highly correlated) by selecting one variable from a group of correlated 
variables and shrinking the others to zero, which helps in reducing redundancy in the 
model. 

• Improved Prediction Accuracy: Due to the regularization and feature selection 
properties, Lasso often improves the predictive performance on new, unseen data 
compared to models without regularization (such as ordinary least squares regression). 

Limitations of Lasso Regression Model are: 
 

• Underfitting: If the penalty term (lambda) is set too high, Lasso can shrink coefficients 
too much, leading to an underfit model that oversimplifies the relationships in the data, 
thereby reducing predictive accuracy. 

• Bias-Variance Trade off: While Lasso reduces variance by shrinking coefficients, it can 
introduce bias, particularly when important features have small coefficients that get 
shrunk too much or to zero. This may result in missing some important predictors in 
the model. 

• Sensitive to Outliers: Lasso regression can be sensitive to outliers, as it minimizes the 
sum of absolute residuals. Outliers can distort the model by significantly affecting the 
residuals, leading to suboptimal predictions. 
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The model equation formed is: 

 
Figure 11: Slope and Bias formed for Lasso Regression Model 

 
The following results obtained are as follows: 
 

 
 

Figure 12:Training Actual vs Predicted FCOs 
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Figure 13:Testing Actual vs Predicted FCOs 

 
 

Figure 14:Residual Plot 
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Figure 15:Feature Importance 

 
 

Figure 16:Residual Distribution 
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Figure 17:Model Performance Metrics 

 
Model Interpretation: 
 

Metrics Training Testing Interpretation 
R² 0.070 -1.888 In the training set, 

the model explains 
only 7% of the 

variance in the data. 
The negative R² in 
the testing phase 
indicates that the 

model performs very 
poorly on unseen 

data. 
RMSE 210.219 56.400 A lower RMSE 

indicates a better fit. 
Here, the testing 
RMSE is much 
lower than the 

training RMSE, 
suggesting that the 

model performs 
poorly on the 

training data but 
improves in 

testing—though 
other metrics show 
it's still unreliable. 
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MAE 27.973 24.698 A lower MAE is 
better, and here the 

testing MAE is 
slightly better than 
the training one. 

Residual Plot   Here, the spread of 
residuals indicates 
poor performance, 

especially for higher 
values where the 

model struggles with 
accurate predictions. 

Feature Importance   LSI has the largest 
absolute coefficient 
value (60), meaning 

it has the most 
significant impact on 

the predictions. 
LAC, LCA, LTR, 

and LSE have minor 
contributions. 

Residual 
Distribution 

  The residual 
distribution is highly 
centred around zero, 

which is expected 
for any regression 

model. However, the 
narrow spread 

suggests that the 
model might not be 

capturing the 
variability well, as 

the predictions seem 
close to zero for 

many data points, 
which is a reflection 

of the model’s 
overall weak 
performance. 
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Accuracy 70% 71.5%, The training and 
testing accuracy of 
70% and 71.5%, 

respectively, seem 
reasonable, but the 

R² values, especially 
for the test data (-

1.888), indicate that 
the model is not 
explaining the 
relationships 

between features and 
the target well. 

 
Table 2:Model Analysis Table of Lasso Regression Model 

Summary: 
 
Training accuracy 70% and testing accuracy 71.5% suggest that the model is consistent in its 
performance across both the training and test datasets. This typically indicates that the model 
is not overfitting (i.e., it performs similarly on unseen data).The overall result is that the model 
doesn’t generalize well and further adjustments or a change in modelling approach is necessary 
to improve performance. 
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4.1.3 Ridge Regression 
 
Hoerl et al., (1970), stated that ridge regression is similar to Lasso but uses L2 regularization, 
which penalizes the sum of the squares of the coefficients. Unlike Lasso, Ridge does not force 
coefficients to become zero, making it more suited to datasets with multicollinearity issues. By 
introducing a penalty on large coefficients, Ridge reduces model complexity and prevents 
overfitting . It performs well predictors are relevant and have small coefficients. 
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Where: 

• λ is the regularization parameter. 
• The βj2 term applies L2 regularization, shrinking all coefficients but not necessarily 

setting any of them to zero. 

Advantages of Ridge Regression Model are: 
 

• Interpretability: While ridge regression shrinks coefficients, it doesn’t reduce them to 
zero. This allows all features to still contribute to the final model, making it useful when 
you want to retain all variables while controlling their influence. 

 
• Reduces Overfitting: By adding regularization, ridge regression reduces the magnitude 

of the coefficients, which helps in avoiding overfitting to the training data. This 
improves the model's ability to generalize to unseen data. 

 
• Handles Multicollinearity: Ridge regression adds a penalty term (L2 regularization) to 

the loss function, which helps in dealing with multicollinearity (when two or more 
predictors are highly correlated). It reduces the variance of the model by shrinking the 
regression coefficients, making the model more stable. 

 
• Bias-Variance Trade off: Ridge regression introduces a controlled bias into the model 

by penalizing large coefficients. This reduces the variance of the model, which helps in 
achieving a better balance between bias and variance, especially in high-dimensional 
datasets. 

 
 
Limitations of Ridge Regression Model are: 
 

• Cannot Perform Variable Selection: Ridge regression shrinks the coefficients but does 
not eliminate them. This means that all variables are retained in the final model, even 
those that may not be significant, making it harder to identify the most important 
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predictors. This is a limitation compared to methods like Lasso regression, which can 
perform feature selection by reducing some coefficients to zero. 

 
• Bias Introduction: While the regularization reduces the variance, it introduces bias into 

the model. Although this trade off is often beneficial for reducing overfitting, in cases 
where the underlying relationship is truly linear and all predictors are useful, ridge 
regression might underperform compared to ordinary least squares (OLS) due to this 
bias. 

 
• Assumes Linear Relationship: Like other linear regression methods, ridge regression 

assumes that the relationship between the predictors and the target variable is linear. If 
the relationship is non-linear, ridge regression may not capture the complexity of the 
data well, and non-linear models may be more appropriate. 

 
The model equation formed is: 

 
Figure 18: Slope and Bias formed for Ridge Regression Model 

The following results obtained are as follows: 

 

Figure 19:Training Actual vs Predicted FCOs 
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Figure 20:Testing Actual vs Predicted FCOs 

 

Figure 21:Residual Plot 
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Figure 22:Feature Importance 

 

Figure 23:Residual Distribution 
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Figure 24:Model Performance Metrics 

Model Interpretation: 
 

Metrics Training Testing Interpretation 
R² 0.070 -1.952 In the training set, 

the model explains 
only 7% of the 

variance in the data. 
The negative R² in 
the testing phase 
indicates that the 

model performs very 
poorly on unseen 

data. 
RMSE 210.213 57.022 A lower RMSE 

indicates a better fit. 
Here, the testing 
RMSE is much 
lower than the 

training RMSE, 
suggesting that the 

model performs 
poorly on the 

training data but 
improves in 

testing—though 
other metrics show 
it's still unreliable 
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MAE 28.360 25.100 A lower MAE is 
better, and here the 

testing MAE is 
slightly better than 
the training one. 

Residual Plot   Here, the spread of 
residuals indicates 
poor performance, 

especially for higher 
values where the 

model struggles with 
accurate predictions 

Feature Importance   LSI has the largest 
absolute coefficient 
value (60), meaning 

it has the most 
significant impact on 

the predictions. 
LAC, LCA, LTR, 

and LSE have minor 
contributions. 

Residual 
Distribution 

  The residual 
distribution is highly 
centred around zero, 

which is expected 
for any regression 

model. However, the 
narrow spread 

suggests that the 
model might not be 

capturing the 
variability well, as 

the predictions seem 
close to zero for 

many data points, 
which is a reflection 

of the model’s 
overall weak 
performance. 
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Accuracy 73.5% 78.5% The high accuracy 
values (73.5% and 

78.5%) could 
suggest that the 

model is correctly 
predicting the target 
value for many data 
points. The fact that 
the R² is very low 
implies that the 

model isn't capturing 
the underlying 

pattern and is not 
generalizing well, 

despite high 
accuracy 

percentages. 
 

Table 3:Model Analysis Table of Ridge Regression Model 

 
Summary: 
 
While the accuracy values suggest the model is making some decent predictions, the poor R² 
values (-1.952) indicate that it is not explaining the underlying relationships well, likely 
overfitting, and not generalizing. This points to the need for further model tuning or a change 
in the modelling approach. 
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4.1.4 Polynomial Regression 
 

Kleinbaum et al., (1988), stated that polynomial regression extends linear regression by 
introducing non-linearity to the model. It does so by fitting polynomial terms of the 
independent variables (e.g., squared or cubic terms) to better capture the complex relationships 
between variables. However, polynomial regression is sensitive to overfitting, especially when 
higher-degree polynomials are used . 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿 + 𝜷𝟐𝑿𝟐 +⋯+ 𝜷𝒏𝑿𝒏 + 𝝐																																					 

Where: 

• n is the degree of the polynomial. 
• The model includes polynomial terms X2,Xn to capture non-linear relationships 

between X and Y. 

Advantages of Polynomial Regression Model are: 
 

• Captures Non-Linear Relationships: One of the key strengths of polynomial regression 
is its ability to model non-linear relationships between the independent variables 
(features) and the dependent variable (target). It can fit a curve through the data points, 
making it more flexible than linear regression. 

 
• Flexibility in Model Complexity: By increasing the degree of the polynomial, it can 

increase the complexity of the model. This allows for fitting more complex patterns in 
the data and making the model flexible to different types of data structures. 

 
• Extends Linear Regression: Polynomial regression is an extension of linear regression 

and uses the same framework but introduces non-linearity by transforming the features 
(raising them to a power). This makes it relatively easy to implement using common 
linear regression algorithms. 

 
• Interpretable for Lower-Degree Polynomials: When used with lower-degree 

polynomials (e.g., quadratic or cubic), the model remains relatively interpretable and 
provides insights into how the independent variables influence the dependent variable 
in a non-linear fashion. 

 
Limitations of Polynomial Regression Model are: 
 

• Prone to Overfitting: One of the biggest drawbacks of polynomial regression is the risk 
of overfitting, especially when the degree of the polynomial is too high. A high-degree 
polynomial can fit the training data very well, including noise, but may generalize 
poorly to new, unseen data, leading to poor predictive performance. 
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• Extrapolation Can Be Unreliable: Polynomial regression tends to perform poorly when 
used for extrapolation (predicting values outside the range of the training data). The 
polynomial curve can behave erratically outside the observed data range, leading to 
inaccurate predictions. 

 
• Model Interpretability Decreases with Higher-Degree Polynomials: polynomial 

regression is relatively interpretable with lower degree polynomials, increasing the 
degree of the polynomial can make the model harder to interpret. Higher-degree terms 
(e.g., x³, x⁴) complicate the relationship between the variables, making it difficult to 
understand how changes in the input features affect the target variable. 
 

The model equation formed is: 

 
Figure 25:Slope and Bias formed for Polynomial Regression Model 

 
The following results obtained are as follows: 
 

 
 

Figure 26:Training Actual vs Predicted FCOs 
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Figure 27:Testing Actual vs Predicted FCOs 

 
 

Figure 28:Residual Plot 
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Figure 29:Feature Importance 

 
 

Figure 30:Residual Distribution 
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Figure 31:Model Performance Metrics 

 
 
Model Interpretation: 
 

Metrics Training Testing Interpretation 
R² 0.241 -2.220 An R² of 0.241 for 

training shows some, 
but limited, 

explanation of 
variance. However, 
the negative R² in 
testing (-2.220) 
indicates poor 

performance, poor 
than making a 
simple average 

prediction. 
RMSE 189.883 

 

59.554 A lower RMSE 
indicates a better fit. 

Here, the testing 
RMSE is much 
lower than the 

training RMSE, 
suggesting that the 

model improves 
somewhat in testing 

but is still needs 
improvement 
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MAE 23.994 
 

19.252 A lower MAE 
indicates better 

performance, and 
here the MAE for 

the testing set 
(19.252) is slightly 
better than for the 

training set (23.994). 
Residual Plot   The residual plot 

shows the difference 
between actual and 
predicted values. 
Ideally, residuals 

should be randomly 
scattered around 
zero. Here, the 

spread indicates that 
the model 

underperforms for 
larger values and 

struggles with 
variability, 

especially in the 
testing set. 

Feature Importance   The bar graph 
highlights the 
importance of 

different features 
based on absolute 
coefficient values. 
The most important 

features are 
LCA_LSI and 

LAC_LSI, which are 
polynomial 

interaction terms, 
followed by 

LTR_LSI and other 
interaction terms. 
This suggests that 

the polynomial 
interactions 

involving LSI and 
other variables play 
a significant role in 

the prediction. 
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Residual 
Distribution 

  The residual 
distribution is highly 
centred around zero, 
indicating the model 

is making errors 
close to zero for 

many predictions. 
However, the narrow 
spread suggests that 
the model may be 
oversimplified or 

poorly generalized, 
as it fails to capture 

outliers or more 
significant 
deviations 
effectively. 

Accuracy 73% 75.5% The model's training 
accuracy of 73% and 
testing accuracy of 

75.5% indicate 
reasonable 

performance in 
classification tasks. 
However, the model 
struggles to explain 
variance in the data, 
as shown by the R² 
values, especially in 
the testing set, where 
the model performs 

poorly (-2.220). 
 

Table 4:Model Analysis Table of Polynomial Regression Model 

 

Summary: 
 
The feature importance suggests that certain polynomial interaction terms play a crucial role 
in the prediction, but the overall model performance metrics (RMSE, MAE, and R²) indicate 
the model is not capturing the data patterns effectively. The negative R² value for testing, along 
with the high RMSE and moderate MAE, suggests that the model may be overfitting the 
training data .Further model optimization or trying different regression approaches (e.g., 
reducing the polynomial degree, or trying regularized models) may be required to improve 
performance.  
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4.1.5 Random Forest Regression 
 
Random Forest Regression is a non-parametric ensemble learning method that leverages the 
power of multiple decision trees to enhance predictive accuracy and robustness in regression 
tasks. It is an extension of the Random Forest algorithm, which was originally developed by 
Leo & Breiman in 2001 as a classification tool, but it has since been adapted to handle 
regression problems. The core principle of Random Forest Regression is to combine the 
predictions from multiple decision trees to reduce variance and improve the generalization 
ability of the model. Its key components are: 

• Ensemble Learning: Random Forest is an example of ensemble learning, which is a 
technique that combines multiple weak learners (individual decision trees) to produce 
a more accurate and stable predictive model. By averaging the results of many decision 
trees, Random Forest reduces overfitting, which is a common problem with individual 
decision trees. 

• Bootstrap Aggregation (Bagging): Random Forest regression employs a process known 
as bootstrap aggregation, or bagging. In bagging, multiple decision trees are trained on 
different random subsets of the training data (with replacement). Each tree in the forest 
independently makes predictions, and the final prediction is the average of all the trees’ 
outputs. Bagging helps to reduce model variance, improving the stability and accuracy 
of the predictions. 

• Random Subset of Features: For each split in the decision tree, Random Forest selects 
a random subset of features from the entire feature set. This randomness helps to ensure 
that the decision trees are not overly correlated with each other and that the most 
important features do not dominate the model. This also improves model diversity, 
making the Random Forest more robust to noise in the data. 

Its mathematical formulation is: 
 

(𝑌>) =
1
𝑇4𝑓-(𝑋)																																																																															

.

-*+

 

 

Where: 

• T is the total number of decision trees in the forest. 
• ft(X) is the prediction made by the tth decision tree. 
• The final prediction 𝑌>  is the average of predictions from all trees. 

Advantages of Random Forest Regression are: 

• Accuracy: By averaging multiple decision trees, Random Forest reduces the risk of 
overfitting and generally provides high accuracy compared to single decision trees. 
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• Handling High Dimensional Data: Random Forest can handle datasets with a large 
number of features, and by randomly selecting subsets of features, it efficiently deals 
with the curse of dimensionality. 

• Robustness: It is robust to outliers and noise in the dataset. Because individual trees 
might make errors on certain data points, averaging the predictions tends to smooth out 
these errors. 

• Feature Importance: Random Forest provides insights into the importance of each 
feature in predicting the target variable. This makes it useful in understanding which 
variables contribute the most to the model’s predictions. 

Limitations of Random Forest Regression are: 

• Interpretability: While Random Forest models are powerful and accurate, they tend to 
lack the interpretability that simpler models, like linear regression, provide. It is often 
referred to as a "black-box" model because it is difficult to understand how individual 
predictions are made. 

• Computational Cost: Since Random Forest builds multiple decision trees, it can be 
computationally expensive, both in terms of training time and memory usage, 
especially for large datasets. 

The model equation formed is: 

 

Figure 32:Slope and Bias formed for Random Forest Regression Model 

The results obtained after using Random Forest Regression are: 

 

Figure 33:Training Actual vs Predicted FCOs 
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Figure 34:Testing Actual vs Predicted FCOs 

 
 

Figure 35:Residual Plot 
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Figure 36:Feature Importance 

 

Figure 37:Residual Distribution 
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Figure 38:Model Performance Metrics 

Model Interpretation: 
 
 

Metrics Training Testing Interpretation 
R² 0.749 -1.014 R² for training 

indicates that 74.9% 
of the variance in the 

target variable is 
explained by the 

model. However, for 
the testing data, R² is 

negative, meaning 
the model fails to 
predict the target 

variable accurately 
on unseen data. 

RMSE 109.249 47.100 RMSE represents 
the standard 

deviation of the 
residuals (prediction 

errors). Lower 
RMSE is better. 

Training RMSE is 
higher, indicating 

larger errors, while 
testing RMSE is 
lower, suggesting 

improved 
predictions for test 

data. 
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MAE 4.734 3.754 The model performs 
better in testing 
(lower MAE) 
compared to 

training. 
Residual Plot   The residuals appear 

to be scattered 
around the zero line, 
indicating that the 
model is able to 

capture the 
underlying patterns 
to some degree but 
with some notable 

errors. 
Feature Importance   LTR and LCA are 

the most important 
features. These 

features are critical 
for prediction 

accuracy in the 
model. 

Residual 
Distribution 

  The majority of 
residuals are centred 

near zero, which 
suggests that the 

model's predictions 
are close to the 

actual values for 
most data points. 
This is a sign of 

reasonable 
prediction accuracy. 

Accuracy 74% 77.5% Training accuracy is 
reasonably high, and 
testing accuracy is 

slightly better, 
indicating that the 
model performs 

better on the testing 
set than the training 
set. However, this 

alone is not enough 
to conclude the 

model’s success due 
to the poor R² score 

for testing. 
 

Table 5:Model Analysis Table of Random Forest Regression Model 



 60 

Summary: 

While the model shows high training and testing accuracy (74% and 77.5%, respectively), the 
negative R² on the testing set highlights overfitting. Despite good accuracy scores, the model 
is unable to generalize to unseen data, as indicated by the negative R², which essentially means 
that the model is failing to capture the real patterns in the test dataset. 

 

CONCLUSION 
 

Regression Model Training Accuracy (%) Testing Accuracy (%) 

Linear Regression 72 72.5 

Lasso Regression 70 71.5 

Ridge Regression 73.5 78.5 

Polynomial Regression 73 75.5 

Random Forest Regression 74 77.5 

 

 
• Random Forest Regression achieved the best overall performance with 77.5% accuracy 

on the test set and fewer residual errors compared to Ridge Regression model whose 
R2 (-1.952) is more. 

• Despite a negative R² (-1.014) on testing, it demonstrated the most balanced fit and 
generalization across training and testing data, making it the most effective model for 
landslide vulnerability prediction among those tested. 

• The accuracy procured from doing the models was as per expectations because of the 
limitations of the models , problems in data cleaning and lack of data. 

• Results indicate that approximately 78% of the population in landslide-susceptible 
areas may be considered highly vulnerable. 

• These vulnerability percentages do not directly correspond to mortality rates but reflect 
the susceptibility to landslide impacts. 
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