A MINI PROJECT

ON

"THE CASE STUDY ON SOIL EROSION IN THE SUBANSIRI RIVER BASIN USING THE R.U.S.L.E. MODEL AND GEOGRAPHIC INFORMATION SYSYTEM (GIS)"

Submitted in Partial Fulfillment for the Requirements for the award of Degree of MASTERS OF TECHNOLOGY (CIVIL ENGINEERING) UNDER ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY

ANNAJYOTI SAIKIA MTECH 3RD SEMESTER Roll no-230620061004

Under the guidance of: Dr. BHARATI MEDHI DAS PROFESSOR

DEPARTMENT OF CIVIL ENGINEERING ASSAM ENGINEERING COLLEGE JALUKBARI, GUWAHATI-781013 SESSION: 2023-2025

ACKNOWLEDGEMENT

I am highly honored to express our sincere and heartfelt gratitude to **Dr. JAYANTA PATHAK**, Head of Department, Civil Engineering Department, for encouraging and allowing us to present the project on the topic at our department premises for the partial fulfilment of the requirements leading to the award of Bachelor of Technology in Civil Engineering.

We would like to express our heartfelt gratitude to our Project Supervisors, **Dr. BHARATI MEDHI DAS**, Professor, Department of Civil Engineering for their guidance, encouragement and for providing us necessary facilities, valuable suggestions and constructive criticism in carrying out the project work.

Last but not the least, we are thankful to the Faculty and Staff of the Civil Engineering Department of our college and other technical and non-technical staff who helped us to learn a lot of new things and we are extremely grateful to them.

Date: Place: Kamrup(M) ANNAJYOTI SAIKIA M.Tech 3RD SEMESTER Roll no-230620061004

CANDIDATE DECLARATION

I hereby certify that the work presented in the project entitled "THE CASE STUDY ON SOIL EROSION IN THE SUBANSIRI RIVER BASIN USING THE R.U.S.L.E. MODEL AND GEOGRAPHIC INFORMATION SYSYTEM (GIS)" is the authentic record of our own work carried out under the guidance of Dr. BHARATI MEDHI DAS, Professor, Department of Civil Engineering, Assam Engineering College, Jalukbari. The project is submitted in partial fulfillment of requirements for the award of the degree of "Master of Technology in Civil Engineering" under specialization on Water Resources Engineering to the Department of Civil Engineering, Assam Engineering College, Jalukbari, Guwahati-781013, Assam.

The matter embodied in this dissertation has not been submitted to any other institute for the award of any other degree. We have followed the guidelines provided by the Department of Civil Engineering, Assam Engineering College, Jalukbari, Guwahati-781013, Assam. Whenever materials from other sources are used, due acknowledgement is given to them by citing them in the text of this project and giving their details in the references.

This is to certify that the above statement made is correct to the best of my knowledge.

Date: Place: Assam Engineering College Jalukabri, Guwahti, Assam NAME - ANNAJYOTI SAIKIA ROLL NO - 230620061004 SIGNATURE

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the dissertation report **entitled "THE CASE STUDY ON SOIL EROSION IN THE SUBANSIRI RIVER BASIN USING THE R.U.S.L.E. MODEL AND GEOGRAPHIC INFORMATION SYSYTEM (GIS)"** is submitted by **Annajyoti Saikia**, **Roll No 230620061004**, a student of 3rd semester in the Department of Civil Engineering, Assam Engineering College, Guwahati in partial fulfilment for the award of degree of **MASTERS OF TECHNOLOGY** in Civil Engineering with specialization in **Water Resources Engineering** under **ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY** has been carried out under my guidance.

The content of this report has not been submitted to any other university for the award of any degree.

Date – Place – Kamrup(M) Dr. Bharati Medhi Das Professor Department of Civil Engineering Assam Engineering College Jalukbari, Guwahati, 781013

DEPARTMENT OF CIVIL ENGINEERING ASSAM ENGINEERING COLLEGE JALUKBARI, GUWAHATI -781013

CERTIFICATE FROM THE HEAD, CIVIL ENGINEERING DEPARTMENT

It is to certify that the project report entitled "THE CASE STUDY ON SOIL EROSION IN THE SUBANSIRI RIVER BASIN USING THE R.U.S.L.E. MODEL AND GEOGRAPHIC INFORMATION SYSYTEM (GIS)" is hereby accorded our approval as a study carried out and presented in a manner in their 3rd semester courses for acceptance in partial fulfilment for the award of Master of Technology in Civil Engineering under specialization on Water Resources Engineering degree for approval does not necessarily endorse or accept every statement made, opinion expressed or conclusion drawn as recorded in the report. It only signifies the acceptance of the project report for the purpose for which it is submitted.

Date: Place: Kamrup (M)

Dr. Jayanta Pathak

Professor & Head Department of Civil Engineering Assam Engineering College Jalukbari, 781013

ABSTRACT

This study evaluates soil erosion risks within a sub-watershed of the Subansiri River basin in Lakhimpur District, Assam, using the Revised Universal Soil Loss Equation (RUSLE) model. The research integrates key factors influencing soil erosion, including rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practices (P), to assess annual soil loss. Spatial analyses were conducted using ArcGIS, converting the core factors into raster layers for processing with a raster calculator. This approach facilitated the development of soil erosion risk maps that classify the watershed into zones of varying erosion severity, providing insights for sustainable land management and targeted conservation efforts.

The study, employing a GIS-based time-series approach, analyzed soil loss trends for the years 2014, 2022, and 2023. Two RUSLE variants were compared: one utilizing flow length and the other flow accumulation to estimate the LS factor. Inputs included USGS remotely sensed data, digital elevation models, precipitation records, and soil maps. Results indicated no significant trends in soil erosion, precipitation, or land cover changes over the past decade. Despite reports of increasing rainfall intensity in the region, this could not be corroborated through climate data analysis or modeled soil erosion trends. Findings suggest that improved agricultural practices may have offset potential erosion from land exploitation, highlighting the importance of sustainable land use management in mitigating soil degradation.

Keywords: Soil erosion, RUSLE model, GIS, Subansiri River basin, rainfall erosivity, soil erodibility, slope length and steepness, cover management, support practices, sustainable land management, soil degradation, time-series analysis.

CHAPTERS	TITLE	PAGE NO
	List of Figures	10
	List of Tables	14
	List of Abbreviations	17
CHAPTER 1	INTRODUCTION	16
	1.1 General Background	16
	1.2 Objectives	20
	1.3 Study Area	21
	1.3.1 Hydrological and Geological Features	22
	1.3.2 Climate and Environmental Conditions	23
	1.3.3 Topographic Features	24
	1.3.4 Seismicity	25
	1.3.5 Hydrological Network	26
CHAPTER 2	MATERIALS	27
	2.1 DIGITAL ELEVATION MODEL (DEM)	27
	2.2 PRECIPITATION DATA FROM NETCDF FILE	28
	2.3 LANDSAT IAMGE	30
	2.3.1 DETAILED DESIGNATION OF LANDSAT SATELLITES	31
	2.4 SOIL DATA	32
CHAPTER 3	LITERATURE REVIEW	33
	3.1 SOIL FORMATION AND ITS HISTORY	33
	3.2 ROLE OF SOIL BIODIVERSITY	34
	3.3 SOIL CLASSIFICATION	35
	3.4 SOIL DEGRADATION	35
	3.4.1 TYPES OF SOIL DEGRADATION	36
	3.5 SOIL EROSION	36
	3.5.1 SOIL EROSION VULNERABILITY MAP	37
	3.5.2 EROSION AND ITS TYPES	37
	3.5.2.1 WATER EROSION AND ITS TYPES	38
	3.6 EROSION MODEL	40
	3.6.1 EMPERICAL MODELS (STATISTICAL)	41
	3.6.2 PHYSICAL MODELS	41
	3.6.3 HYBRID MODELS	42
	3.6.4 MODEL AND ITS IMPORTANCE	42
	3.6.4.1 USLE	42
	3.6.4.2 SWAT	42
	3.6.4.3 WEPP	42
	3.6.4.4 EROSION 3D	43
	3.6.4.5 MCE	43

CONTENTS

	3.7 RUSLE MODEL	43
	3.8 RUSLE FACTORS	44
	3.8.1 RAINFALL EROSIVITY (R) FACTOR	44
	3.8.2 SOIL ERODIBILITY (K) FACTOR	45
	3.8.3 SLOPE LENGTH AND SLOPE STEEPNESS (LS) FACTOR	48
	3.8.4 COVER MANAGEMENT (C) FACTOR	49
	3.8.5 SUPPORT PRACTICE (P) FACTOR	51
CHAPTER 4	METHODOLOGY	56
	4.1 THE RUSLE MODEL	56
	4.2 RUSLE FACTORS	57
	4.2.1 RAINFALL EROSIVITY (R) FACTOR	57
	4.2.1.1 WORKING WITH PRECIPITATION IN NETCDF FILE OF CRU 2014	59
	4.2.1.1.1 REPROJECT OF MONTHLY RAINFALL DATA 2014	64
	4.2.1.1.2 CALCULATION OF R FACTOR USING PROJECTED	65
	RAINFALL DATA 2014	05
	4.2.1.2 WORKING WITH PRECIPITATION IN NETCDF FILE OF CRU 2022	66
	4.2.1.2.1 REPROJECT OF MONTHLY RAINFALL DATA 2022	69
	4.2.1.2.2 CALCULATION OF R FACTOR USING PROJECTED	70
	RAINFALL DATA 2022	70
	4.2.1.3 WORKING WITH PRECIPITATION IN NETCDF FILE OF CRU 2023	71
	4.2.1.3.1 REPROJECT OF MONTHLY RAINFALL DATA 2023	74
	4.2.1.3.2 CALCULATION OF R FACTOR USING PROJECTED	75
	RAINFALL DATA 2023	
	4.2.2 SOIL ERODIBILITY (K)	76
	4.2.2.1 USE OF FAO SOIL MAP FOR SOIL STUDIES YEAR 2014, 2022 & 2023	76
	4.2.2.2 K FACTOR EXTRACTED FROM FAO SOIL DATA FOR DOMINANT SOIL	78
	4.2.2.3 CONVERSION OF K FACTOR MAP TO RASTER IMAGE	79
	4.2.3 SLOPE LENGTH (LS) FACTOR FOR SOIL STUDIES YEAR 2014, 2022 & 2023	80
	4.2.3.1 FLOW DIAGRAM FOR LS FACTOR CALCULATION	80
	4.2.3.2 CREATION OF FILL AND FLOW DIRECTION	81
	4.2.3.3 CREATION OF FLOW ACCUMULATION MAP	82
	4.2.3.4 CALCULATION OF SLOPE IN RADIANS	84
	4.2.3.5 EVALUATION OF LS MAP	85
	4.2.4 C- FACTOR (LAND USE/LAND COVER)	86
	4.2.4.1 WORKING WITH LANDSAT IMAGE OF 2014	87
	4.2.4.1.1 EVALUATION OF COMPOSITE BAND OF YEAR 2014	87
	4.2.4.1.2 EVALUATION OF NDVI MAP OF YEAR 2014	88
	4.2.4.1.3 EVALUATION OF C- FACTOR MAP OF YEAR 2014	89
	4.2.4.2 WORKING WITH LANDSAT IMAGE OF 2022	90

	4.2.4.2.1 EVALUATION OF COMPOSITE BAND OF YEAR 2022	90
	4.2.4.2.2 EVALUATION OF NDVI MAP OF YEAR 2022	91
	4.2.4.2.3 EVALUATION OF C- FACTOR MAP OF YEAR 2022	92
	4.2.4.3 WORKING WITH LANDSAT IMAGE OF 2023	93
	4.2.4.3.1 EVALUATION OF COMPOSITE BAND OF YEAR 2023	93
	4.2.4.3.2 EVALUATION OF NDVI MAP OF YEAR 2023	94
	4.2.4.3.3 EVALUATION OF C- FACTOR MAP OF YEAR 2023	95
	4.2.5 P - FACTOR (CONSERVATION PRACTICE FACTOR)	96
	4.2.5.1 P - FACTOR WORKING FOR STUDY AREA 2014	96
	4.2.5.1.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2014	96
	4.2.5.1.2 RECLASSIFY SLOPE AND COMBINE WITH	07
	CLASSIFICATION MAP	91
	4.2.5.1.3 ASSIGNING P - FACTOR VALUES FOR CLASSES IN AN ATTRIBUTE TABLE	98
	4.2.5.2 P - FACTOR WORKING FOR STUDY AREA 2022	10
	4.2.5.2.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2022	10
	4.2.5.2.2 RECLASSIFY SLOPE AND COMBINE WITH	10
	CLASSIFICATION MAP	10.
	4.2.5.2.3 ASSIGNING P - FACTOR VALUES FOR CLASSES IN AN	10
	ATTRIBUTE TABLE	10
	4.2.5.3 P - FACTOR WORKING FOR STUDY AREA 2023	10:
	4.2.5.3.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2023	103
	4.2.5.5.2 RECLASSIFT SLOPE AND COMBINE WITH CLASSIFICATION MAP	10
	4.2.5.3.3 ASSIGNING P - FACTOR VALUES FOR CLASSES IN AN	10'
	ATTRIBUTE TABLE	
CHAPTER 5	RESULTS AND DISCUSSION	10
	5.1 RAINFALL EROSIVITY (R) FACTOR	10
	5.1.1 ANNUAL PRECIPITATION OF STUDY AREA FOR YEAR 2014, 2022 & 2023	10
	5.1.2 RAINFALL EROSIVITY (R) OF STUDY AREA FOR YEAR 2014, 2022 & 2023	11
	5.2 SOIL ERODIBILITY (K) FACTOR	11.
	5.3 SLOPE LENGTH (LS) FACTOR VALUE FOR YEAR 2014, 2022 & 2023	11
	5.4 C- FACTOR (LAND USE AND LAND COVER)	11
	5.4.1 C- FACTOR STUDY FOR PERIOD 2014, 2022 & 2023	11
	5.5 P - FACTOR (CONSERVATION PRACTICE FACTOR)	12
	5.5.1 P - FACTOR STUDY FOR PERIOD 2014, 2022 & 2023	12
	5.6 RUSLE WORKS	12
	5.6.1 RUSLE A - FACTOR STUDY FOR PERIOD 2014, 2022 & 2023	12
	5.7 VALIDATION OF SOIL EROSION	12
	5.7.1 RAINFALL EROSIVITY	12
	5.7.2 SOIL ERODIBILITY	12

5.7.3 VEGETATION COVER & NDVI	125
5.7.4 SOIL EROSION RATES	125
5.7.5 EROSION AND DEPOSITION ANALYSIS	126
CONCLUSION	129
REFERENCES	130
	 5.7.3 VEGETATION COVER & NDVI 5.7.4 SOIL EROSION RATES 5.7.5 EROSION AND DEPOSITION ANALYSIS CONCLUSION REFERENCES

LIST OF FIGURES

FIGURES	HEADINGS	PAGE NO
1.1	Study Area	21
1.2	Study Area with labels	22
1.3	Precipitation chart of 25 years	24
1.4	Seismicity map	25
1.5	Seismicity Zone value	25
2.1	NetCDF map	29
3.1	Soil components	33
3.2	Soil Horizons	33
3.3	Soil Biodiversity map	34
3.4	Soil classification chart	35
3.5	Erosion vulnerability map	37
3.6	Water erosion sketch	38
3.7	Soil erosion at study area	39
3.8	K - FACTOR CHART	47
3.9	C- FACTOR CHART	51
3.10	P – FACTOR CHART WITH SLOPE %	52
3.11	P – FACTOR OF DIFFERENT LAND SLOPE %	53
3.12	P – FACTOR OF DIFFERENT LAND USE TYPE	55
4.1	RUSLE FLOW DIAGRAM	57
4.2	NetCDF MAP 2014	59
4.3	Annual ppt calculation 2014	60
4.4	Cell statistics interface	60
4.5	Annual precipitation map of 2014	61
4.6	Annual precipitation point map of 2014	62
4.7	Kringing Interpolation dialog box	62
4.8	Kringing Interpolation interface	63
4.9	Kringing Interpolation map	63
4.10	Model building of raster projection	64
4.11	Cell statistics interface	65
4.12	Raster calculator interface	65
4.13	NetCDF MAP 2022	66
4.14	Annual ppt calculation 2022	66
4.15	Annual precipitation point map of 2022	67
4.16	Interpolation precipitation map of 2022	68
4.17	Kringing Interpolation map of 2022	68
4.18	Model building of raster projection	69
4.19	Model building of raster projection	70
4.20	NetCDF MAP 2023	71
4.21	Annual ppt calculation 2023	71
4.22	Annual precipitation point map of 2023	71
4.23	Interpolation precipitation map of 2023	73

4.24	Model building of raster projection - 1	74
4.25	Model building of raster projection - 2	75
4.26	FAO SOIL MAP	76
4.27	FAO SOIL WITH STUDY AREA MAP	77
4.28	K_FACTOR ATTRIBUTE CHART	78
4.29	K_FACTOR RASTER MAP	79
4.30	K_FACTOR SOIL MAP	79
4.31	CONVERSION OF POL TO RASTER	79
4.32	FLOW CHART OF LS WORKS	80
4.33	LS MODEL BUILDING INTERFACE	81
4.34	FLOW DIRECTION MOSAIC MAP	82
4.35	FLOW ACCUMULATION MODEL BUILDER	83
4.36	FLOW ACCUMULATION MAP	83
4.37	SIN_SLOPE_RADIAN MAP	84
4.38	RADIAN MAP	84
4.39	SAGA GIS GENERATED LS MAP	85
4.40	LANDSAT IMAGE OF YEAR 2014	86
4.41	COMPOSITE BAND FCC 2014	87
4.42	COMPOSITE BAND TRUE COLOR 2014	87
4.43	NDVI MAP OF 2014	88
4.44	C-FACTOR MAP BY VATANDASLAR.ET.AL 2014	89
4.45	C-FACTOR MAP BY DURGION.ET.AL 2014	89
4.46	LANDSAT IMAGE OF YEAR 2022	90
4.47	NDVI MAP OF 2022	91
4.48	C-FACTOR MAP BY VATANDASLAR.ET.AL 2022	92
4.49	C-FACTOR MAP BY DURGION.ET.AL 2022	92
4.50	LANDSAT IMAGE OF YEAR 2023	93
4.51	NDVI MAP OF 2023	94
4.52	C-FACTOR MAP BY VATANDASLAR.ET.AL 2023	95
4.53	C-FACTOR MAP BY DURGION.ET.AL 2023	95
4.54	TRAINING SAMPLES	96
4.55	LU/LC MAP OF 2014	96
4.56	SLOPE PERCENTAGE INPUT DIALOG BOX	97
4.57	RECLASSIFICATION INTERFACE	97
4.58	SLOPE PERCENTAGE MAP 2014	98
4.59	COMBINED SLOPE MAP 2014	98
4.60	P_FACTOR VALUE MAP 2014	99
4.61	P_FACTOR UTM MAP 2014	99
4.62	LU/LC MAP OF 2022	100
4.63	TRAINING SAMPLES	100
4.64	SLOPE PERCENTAGE INPUT DIALOG BOX	101
4.65	RECLASSIFICATION INTERFACE	101
4.66	P_FACTOR VALUE MAP 2022	102
4.67	P_FACTOR UTM MAP 2022	102

4.68	P_FACTOR VALUE MAP 2022	103
4.69	P_FACTOR UTM MAP 2022	103
4.70	TRAINING SAMPLES	104
4.71	SLOPE PERCENTAGE INPUT DIALOG BOX	105
4.72	RECLASSIFICATION INTERFACE	105
4.73	P_FACTOR VALUE MAP 2023	106
4.74	P_FACTOR UTM MAP 2023	106
4.75	P_FACTOR VALUE MAP 2023	106
5.1	5.1 RAINFALL VARIATION CHART	108
5.2	ANNUAL PRECIPITATION 2014	109
5.3	ANNUAL PRECIPITATION 2022	109
5.4	ANNUAL PRECIPITATION 2023	109
5.5	ANNUAL PRECIPITATION AS PER LOCATIONS	110
5.6	COMPARISON OF MEAN R FACTOR	111
5.7	R FACTOR MAP 2014	112
5.8	R FACTOR MAP 2022	112
5.9	R FACTOR MAP 2023	112
5.10	INDIAN TEXTURE MAP	113
5.11	SOIL CHARACTERISTICS STUDY MAP	114
5.12	DOMINANT SOIL COVERAGE AREA CHART	115
5.13	K-VALUE MAP	116
5.14	STUDY AREA K-FACTOR CHART	116
5.15	LS (SLOPE LENGTH) MAP	117
5.16	LS (SLOPE LENGTH) MAP UTM	117
5.17	SOIL ERODIBILITY MAP 2014	119
5.18	SOIL ERODIBILITY MAP 2022	119
5.19	SOIL ERODIBILITY MAP 2023	119
5.20	CONSERVATION PRACTICE MAP 2014	120
5.21	CONSERVATION PRACTICE MAP 2022	120
5.22	CONSERVATION PRACTICE MAP 2023	120
5.23	SOIL EROSION TREND	122
5.24 (a)	ANNUAL EROSION MAP 2014	123
5.25 (b)	ANNUAL EROSION MAP 2014	123
5.26 (a)	ANNUAL EROSION MAP 2022	123
5.27(b)	ANNUAL EROSION MAP 2022	123
5.28 (a)	ANNUAL EROSION MAP 2023	123
5.29 (b)	ANNUAL EROSION MAP 2023	123
5.30	PERIODIC RIVERCOURSE MIGRATION	126
E 01	HISTORY RIVER EROSION – DEPOSITION STATISTICS	127
5.31	CHART CHART	100
5.32	RIVER BANK EROSION 2014	128
5.33	RIVER BANK EROSION 2022	128
5.34	RIVER BANK EROSION 2023	128
5.35	RIVER BANK EROSION 2014-23	128

5.36	RIVER BANK EROSION 2014-22	128
5.37	RIVER BANK EROSION 2022-23	128

LIST OF TABLES

TABLE	HEADING	PAGENO
1.1	Rainfall data	23
2.1	DEM specifications data	28
2.2	DEM features data	28
2.3	Wavelength with band no	30
2.4	LANDSAT features data	30
2.5	LANDSAT image features as per resolution	31
3.1	GASEMAT database	41
3.2	R formula as per locations	45
3.3	K-factor data as per soil properties	47
3.4	C – factor data as per LU/LC	50
3.5	C – value as per slope, and different practice work	52
3.6	P – factor as per slope	53
3.7	P – factor as per slope & LU/LC	54
4.1	BAND as per month with different period	58
4.2	BAND as per month with period 2022, 2023	59
4.3	FAO SOIL MAP DATA FOR DOMINANT SOIL	78
4.4	Attribute table of period 2014	99
4.5	Attribute table of period 2022	105
5.1	Annual precipitation data	107
5.2	Precipitation data as per locations	110
5.3	R – factor data with different period	111
5.4	Attribute table of soil map of study area	114
5.5	Soil erodibility data	115
5.6	Coverage K – factor data	116
5.7	Soil texture data	116
5.8	C -factor and NDVI data of different years	118
5.9	Annual soil erosion data	121
5.10	Soil erosion description chart	122
5.11	Soil erosion and deposition trend	127
5.12	Unchanged river-course area chart	127

LIST OF ABBREVIATIONS

Abbreviation	Full Form
CREAMS	Chemical Runoff and Erosion from Agricultural Management Systems
DEM	Digital Elevation Model
ESD	European Soil Database
ESRI	Environmental Systems Research Institute
EUROSEM	European Soil Erosion Model
FAO	Food and Agricultural Organization
GIS	Geographical Information System
GDP	Gross Domestic Product
HWSD	Harmonized World Soil Database
IDW	Inverse Distance Weighted
ICIMOD	International Centre for Integrated Mountain Development
MODIS	Moderate Resolution Imaging Spectro radiometer
NDVI	Normalized Difference Vegetation Index
OLI	Operational Land Imager
RS	Remote Sensing
RUSLE	Revised Universal Soil Loss Equation
SOTER	Soil and Terrain Database
SRTM	Shuttle Radar Topographic Mission
TIFF	Tagged Image File Format
TRIS	Thermal InfraRed Sensor
UNESCO	United Nations Educational, Scientific and Cultural Organization
USGS	United States Geological Survey
USLE	Universal Soil Loss Equation
UTM	Universal Transverse Mercator (Coordinate System)
WEPP	Water Erosion Prediction Project
WGS	World Geodetic System
WISE	World Inventory of Soil Emission Potentials

CHAPTER 1 INTRODUCTION

1.1 General Background

The excessive land degradation brought on by natural occurrences and human actions, known as soil erosion, is a genuine danger to natural reserves, agriculture and environment (**Rahman et al. 2009; Bhattacharya et al. 2020; Ganasri and Ramesh 2016; Rosas and Gutierrez 2020; Teng et al. 2019**). Both natural and artificial factors contribute to the major problems of soil erosion and degradation that affect human society worldwide. **Borrelli et al. 2020** suggested that land utilization and presumably shifts in the climate by an increasingly rapid flood cycle are the key causes of erosion. Globally, it is found that along with areas with typically scant year-round vegetation cover, sloping terrain and elevated-relief landscape also exhibit significant rates of erosion. Owing to steep slope and barren topography, soil erosion is most prevalent in hilly areas. Thus, consequences of global warming, such as different rainfall condition, crop diversity, and land use contribute to soil erosion (**Li and Fang 2016**).

Research in Maotiao River in Guizhou Province of Southwest China showed that soil erosion was most likely driven by the cover-management and supporting practises which are connected to how land is used and also reflect the surface settings (Xu et al. 2011). Soil erosion caused by rainfall was also found in Mantaro River basin, Peruvian Andes (Correa et al. 2016). Soil erosion is a major issue in majority of Indian watersheds that requires careful investigation. An investigation was done in the Ganga basin's watershed region around the Kaushambi-Prayagraj sector where it was found that erosion is brought on by a number of aspects, such as haphazard and unmanaged use, uncontrolled mining, and environmental factors including the number of rains, landscape, and how land is used (Yadav and Vaishya 2023). When the lower Sutlej River basin in Punjab, India, was explored, it emerged that rains bring about erosion and that human actions also play a significant influence (Sharma et al. 2023).

A detailed investigation revealed that soil loss at Chilika Lake, Odisha, was caused by the area's elevated position, substantial amount of human activity, and heavy rains that caused runoff (**Behera et al. 2023**). Nethravathi Basin in the midst of the Western Ghats in western India was investigated by (**Ganasri and Ramesh 2016**), and found that erosion of soil is a significant matter brought on by destruction of land, growth in agriculture, as well as human-caused events. Climate change risks and land use practises make India more susceptible to future floods (**Pal et al. 2022**). Storm rainfall during the monsoon season has a clear influence on large-scale erosion throughout an entire subtropical region (**Chakrabortty et al. 2022**). The influence of hydrological parameters on a watershed can be revealed through the quantitative study of drainage features in conjunction with remote sensing and GIS (**Rawat et al. 2021**). In order to properly manage floods and control erosion, concerted efforts for soil management and water resource conservation will benefit from the data from identifying the regions of soil erosion and rates of erosion (**Pathan and Sil 2022**). Therefore, identifying areas in a basin when there is a high chance of eroding soil is essential for adopting preventative actions.

Over thirty percent of the country's water supplies are carried by the Brahmaputra, which is amongst the biggest rivers in the globe, located in Assam. During the monsoon, Subansiri which is the longest tributary of the river Brahmaputra leads to serious flooding issues in nearby districts and the river diverts its course by carrying a substantial volume of material and depositing it in the valley in the plains of Assam (**Goyal et al. 2018**). Bankline displacement and losses to banks in the Subansiri was studied using the satellite imagery of 1995 and 2010 and it demonstrates that, in both banks, displacement of the bankline from erosion is much prominent than displacement due to sedimentation (**Gogoi and Goswami 2013**). The Subansiri River's river channels were also mapped which is employed to determine the likelihood of riverbank erosion. Utilizing the Spatial Analyst Hydrology capabilities in ArcGIS software, the watershed of the Subansiri River and its drainage channels have been identified (**Bordoloi et al. 2020**). Erosion in and around Subansiri is mostly caused by tremendous braiding, enormous rainfall, and rising river bottom due to silt deposition. Models in general can be divided as conceptual, empirical and physics based (Merritt et al. 2003a). Some empirical models are USLE (Wischmeier & Smith 1965, 1978), RUSLE, improved version of USLE (Renard and United States. Agricultural Research Service. 1997), IHACRES-WQ (A.J. Jakeman et al. 1990; Anthony J. Jakeman et al. 1994), SEDD - Sediment Delivery Distributed (Ferro and Porto 2000), SEDNET (Merritt et al. 2003b). Since they are completely dependent on the assessment of findings and make an effort to define the response to the facts, empirical models are indeed the easiest among all model kinds (Merritt et al. 2003b). Conceptual models such as EMSS (Vertessy et al. 2001), HSPF (Merritt et al. 2003b), LASCAM (Viney and Sivapalan 1999), etc. are models frequently only provide a generalised depiction of catchment processes, but comprehensive catchment knowledge is needed to include the specifics of process relationships. Conceptual models are vulnerable to aggregation errors. Also, ANSWERS (D. B. Beasley et al. 1980), CREAMS (Merritt et al. 2003b), LISEM (Takken et al. 1999), etc. are physics-based models, which explain streamflow, sedimentation, and the generation of related nutrients in a watershed, are founded on the answers of basic physical equations. Physics based models cause variability in parameter values as there are huge quantities of parameters which can have changes in characteristics and these properties then must be validated using observed data which can give errors.

Some of the soil erosion models are SWAT (J. G. Arnold et al. 2012), WaTEM/SEDEM (van Oost et al. 2000), LISEM (de ROO et al. 1996), MUSLE (J. R. Williams and H. D. Berndt 1977), EPIC (Borrelli et al. 2021), EUROSEM (Borrelli et al. 2021) etc. These models predict net erosion while RUSLE predicts gross erosion. Also, these models in general have larger values and greater variability than RUSLE. This is due to deposition of sediment inside the environment and the softening of absolute numbers by including terrain diversity in net erosion models (Borrelli et al. 2021). RUSLE model is very much used by researchers because of many reasons. The state and amount of soil erosion can be accurately assessed in upland with RUSLE (Kumar et al. 2014a). Long-term averages are more appropriately represented by the result of erosion from the RUSLE (A. Desalegn et al. 2018). RUSLE is sensitive to rainfall (Pathan and Sil 2022). It is comparatively quick, adaptable, and time-effective, and its geographical extent is doable over a large area with lower cost and higher precision (Mengie et al. 2022). For calculating the RUSLE erodibility parameter, geostatistical techniques that are present inside the GIS system are believed to be helpful (Phinzi and Ngetar 2019). It demonstrates how factors such as soil geography, climate, and others affect soil erosion

(**Duarte et al. 2016**). In RUSLE, many enhancements are made, including the addition of monthly variables, the inclusion of outward and inward curved shapes via division of uneven gradients, and enhanced factual statements in estimating the LS factor (**Shalini Tirkey et al. 2013**). RUSLE is used in this study due to its good statistical correlations amidst input and output variables makes it suitable to diverse environmental circumstances. It calculates soil erosion quickly, effectively, and with a reasonable level of precision RUSLE and GIS can be employed. Researchers from various countries used GIS and remote sensing in studying erosion along with the movement of sediment, and some of them combined several models to provide superior results.

The Modified USLE model was employed to obtain total upland erosion, and the HEC-HMS lumped hydrologic model was used in calculating debris from floods that occurred in Wadi Billi, Egypt, on March 9, 2014 (Almasalmeh et al. 2022). Laursen-Copeland is applied to predict the ability for sediment transport in streams. Using ArcMap 10.5 software, the NDVI was utilised to a Landsat 8 imagery taken on February 20, 2014 to estimate the natural vegetation based on its spectral imprint. Two models were used (Alexakis et al. 2013): the Analytical Hierarchical Process (AHP) which provided a risk evaluation map, and multiparametric quantitative empirical model RUSLE that is centred on both expert knowledge and is regarded as a cutting-edge method in assessing soil loss. According to the study, for large watersheds, utilising remote sensing and GIS methods using daily rainfall gave an accurate and efficient evaluation for erosion during a relatively brief amount of time at a cheap cost. In their article, two crucial steps were described (Aziz et al. 2021) in the processing of satellite imagery: image rectification and correlation analysis-based detection of deciding visual bands. The work shows that for predicting river deposition with machine learning without supervision, spectral bands such as Near Infrared band, Short-wavelength infrared band, and Thermal Infrared bands are the key bands. In order to record the catchment heterogeneity, another approach that includes spatially disintegrating the watershed into uniform grid segments was used (Bhattarai and Dutta 2007).

The Universal Soil Loss Equation (USLE), amidst its elements properly chosen, was employed to obtain the gross erosion in every segment. The sediment delivery ratio is employed to channel ground erosion from every cell towards the catchment outflow. A study was conducted to map the areas that flood when the Fetam River in Ethiopia's Upper Abbay Basin is inundated, using GIS and HEC RAS. (**H. Desalegn and Mulu 2021**). Flood inundation mapping serves

to determine the region's most vulnerable to flooding whenever the flow of a stream crosses a river at a level above the bank-full level. Average yearly erosion of soil has been determined with RUSLE and GIS from different rivers (Ganasri and Ramesh 2016), (Borgohain et al 2019), (Kebede et al. 2021), (Kumar et al. 2014b), etc. For proper management and safety procedures in Ekiti State, Southwestern Nigeria, evaluation was done for the possible erosion and flood risks areas applying the Revised Universal Soil Loss Equation (RUSLE) and Hand Above Nearest Drainage (HAND) models, respectively (Olorunfemi et al. 2020). RUSLE was merged with the software ArcGIS which may help decision-makers identify and prioritise key erosion hotspots for thorough and long-term watershed management (Getu et al. 2022). It is seen that GIS and remote sensing is applied in estimating soil erosion of different rivers by different researchers. Many models in combination with GIS has been studied to do so. But very limited study has been done in Subansiri river of Assam, India where GIS and remote sensing has been merged with high as well as low soil erosion and analyse changes in the river and the study region using a amalgam of GIS and RUSLE.

1.2 Objectives

The first specific aim is thus to produce high accuracy soil erosion estimates for the study area. Secondly, possible climate and soil erosion intensity trends from 2014 to 2023 are discussed.

These aims are addressed through the following objectives:

- To understand the influencing factors in the RUSLE model and the basic usage of the model by reviewing literature and previous studies.
- To perform the two different model calculations for the years 2014, 2022 and 2023 in order to estimate soil erosion and create soil erosion intensity maps.
- To analyze and discuss the results of possible soil erosion intensity trend from the year 2014 to 2023, affecting by precipitation and land cover situation in the study area.

1.3 Study Area

The Subansiri River is a prominent tributary of the Brahmaputra River, located in the northeastern region of India, particularly in the state of Assam. Its geographical coordinates approximately range from 26.8° to 27.6° North latitude and 93.8° to 94.7° East longitude. As the largest tributary of the Brahmaputra River, the Subansiri plays a crucial role in the hydrological and environmental dynamics of the region. Originating from Tibet, it traverses the Himalayan terrain and enters Indian territory near Daporijo in Arunachal Pradesh before merging with the Brahmaputra in Lakhimpur District, Assam. The river contributes significantly to the Brahmaputra's overall flow, accounting for approximately 11% of its total discharge (Sarkar and Sharma, 2012; Gogoi and Goswami, 2013).

The Subansiri basin encompasses an area of 35,771 square kilometers, out of which 4,350 square kilometers lie in Assam. This vast catchment is subjected to substantial annual flooding and soil erosion, which severely affect the livelihoods and infrastructure of the floodplain inhabitants. The basin's geological framework predominantly consists of Quaternary Alluvium, except for the hilly northern regions where Himalayan rocks dominate.

1.3.1 Hydrological and Geological Features

The Subansiri River exhibits diverse fluvial morphologies depending on the terrain. In the foothills, the river demonstrates a braided pattern, characterized by multiple interweaving channels, while in the plains, it transitions into a meandering course with significant channel migration. This dynamic nature forms varied depositional features, such as point bars, channel bars, natural levees, and back swamps. These features play a pivotal role in the geomorphology of the region, influencing flood patterns and sediment deposition.

Fig: - 1.2 Study Area with labels Source: Google Earth Pro

1.3.2 Climate and Environmental Conditions

The dataset shows monthly and yearly rainfall (in mm) for the Subansiri region from **2000 to 2023**. The annual rainfall varies significantly, with the highest recorded in **2010** (**2660.7 mm**) and the lowest in **2012** (**1441.7 mm**). Most of the rainfall occurs during the monsoon months (**June to September**), while the winter months (**November to February**) have much less. On average, the annual rainfall is about **2064.1 mm**, indicating a generally wet climate with clear seasonal patterns.

This information is important for managing water resources, planning agriculture, and preparing for floods and droughts. It highlights the area's strong reliance on monsoon rains and the need for weather monitoring and prediction systems. The data also helps understand how climate changes affect rainfall, aiding in sustainable planning and decision-making.

Year	RAINFALL (MM)
2000	1905.8
2001	1548
2002	1688.1
2003	2184.5
2004	2420
2005	1846.2
2006	1742.3
2007	2231.1
2008	1914
2009	1966.3
2010	2652.8
2011	1570.1
2012	1441.7
2013	1882.6
2014	2037.7
2015	2000.9
2016	2283.1
2017	2571.5
2018	2178.9
2019	2352.4
2020	2433.6
2021	1803.3
2022	2587.4
2023	2091.8

Mean precipitation for 24 years (nearly 2000-2023) is 2064.1 mm

Fig: - 1.3 Precipitation chart of 25 years

1.3.3 Topographical Features

The study area is mostly comprised of alluvial plains with mild slopes, except for the northern hilly terrains. The average elevation of the middle and southern floodplains is about 80–85 meters above mean sea level (MSL). The slope generally declines from the northern and eastern edges toward the southern parts. The alluvial deposits in the floodplains result in fertile soils, which are suitable for agriculture but highly vulnerable to erosion during floods.

1.3.4 Seismicity

According to the seismic zoning map of India, the Subansiri basin falls under **Zone-V**, the highest seismic risk category. This indicates a significant vulnerability to earthquakes, which adds to the region's geomorphological and environmental fragility (**IS 1893 Part I: 2002**).

ZONE	INTENSITY
ZONE - V	Very High-Risk Zone Area liable to shaking IX (and above)
ZONE - IV	High Risk Zone Intensity VIII
ZONE - III	Moderate Risk Zone Intensity VII
ZONE II	Low Risk Zone VI (and lower)

Fig: - 1.5 Seismicity Zone value

1.3.5 Hydrological Network

The Subansiri River, the largest tributary of the Brahmaputra River, plays a critical role in the intricate drainage system of the region. Originating from the western part of Mount Pororu (5059 m) in the Tibetan Himalayas, it is a trans-Himalayan River with a complex network of tributaries, including the Dikrong, Ranganadi, Ghagar, Kamala, and Sampara rivers. These tributaries, which exhibit both meandering and braided patterns, contribute to the dynamic hydrology of the basin. The Subansiri–Ranganadi–Dikrong system merges into the Brahmaputra, creating an intricate drainage network that controls the region's main hydrological dynamics. The river's flow is generally perennial, with peak discharge occurring during the monsoon season. However, smaller streams in the foothills often dry up during March and April. The riverbed and banks are composed predominantly of boulders, cobbles, pebbles, and sands of varying grades, with minimal clay content. This geological composition, combined with the hydrological dynamics, amplifies challenges related to flooding and erosion, particularly during periods of heavy rainfall.

CHAPTER 2 MATERIALS

2.1 DIGITAL ELEVATION MODEL (DEM)

A Digital Elevation Model (DEM) serves as a 3D representation of the Earth's surface, created using elevation data. In ArcGIS, DEMs are extensively utilized in a range of geospatial and environmental analyses, including hydrological modeling, terrain visualization, and spatial planning. They are fundamental in deriving key topographical attributes such as slope, aspect, and watershed boundaries, which are crucial for understanding the physical characteristics of an area. ArcGIS provides an array of tools to process DEMs, allowing users to create visual outputs like hillshades, contours, and 3D terrain models. These outputs enhance the interpretation of terrain features and assist in decision-making for projects related to land management, disaster mitigation, and infrastructure planning. For hydrological studies, DEMs are indispensable as they enable the modeling of water movement across the surface, helping to predict flood zones, delineate drainage networks, and identify catchment areas. High-resolution DEMs, like those derived from the Shuttle Radar Topography Mission (SRTM), are particularly valuable for detailed and precise analysis, ensuring the accuracy of results in applications such as erosion modeling and urban planning. The extracted raster DEM in this study was processed in ArcGIS 10.4 using established protocols.

It follows the **WGS 1984** spatial reference coordinate system and has been projected to the **UTM Zone 46N** projection system to ensure compatibility with other geospatial datasets and accurate spatial analysis. In the context of the Revised Universal Soil Loss Equation (RUSLE) model, DEMs play a vital role in assessing soil erosion by facilitating the calculation of the topographic factor, commonly referred to as the LS factor. This factor quantifies the combined effects of slope length and steepness on erosion rates, both of which are derived directly from DEM analysis. Using spatial analysis tools in ArcGIS, slope maps and flow accumulation maps are generated, and these layers are integrated to compute the LS factor, identifying areas at higher risk of erosion. Furthermore, DEMs aid in delineating watersheds and understanding surface runoff dynamics, which are essential for accurate soil erosion modeling. To ensure reliability in the RUSLE model, the DEM must be of high resolution and free from anomalies such as sinks or spikes, as these errors can skew the calculation of slope and flow direction. By providing a detailed representation of terrain, DEMs enhance the precision of erosion predictions, aiding in effective soil conservation and watershed management efforts.

File Name	Source	Format	Resolution	Description
n26_e093_1arc_v3.tif	USGS Earth Explorer (<u>https://earthexplorer.usgs.gov/</u>)	TIF	30 meters	Covers the southern part of the study area with longitude 93°E and latitude 26°N.
n26_e094_1arc_v3.tif	USGS Earth Explorer (<u>https://earthexplorer.usgs.gov/</u>)	TIF	30 meters	Represents the southern part of the study area with longitude 94°E and latitude 26°N.
n27_e093_1arc_v3.tif	USGS Earth Explorer (<u>https://earthexplorer.usgs.gov/</u>)	TIF	30 meters	Covers the northern part of the study area with longitude 93°E and latitude 27°N.
n27_e094_1arc_v3.tif	USGS Earth Explorer (<u>https://earthexplorer.usgs.gov/</u>)	TIF	30 meters	Represents the northern part of the study area with longitude 94°E and latitude 27°N.

Table: - 2.1 DEM specifications data

2.2 PRECIPITATION DATA FROM NETCDF DATA

The NetCDF files containing precipitation data from the **Climatic Research Unit (CRU) TS v4.08** dataset, specifically the files **cru_ts4.08.2021.2023.pre.dat.nc.gz** and **cru_ts4.08.2011.2020.pre.dat.nc.gz**, provide high-resolution global precipitation data with a spatial resolution of 0.25° x 0.25° grid cells. These files store monthly precipitation totals over the periods 2011-2020 and 2021-2023, offering essential data for analyzing rainfall patterns and their impact on soil erosion. The data is organized in a multidimensional format, with time as one dimension and latitude and longitude coordinates as the others, making it efficient for large datasets. The .gz compression further reduces file size for easier handling.

Feature	Description		
Dataset Name	CRU TS v4.08 Precipitation Data		
Files	cru_ts4.08.2021.2023.pre.dat.nc.gz, cru_ts4.08.2011.2020.pre.dat.nc.gz		
Data Type	Monthly Precipitation Data (in mm)		
Spatial Resolution	$0.25^{\circ} \ge 0.25^{\circ}$ grid cells		
Temporal Resolution	Monthly Precipitation Totals		
Time Period	2011-2020 (for one file), 2021-2023 (for the other file)		
Data Format	NetCDF (Network Common Data Form)		
Compression Format	.gz (gzip compressed)		
Data Structure	Multidimensional format: time (monthly totals), latitude, and longitude		
Primary Use in RUSLE	Used to calculate the R-factor, which quantifies rainfall's erosive potential in the RUSLE model.		

Table: - 2.2 DEM features data

In the **Revised Universal Soil Loss Equation (RUSLE)** model, the CRU precipitation data is crucial for calculating the **R-factor**, which quantifies rainfall's erosive potential. With the high spatial resolution and monthly temporal data, users can accurately model rainfall intensity and erosivity, essential components of the R-factor. ArcGIS provides built-in tools like **Multidimensional Raster** or **Rasterize (NetCDF)** to import, extract, and process this data, converting it into raster format for spatial analysis. The precipitation data can be combined with other GIS layers, such as **Digital Elevation Models (DEMs)** or land-use maps, to conduct detailed soil erosion assessments.

By integrating this precipitation data with other **RUSLE factors** such as the **K-factor** (soil erodibility), **C-factor** (cover management), and **P-factor** (support practice), users can generate **R-factor maps** and estimate potential soil erosion rates across regions. The **CRU TS v4.08** dataset's consistency and reliability, along with its comprehensive metadata, ensure that the precipitation data is accurately interpreted for precise environmental modeling. Using these **NetCDF files** in ArcGIS improves the effectiveness of soil erosion risk assessments, making them a valuable tool for environmental management.

2.3 LANDSAT IMAGE

Landsat images, such as LC08_L2SP_135041_2014, LC08_L2SP_135041_2022, and LC08_L2SP_135041_2023, play a crucial role in the Revised Universal Soil Loss Equation (RUSLE) model by providing high-resolution multispectral data for assessing vegetation, land use, and cover changes. These datasets, acquired from USGS Earth Explorer, have a 30-meter spatial resolution, making them ideal for detailed spatial analysis. One of the primary applications of Landsat data in RUSLE is the calculation of the C-factor (cover management). This factor reflects the protective effects of vegetation on soil against erosion. Using Landsat's red and near-infrared (NIR) bands, the Normalized Difference Vegetation Index (NDVI) is derived to estimate vegetation density and health. Higher NDVI values correspond to dense vegetation, which reduces soil erosion, while lower values indicate sparse or no vegetation, leading to higher erosion risk. Table: - 2.3 Wavelength with band no

e	¥	
Band No.	Wave length (µm)	Color
2	0.45-0.495	Blue
3	0.52-0.60	Green
4	0.63-0.69	Red
5	0.78-0.86	Near-infrared

In addition to the C-factor, Landsat data is used for land-use classification to evaluate the **P**-**factor** (support practices), which accounts for conservation measures like terracing or contour plowing that reduce soil loss. Historical datasets such as the 2014, 2022, and 2023 images enable the study of temporal changes in land cover and management practices, improving the precision of erosion risk assessments. The workflow includes downloading the images, preprocessing steps like **atmospheric correction** and **cloud masking**, extracting indices like NDVI, and integrating the results into GIS platforms such as ArcGIS. This integration facilitates combining the calculated C-factor and P-factor with other RUSLE factors (R, K, and LS) to produce accurate soil erosion models that guide effective land management strategies.

Feature	Description
Datasets Used	LC08_L2SP_135041_2014, LC08_L2SP_135041_2022 LC08_L2SP_135041_2023
Source	USGS Earth Explorer
Spatial Resolution	30 meters
Bands Used	Red, Near-Infrared (NIR), Green
Primary Indices Derived	Normalized Difference Vegetation Index (NDVI)
Temporal Analysis	Historical land cover changes (2014, 2022, 2023) for erosion risk assessment

Table: - 2.4 LANDSAT features data

2.3.1 DETAILED DESIGNATION OF LANDSAT SATELLITES

Landsat satellite band designations define the spectral ranges captured by sensors, each optimized for specific wavelengths. These bands facilitate the analysis of environmental and surface features, supporting applications like vegetation monitoring, water mapping, urban studies, and atmospheric observations, making them essential for Earth monitoring.

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images consist of eight spectral bands All of the bands can collect one of two gain settings (high or low) for increased radiometric sensitivity and dynamic range, while Band 6 collects both high and low gain for all scenes. The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Bands	Wavelength (micrometers)	Resolution (meters)
Band 1 - Blue	0.45-0.52	30
Band 2 - Green	0.52-0.60	30
Band 3 - Red	0.63-0.69	30
Band 4 - Near Infrared (NIR)	0.77-0.90	30
Band 5 - Shortwave Infrared (SWIR) 1	1.55-1.75	30
Band 6 - Thermal	10.40-12.50	60 (resampled to 30)*
Band 7 - Shortwave Infrared (SWIR) 2	2.09-2.35	30
Band 8 - Panchromatic	.5290	15

Landsat 8 and Landsat 9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist of nine spectral bands, and two thermal bands. The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Bands	Wavelength (micrometers)	Resolution (meters)
Band 1 - Coastal aerosol	0.43-0.45	30
Band 2 - Blue	0.45-0.51	30
Band 3 - Green	0.53-0.59	30
Band 4 - Red	0.64-0.67	30
Band 5 - Near Infrared (NIR)	0.85-0.88	30
Band 6 - Shortwave Infrared (SWIR) 1	1.57-1.65	30
Band 7 - Shortwave Infrared (SWIR) 2	2.11-2.29	30
Band 8 - Panchromatic	0.50-0.68	15
Band 9 - Cirrus	1.36-1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.6-11.19	100 (resampled to 30)*
Band 11 - Thermal Infrared (TIRS) 2	11.50-12.51	100 (resampled to 30)*

Table: - 2.5 LANDSAT image features as per resolution

2.4 SOIL DATA

For calculating the Soil Erodibility Factor (K-factor) in the Revised Universal Soil Loss Equation (RUSLE) model, soil data is sourced from the FAO-UNESCO Soil Map of the World, supplemented and verified using Indian Soil Data from the Bhuvan Indian Geo-platform developed by ISRO. The FAO soil dataset provides globally consistent soil properties, such as texture, organic matter content, permeability, and structure, which are essential for estimating soil erodibility. This data forms the foundation for initial assessments, especially in areas where localized soil information is limited. To enhance accuracy, the FAO data is cross-verified and refined using detailed soil information from Bhuvan, which offers high-resolution, region-specific soil maps for India. This integration ensures that the K-factor calculations reflect local soil conditions, improving the precision of erosion risk assessments. The workflow involves preprocessing the soil datasets, extracting relevant soil parameters, and integrating them into GIS platforms to calculate the K-factor, which is then combined with other RUSLE factors for comprehensive soil erosion modeling.

CHAPTER 3 LITERATURE REVIEW

3.1 SOIL FORMATION AND ITS HISTORY

Soil is a mixture of organic matter, minerals, gases liquids and organisms that together support life. Soil is a formation of several factors: the influence of climate, relief (elevation, orientation and slope of terrain), organisms and the soil's parent materials (original minerals) interacting over time.

Soil formation is a complex natural process driven by the weathering of parent rock material under the influence of physical, chemical, and biological factors. Weathering breaks down rocks into smaller particles through mechanical processes like temperature fluctuations, freeze-thaw cycles, and abrasion, as well as chemical processes such as oxidation, hydrolysis, and carbonation. Over time, organic matter from decomposing plants and animals integrates with the mineral particles, enhancing the soil's fertility and structure. This results in the development of distinct soil horizons, including the top organic-rich layer (O-horizon), the mineral-rich surface soil (A-horizon), and deeper layers like the subsoil (B-horizon) and parent material (C-horizon). The formation of soil is influenced by climate, organisms, topography, parent material, and time, collectively known as the soil-forming factors. This process plays a pivotal role in supporting ecosystems, agriculture, and sustainable land management, making its understanding critical for environmental and soil erosion studies.

O – HORIZON: leaf litter, organic material A – HORIZON: PLOUGH ZONE, RICH IN ORGANIC MATTER

B-HORIZON: ZONE OF WEATHERING C-HORIZON: WEATHERING SOIL; LITTLE ORGANIC MATERIAL OR LIFE R-HORIZON: UNWEATHERED PARENT MATERIAL

Source: Google

3.2 ROLE OF SOIL BIODIVERSITY

A healthy soil biota thrives when provided with a suitable habitat, characterized by the intricate pore network of soil that regulates the availability of gases, water, solutes, and organic substrates (Lavelle et al.). This network creates the foundation for soil life, allowing for diverse biological activity. The interactions between soil biodiversity and its functions are complex and often surpass those observed in aboveground ecosystems (Bardgett and van der Putten). These interactions can be understood through three key mechanisms: **repertoire**, which emphasizes the necessity of specific organisms for particular processes; **interactions**, illustrating how soil organisms positively or negatively influence each other; and **redundancy**, which ensures process stability even if some organisms are lost, as others step in to maintain functionality (Nielsen et al.).

The functional repertoire of soil organisms plays a more critical role than richness alone. Processes such as decomposition exhibit high redundancy, involving numerous organisms capable of maintaining function despite biodiversity loss (Schimel et al.). In contrast, specialized processes like nitrification, carried out by fewer bacteria, or highly specific symbiotic relationships like orchid mycorrhizas, rely on organisms with little or no redundancy (Smith and Read). Biodiversity loss affects these processes differently; redundant functions often remain stable, while unique interactions, when disrupted, can destabilize ecosystems. Although significant declines in soil diversity can impair certain processes, particularly in simplified systems, natural ecosystems typically display resilience due to their inherent biodiversity and functional complexity (Tilman et al.). Generally, 1 gram of soil has over 50,000 protozoa as well as bacteria, algae, fungi, earthworms and nematodes.

3.3 SOIL CLASSIFICATION

Soil classification (or soil taxonomy) deals with the systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use

The grouping of soil is based on chemical, physical and biological properties and World Reference Base for Soil Resources.

3.4 SOIL DEGRADATION

Soil degradation is the decline in soil condition caused by its improper use of poor management, usually for agricultural, industrial or urban purposes. It is serious environmental problem. Soils are a fundamental natural resource and are the basis for all terrestrial life. Avoiding soil degradation is crucial to our well-being.
3.4.1 Types of soil degradation

Water Erosion: The removal of topsoil by surface runoff, forming rills and gullies, significantly reducing soil productivity.

Wind Erosion: The detachment and transportation of soil particles by wind, often leading to loss of nutrients and desertification in arid regions.

Chemical Degradation: Includes processes like salinization (salt accumulation), acidification (lowering of pH), and nutrient depletion, all of which reduce soil fertility.

Physical Degradation: Caused by compaction, crusting, and waterlogging, leading to reduced porosity and aeration, hindering plant growth.

Deforestation: The removal of forest cover exposes soil to erosion and depletes organic matter, making the soil prone to degradation.

3.5 SOIL EROSION

The soil erosion is detachment and subsequent removal of soil particles from terrain surface due to the action of physical forces such as rainfall, runoff and wind.

Soil is naturally removed by the action of water or wind: such **'background'/'geological'** soil erosion has been occurring for some 450 million years. In general, background erosion removes soil at roughly the same rate as soil is formed.

'Accelerated' soil erosion – loss of soil at a much faster rate than it is formed – is a far more recent problem. It is always a result of mankind's unwise actions, such as overgrazing or unsuitable cultivation practices.

- Globally, almost 84% of land loss results from soil erosion processes.
- The estimated mean rates of soil erosion across the world range between 12 and 15 ton/ha/year.

3.5.1 SOIL EROSION VULNERABILITY MAP

3.5.2 EROSION AND ITS TYPES

- Wind Erosion
- Water Erosion

Wind erosion occurs when soil particles are detached and transported by wind, primarily in dry, sparsely vegetated areas. It involves processes like saltation, suspension, and surface creep, driven by factors such as high wind velocity and low soil moisture. Wind erosion depletes topsoil, reduces fertility, and contributes to desertification and dust pollution, impacting agriculture and infrastructure. Effective control measures include maintaining vegetation cover, minimizing soil disturbance, and using windbreaks to reduce erosion. **Water erosion** is the removal of the top layer of land by water from irrigation, rainfall, snowmelt, runoff and poor irrigation management.

Here rainwater is most frequently to blame when it comes to this issue. The flowing water moves the soil organic and inorganic particles alongside the land surface, depositing them in the lower landscape. The result of this would be flooding in the long run.

3.5.2.1 Water Erosion and its Types

There are several types of water erosion.

- Sheet and rill erosion
- Scalding
- Gully erosion
- Tunnel erosion
- Stream and bank erosion
- Mass movement

Sheet erosion occurs when a thin layer of topsoil is removed over a whole hillside paddock – and may not be readily noticed.

Scalding can occur when wind and water erosion removes the top soil and exposes saline or sodic soils.

Gully erosion happens when runoff concentrates and flows strongly enough to detach and move soil particles

Tunnel erosion is the removal of subsoil. When water penetrates through a soil crack or a hole where a root has decayed the soil disperses and is carried away with the flow to leave and small tunnel.

Stream bank erosion is the destruction of vegetation on river banks (generally by clearing, overgrazing, cultivation, vehicle traffic up and down banks or fire) and the removal of sand and gravel from the stream bed.

Mass movement occurs on cleared slopes in coastal areas. Gravity moves earth, rock and soil material downslope both slowly (mm per year) and suddenly (eg rock falls)

Here, Streambank erosion is a significant geomorphological process in the Subansiri Basin of Assam, driven by the dynamic nature of the **Subansiri River** and its tributaries. This basin, part of the Brahmaputra River system, experiences intense monsoonal rainfall, which leads to high river discharge and strong hydraulic forces eroding the banks. The erosion is exacerbated by the friable and alluvial nature of the soil, which offers limited resistance to water flow. Human activities, including agriculture and settlement along the riverbanks, further destabilize the soil structure by removing vegetation that would otherwise provide cohesion and reduce erosion. Additionally, fluctuations in river flow due to hydropower projects or sediment transport alter the river's equilibrium, contributing to bank instability. Streambank erosion in the Subansiri Basin not only threatens agricultural land and infrastructure but also disrupts ecosystems and increases sediment load in the river, affecting downstream hydrodynamics and flood patterns. Managing this erosion requires a combination of bioengineering solutions, sustainable land-use practices, and continuous monitoring of hydrological changes.

Fig: - 3.7 Soil erosion at study area

SOURCE: THE SENTINEL

3.6 EROSION MODEL

An erosion model is a predictive tool designed to estimate soil loss and sediment yield caused by water, wind, or other natural forces. These models are utilized in various fields, including agriculture, civil engineering, and environmental science, to assess the impacts of erosion on landscapes, water quality, and infrastructure. Erosion models simulate the processes that lead to soil detachment, transportation, and deposition. Factors influencing these processes—such as rainfall intensity, soil type, topography, vegetation cover, and land use—are incorporated into the model equations to provide accurate predictions. Common examples include empirical models like the Universal Soil Loss Equation (USLE) and more sophisticated, process-based models like the Soil and Water Assessment Tool (SWAT).

Erosion models play a vital role in land management and environmental conservation by helping to design effective erosion control measures and strategies. They assist policymakers, engineers, and researchers in assessing the risks associated with soil degradation and sedimentation. In particular, these models are crucial for planning agricultural practices, designing sediment retention structures, and mitigating the environmental impacts of construction projects. By understanding the potential extent of erosion, decision-makers can implement preventive actions, such as afforestation, terracing, or improved drainage systems, to preserve soil resources and maintain ecological balance. As there are number of soil erosion models developed in recent decades.

Lists of the top 25most applied soil erosion predictionmodels according to the records reported in the GASEMT database

Model	Records	%	References
RUSLE	507	17.1	Renard et al., 1997
USLE	412	13.9	Wischmeier and Smith, 1978
WEPP	191	6.4	Laflen et al., 1991
SWAT	185	6.2	Arnold et al., 2012
WaTEM/SEDEM	139	4.7	Van Oost et al., 2000
RUSLE-SDR	115	3.9	_
USLE-SDR	64	2.2	_
LISEM	57	1.9	De Roo et al., 1996
Customized approach	53	1.8	_
MUSLE	52	1.7	Williams and Berndt, 1977
MMF	48	1.6	Morgan et al., 1984
AnnAGNPS	47	1.6	Young et al., 1989
RHEM	44	1.5	Nearing et al., 2011
Unknown	36	1.2	_
Erosion 3D	29	1	Schmidt, 1991
EPIC	25	0.8	Williams et al., 1983
PESERA	23	0.8	Govers et al., 2003
USPED	22	0.7	Mitasova et al., 1996
GeoWEPP	20	0.7	Renschler, 2003
RUSLE2	20	0.7	Foster et al., 2001
EPM	19	0.6	Gavrilovic, 1962
STREAM	19	0.6	Cerdan et al., 2002
RUSLE/SEDD	16	0.5	Ferro and Porto, 2000
DSESYM	15	0.5	Yuan et al., 2015
EUROSEM	15	0.5	Morgan et al., 1998

Table: - 3.1 GASEMAT database

3.6.1 EMPERICAL MODELS (STATISTICAL)

Empirical models rely on statistical relationships between input and output data without explaining the underlying system. These models address immediate, on-site erosion concerns, particularly related to agricultural productivity and sustainability (e.g., EUROSEM and USLE; Wischmeier and Smith, 1978).

3.6.2 PHYSICAL MODELS (DETERMINISTIC)

Physical models, also referred to as formal models, use physical or mathematical analogs to represent erosion processes. They simulate soil particle movement through mathematical equations and aim for universal applicability. Examples such as CREAMS (Knisel, 1980) and WEPP (Laflen et al., 1991) are instrumental in assessing land management impacts under varying conditions, including storms of different intensities.

3.6.3 HYBRID MODELS (SEMI-EMPERICAL)

Hybrid models combine empirical approaches with process-based equations, focusing on spatially distributed water and sediment dynamics. Examples include RUSLE1 and RUSLE2 (Renard et al., 1997; Foster et al., 2001), which enhance predictive capabilities by integrating the strengths of both methods.

3.6.4 MODEL AND ITS IMPORTANCE

3.6.4.1 USLE

Usle is an empirical model for annual estimate of soil erosion and was further modified as MUSLE and RUSLE. It is a simple model for predicting soil erosion considering rainfall, soil erodibility, land cover, topography and flow rate (for MUSLE) data.

USLE is not event-based and cannot quantify the events that are likely to result in large- scale erosion. The use of slope length factor in RUSLE enables the prediction of soil loss due to overland flow but is mostly applied to agricultural land of gentle slope angle not more than 25° and does not estimate gully or stream channel erosion caused by raindrops.

3.6.4.2 SWAT

It is a physical model for predicting the impact of land management practices on hydrology, sediment and contaminant transport in large river basins over a long period with integration of drainage, topography, soil, land use and rainfall information

It has different applications such as climate change, land-use change, evapotranspiration assessment, ground or soil water impact, snowmelt process, etc. Although storm event based, high and peak flows are not well simulated by the model.

3.6.4.3 WEPP

Physical model for predicting spatial and temporal distribution of soil loss, sediment yield, sediment size characteristics, run-off volume, and soil-water balance.

Predictions of the location of sediment deposition and detachment are very effective, but the large computational data requirement of the model limits its applicability.

3.6.4.4 EROSION 3D

It is a process-based model for calculating runoff, channel routing and transportation and deposition of sediment.

Its requirement for few data and its compatibility with GIS make it flexible in estimating erosion as its calculation is based on a regular grid, and its disadvantage of this model is similar to the WATEM/SEDEM model.

3.6.4.5 MCE (AHP/WIO)

MCE is a qualitative assessment process. It is a probability weighted approach that allows a linear combination of probability weights of several thematic maps. The weightages of individual themes and feature scores are fixed and added to the layer by considering its role in soil erosion.

It is an integrated assessment approach used for identifying a solution with respect to multiple complex problems. It can provide a rationale for making the best decision.

3.7 R.U.S.L.E MODEL (REVISED UNIVERSAL SOIL LOSS EQUATION)

RUSLE model is an upgraded version of USLE with higher accuracy. It is an equation that estimates average annual soil loss by sheet and rill erosion on those areas where erosion (but not deposition) is occurring. It estimates long-term average annual soil loss (A) from raindrop impact and runoff on specific slopes under various cropping and management systems (Renard et al., 1997). RUSLE is widely used for planning soil conservation measures, assessing soil erosion impacts, and informing policies on soil management. RUSLE is expressed as

$\mathbf{A} = \mathbf{R} \ast \mathbf{K} \ast (\mathbf{L} \ast \mathbf{S}) \ast \mathbf{C} \ast \mathbf{P}$

where,

- A: Average annual soil loss (tons/ha/year)
- **R**: Rainfall and runoff erosivity (MJ·mm·ha⁻¹·h⁻¹·yr⁻¹)
- **K**: Soil erodibility (Mg·h·MJ⁻¹·mm⁻¹)
- LS: Slope length and steepness factor (dimensionless)
- C: Cover-management factor (dimensionless)
- **P**: Support practice factor (dimensionless).

Importance of RUSLE –

- It provides expanded information on soil erodibility.
- A slope length factor that varies with soil susceptibility to rill erosion.
- It improved factor values for the effects of contouring terracing, strip cropping and management practices for rangeland.
- A sub factor method for computing for the cover management factor.

3.7.1 COMBINATION OF RUSLE AND GIS

- It contains low availability of input data
- The conventional methods are more reliable and accurate but too expensive and time consuming
- With the help of RS and GIS soil erosion modelling can be fast and cheap on a large scale of territory

3.8 RUSLE FATORS

3.8.1 RAINFALL EROSIVITY (R) FACTOR

The rainfall erosivity factor (\mathbf{R})_quantifies rain's ability to detach soil particles based on the amount and intensity of rainfall (Wischmeier and Smith, 1978; Arnoldus, 1980). It accounts for the impact of raindrops on the soil and the associated runoff, requiring detailed, continuous precipitation data. Annual rainfall erosivity represents the cumulative erosivity of all rainfall events within a year.

This factor is crucial for assessing soil erosion risks, particularly under varying landuse practices and climate change scenarios. Rainfall, being a primary driver of water erosion, makes \mathbf{R} an essential parameter in evaluating soil conservation needs and understanding erosion processes at specific locations.

equation -

$$\mathbf{R} = \sum_{i=1}^{12} 1.735 * 10 \ (1.5 * \log_{10} \left(\frac{P_i^2}{P}\right) - 0.08188)$$

where:

P_i is a monthly rainfall (mm)

P annual rainfall (mm)

Here are some data where R values is implemented according to countries specification.

Country	R Formula
Zimbabwe	R = 38.5 + 0.35 M
Marrocco	R = 2.8959X * 0.002983 M
USA	R = 1.24 * M^1.36
Central Asia	R = 0.04830 M^1.61

Table: - 3.2 R formula as per locations

3.8.2 SOIL ERODIBILITY (K) FACTOR

The soil erodibility which reflects the rate of soil loss depending on the erosion (R factor), and calculated on the basis of soil textures, is an empirical measure of soil erosion and represents the susceptibility of the soil to erosion.

The structure and permeability of the soil profile and organic matter are the main soil properties affecting K, and the value of K is characterized by the soil texture and permeability of organic compounds depending on the soil type and is modeled with the aid of an equation.

It quantifies the potential and rate of soil erosion caused by rainfall under typical conditions. It also indicates how easily soil can be eroded and its ability to transport sediment (Ganasri and Ramesh, 2016). A key component of erosion models like the RUSLE (Revised Universal Soil Loss Equation), the K factor is essential for estimating soil loss (Hudson, 1981).

Factors such as soil organic matter, texture, structure, and permeability influence soil erodibility. Unlike many earlier studies that relied on secondary data, this research took a more precise approach by conducting field measurements. Soil samples were collected from various physiographic zones in the Kurumali watershed to analyze parameters like organic matter content, texture, structure, and permeability.

The K factor was calculated using Wischmeier's (1974) equation in an Excel spreadsheet

$$K = rac{2.1 imes 10^{-4} \cdot (12-a) \cdot M^{1.14} + 3.25 \cdot (b-2) + (c-3)}{759.4}$$

where:

K = soil erodibility (tons·yr/MJ·mm) M = (% silt + % very fine sand) × (100 - % clay) a = percentage of organic matter in the soil b = structural class value c = permeability class value

Soil structure codes (b) range from 1 (fine granular) to 4 (blocky or massive), while permeability (c) ranges from 1 (rapid) to 6 (very slow). Laboratory analyses were conducted to determine soil texture and organic carbon, using the Walkley-Black method for organic carbon and the international pipette method for texture. The results were input into the formula to compute the K factor, which was further integrated into a spreadsheet and linked with sample location data in ArcGIS for spatial analysis.

Another formula proposed by **Merzouk (1985)**

K = 311.63 - 4.48 * (SG % + S%) + 613.4 + 6.45 * EC,

where,

SG is the coarse sand content (in %)

S is the sand content (in %)

EC is the electrical conductivity

Formula proposed by Williams (1995)

 $K_{USLE} = K_W = F_{csand} * F_{cl-si} * F_{orgc} * F_{hisand}$ $F_{csand} = (0.2 + 0.3 \exp [-0.256 * m_s * (1 - \frac{m_{silt}}{100})])$ $F_{cl-si} = (\frac{m_{silt}}{m_c + m_{silt}})^{0.3}$ $F_{orgc} = (1 - \frac{0.250egC}{orgC + exp[3.72 - 2.95 X orgC]})$ $F_{hisand} = (1 - \frac{0.7 X (1 - \frac{m_s}{100})}{(1 - \frac{m_s}{100}) + \exp [-5.51 + 22.9 (1 - \frac{m_s}{100})]})$

Defined K factor

Utilized K factor for different soil groups (adopted)	ed from Dogan et al., 2000)
Soil types	K factor (tons/MJ h/mm)
Basaltic soils	0.014
Lime - free brown soils	0.021
Red mediterranean soils	0.017
Lime - free brown forest soils	0.031
Brown forest soils	0.024
Reddish brown soils	0.027
Red - brown mediterranean soils	0.022
Brown soils	0.023
Colluvium soils	0.021
Alluvium soils	0.043
Coal pit	0.052
Settlement	0.001
Bareland	0.0065

Table: - 3.3 K-factor data as per soil properties

3.8.3 SLOPE LENGTH AND SLOPE STEEPNESS (LS) FACTOR

The **L** (slope length) and **S** (slope steepness) factors in the RUSLE represent topographic influences on soil erosion, accounting for the effects of slope length and gradient on sheet and rill erosion (Renard et al., 1997). The slope length factor (**L**) is defined as the horizontal distance from the point where overland flow begins to where runoff either starts deposition or enters a defined channel. The slope steepness factor (**S**) quantifies the impact of slope gradient on erosion intensity. Together, these factors determine the **LS** topographic factor, which reflects how slope length and steepness influence soil loss.

As slope length and steepness increase, soil loss per unit area also rises, emphasizing their significance in soil erosion modeling. For instance, the ratio of soil loss under specific conditions, such as a 9% slope gradient and a 22.13-meter slope length, illustrates the combined effect of these factors. The **LS** factor is typically calculated using digital elevation models (DEMs) and geospatial tools like ArcGIS hydrology functions (Desmet and Govers, 1996). High-resolution DEMs, such as those created from Cartosat-1 satellite imagery with 30-meter resolution (USGS), enable precise assessment of topography's role in erosion modeling and runoff transport capacity. The slope-length factor (L) was determined using the following equation:

$$\mathbf{L} = \left(\frac{\lambda}{22.13}\right)^m$$

where 22.13 are the RUSLE unit plot length (in metres) and m is the exponent of a variable slope length. Slope length exponent m can be calculated as

$$\mathbf{m} = \frac{\beta}{(1+\beta)}$$
$$\beta = \frac{\frac{\sin \Theta}{0.0896}}{3.0(\sin \Theta)0.8 + 0.56}$$

where, Θ is the slope angle

The slope steepness factor (S) is estimated using the relationships given by McCool *et al.*, (1987, 1993)

$\mathbf{S} = 10.8\sin\Theta + 0.03$	$S < 9\%$ (i. e. tan $\Theta < 0.09$)
$\mathbf{S} = \left(\frac{\sin \Theta}{\sin 5.143}\right)^{0.6}$	$S \ge 9\%$ (i. e. $tan \Theta \ge 0.09$)

Using the hydrology tools in the spatial analyst tool of ArcGIS, the DEM data was used to create flow fill, flow direction, and flow accumulation. Operations for fill, flow direction, and flow accumulation were produced one at a time. The flow accumulation raster obtained was then used for the estimation of the L factor by using the following formula-

$$\mathbf{L} = \left(\frac{Flow \ accumulation * cell \ size}{22.13}\right)^m$$

or,

 $LS = [flow accumulation * \frac{Cell Size}{22.13}]^{0.4} * [\frac{\sin Slope}{0.00896}]^{1.3}$

3.8.4 COVER MANAGEMENT (C) FACTOR

The cover-management factor (C) is a fundamental component in estimating soil erosion rates, particularly within models like the Revised Universal Soil Loss Equation (RUSLE). It reflects the influence of vegetation cover, cropping systems, and land management practices on soil erosion, serving as a key indicator of how human activities and natural land cover affect the soil's vulnerability to erosive forces. As highlighted by Koirala et al. (2019), the significance of the C factor lies in its ability to quantify the protective role of vegetation in mitigating soil erosion, ranking second only to topography as a determinant of erosion risk. Vegetation cover functions as a natural barrier, reducing the erosive impact of raindrops on the soil surface. This minimizes the detachment of soil particles and simultaneously enhances the soil's capacity to absorb rainfall, reducing surface runoff and, consequently, the potential for erosion.

The C factor is defined as the ratio of soil loss from a particular land use condition to the soil loss from continuously tilled bare land, which represents the most vulnerable scenario. This makes it a direct measure of the erosion-reducing capability of vegetation cover and management practices. The values of the C factor range from 0 to 1, with lower values indicating better soil protection and reduced erosion. The factor is highly dynamic, as it can change with seasonal variations in vegetation and land use practices. This adaptability emphasizes its importance, as it offers a quantifiable means for assessing the effectiveness of soil conservation measures.

Calculation of the C factor typically involves deriving the weighted average of soil loss ratios (SLRs) associated with different land use types. However, more advanced approaches involve the use of remote sensing techniques and vegetation indices like the Normalized Difference Vegetation Index (NDVI). NDVI is a widely recognized metric for assessing vegetation health and density, and it provides spatially and temporally explicit data. It is calculated using satellite imagery, such as from Landsat 8 OLI/TIRS, based on the spectral difference between the near-infrared (NIR) and red (R) bands. The formula for NDVI is

$$\mathbf{NDVI} = \frac{NIR - RED}{NIR + RED}$$

where NIR corresponds to Band 5 and Red corresponds to Band 4 in Landsat 8 imagery.

NDVI is calculated, the C factor can be derived using the empirical relationship

```
C = 0.431 – 0.805 X NDVI, as proposed by Vatandaslar et al. 2017.
```

This formula establishes an inverse relationship between vegetation density and the C factor. Higher NDVI values, indicative of denser and healthier vegetation, result in lower C values, signifying reduced soil erosion potential. This integration of NDVI into soil erosion studies allows for the generation of high-resolution C factor maps, capturing spatial and temporal variations in vegetation cover and land use.

Also, another formula proposed by De Jong, 1994

If NDVI < 0

 $\mathbf{C} = \mathbf{0}$

Else

C = -1.25 (NDVI) + 1

Formula proposed by Durgion et al, 2014

 $C = \frac{(-NDVI+1)}{2}$

Other equations mainly for EU climate, proposed by Knijff et al., 2000

$$\mathbf{C} = \boldsymbol{e}^{-2.5 * \frac{NDVI}{1 - NDVI}}$$

The corresponding C factor values for each land use category were assigned by using Table

SL NO	LAND USE/LAND COVER	C FACTOR
1	CROP LAND	0.5
2	DENSE FOREST	0.005
3	MODERATE DENSE FOREST	0.006
4	DEGRADED FOREST	0.05
5	DENSE SCRUB	0.05
6	OPEN SCRUB	0.07
7	RIVER	0
8	HABITATION	0
9	PLANTATION	0.05

The application of NDVI and satellite-based assessments in deriving the C factor underscores the growing importance of remote sensing in soil erosion modeling and conservation planning. These tools enable researchers and land managers to monitor changes in vegetation and erosion risk dynamically, offering actionable insights for implementing sustainable land use practices. In addition, the C factor's sensitivity to human interventions makes it a valuable parameter for evaluating and optimizing conservation strategies, such as afforestation, cover cropping, and other soil protection measures. Overall, the C factor is not only a critical theoretical parameter but also a practical tool in understanding and mitigating the impacts of soil erosion on environmental and agricultural systems.

3.8.5 SUPPORT PRACTICE (P) FACTOR

The support practice factor P express the effects of surface pratices that are applied to reduced soil loss through erosion processes.

These practices include among others terracing strip cropping and contour ploughing the P factor value ranges between 0 and 1, where 0 shows the highest effectiveness of the conservation practice and 1 indicates that there are no support practices or measures implemented. Conservation practices mostly applied for agricultural areas or artificial pastures.

Common conservation practices include -

- Terracing
- Strip Cropping
- Contour Clothing
- Planting tress across agricultural areas

Slope %	Contour	Strip cropping	Terraces
0 - 7	0.55	0.27	0.1
7 - 11.3	0.6	0.3	0.12
11.3 - 17.6	0.8	0.4	0.16
17.6 - 27	0.9	0.45	0.18
27>	1	0.52	0.2

 Table for different practices in conjunction with slope (Shin and Pesaran 1999)

Table: - 3.5 C – value as per slope, and different practice work

Fig: - 3.10 P – FACTOR CHART WITH SLOPE %

Land use type	Slope %	P factor
Agricultural land	0 to 5	0.1
	5 to 10	0.12
	10 to 20	0.14
	20 to 30	0.19
	30 to 50	0.25
	50 to 100	0.33
Other Land	All	1

Table: - 3.6 P – factor as per slope

Fig: - 3.11 P – FACTOR OF DIFFERENT LAND SLOPE %

As from the above proposed table, the modeling of the study area is not calculated because, for instance water area doesn't have erosion or urban areas doesn't have erosion as there is no soil in water and as well as urban construction area are just commercially used.

Also given proposed equation is not taken for calculation as it takes only slope factor on account without considering and land change factor.

LAND USE TYPE	SLOPE %	P FACTOR
Agricultural land	0-5	0.1
	5 to 10	0.12
	10 to 20	0.14
	20-30	0.19
	30-50	0.25
	50-100	0.7
Water	0-100	0
Urban Land	0-100	0
Forest	0-5	0.03
	5 to 10	0.05
	10 to 20	0.1
	31-30	0.2
	50-100	0.5
Range land	0-5	0.1
	5-10	0.13
	10 to 20	0.15
	20-30	0.2
	30-50	0.4
	51-100	0.7
Bare soil	0-5	0.25
	5 to 10	0.35
	10 to 20	0.45
	20-30	0.55
	30-50	0.75
	50-100	1

So, a modified table from given data is taking under consideration for P factor study.

Table: - 3.7 P – factor as per slope & LU/LC

Fig: - 3.12 P – FACTOR OF DIFFERENT LAND USE TYPE

Here, P factor is slightly changed as for high slope it is reduces because agriculture cannot protect from water erosion is there is high slopes.

Water and Urban area are always 0 P factor regardless of the slope and forest area is good protected from soil erosion specially in low slope area and in high slope area there are moderately protected from erosion.

For rangelands, area is mostly close to agriculture area as there not exist any furrows or empty lands. Mostly they are covered by small percent of vegetation.

Bare soils cannot protect from water erosion as it doesn't cover by vegetation.

CHAPTER 4 METHODOLOGY

4.1 THE RUSLE MODEL

The spatio-temporal variation of soil erosion in the Subansiri River Basin was assessed using the Revised Universal Soil Loss Equation (RUSLE) model, which predicts average annual soil erosion rates under varying scenarios involving cropping systems, management techniques, and erosion control practices (Renard et al., 1997; Wischmeier & Smith, 1978). In a GIS environment, the RUSLE model estimates soil loss using raster-based data representations, which allow for efficient processing and analysis of continuous spatial data through overlay operations. Soil erosion rates for **2014**, **2022**, **and 2023** were calculated using RUSLE parameters derived from corresponding LANDSAT imagery and precipitation data provided as CRU files for the respective periods.

The RUSLE model, an improved version of the USLE model, calculates annual soil loss using five parameters: rainfall erosivity (\mathbf{R}), soil erodibility (\mathbf{K}), slope length and steepness factor (\mathbf{LS}), cover management factor (\mathbf{C}), and conservation practice factor (\mathbf{P}) (Renard et al., 1997).

The model is expressed as - $\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{LS} \times \mathbf{C} \times \mathbf{P}$

Where **A** (t ha⁻¹ y⁻¹) represents the total annual soil loss; **R** (MJ mm ha⁻¹ h⁻¹ y⁻¹) is the rainfall erosivity factor; **K** (t ha h ha⁻¹ MJ⁻¹ mm⁻¹) is the soil erodibility factor; **LS** is the slope length and steepness factor (dimensionless); **C** is the cover-management factor (dimensionless); and **P** is the conservation practice factor (dimensionless). The methods for estimating these parameters were adapted from studies by Bamutaze et al. (2010), Pilesjö et al. (1992), and Prasannakumar et al. (2012), ensuring robust and reliable calculations. The work flow is shown in the flow chart below – **Process of**

SOIL EROSION ESTIMATION

4.2 RUSLE FACTORS

4.2.1 RAINFALL EROSIVITY FACTOR (R)

The rainfall erosivity factor indicates the erosive force of a specific rainfall (Prasannakumar et al., 2012). The relationship between rainfall erosivity and rainfall depth developed by Wischmeier & Smith (1978) and modified by Arnoldus (1980) was used to translate the rainfall depth to rainfall erosivity. The calculation formula was as follows:

$$\mathbf{R} = \sum_{i=1}^{12} 1.735 * 10 \ (1.5 * \log_{10} \left(\frac{P_i^2}{P}\right) - 0.08188 \)$$

where:

P_i is a monthly rainfall (mm)

P annual rainfall (mm)

Here, for evaluation of rainfall erosivity (R) factor data acquired from Climatic Research Unit (CRU) of **NETCdf** file with extension name (.pre.dat.nc.gz) of Dataset Name CRU TS v4.08 Precipitation Data of File name cru_ts4.08.2021.2023.pre.dat.nc.gz and cru_ts4.08.2011.2020.pre.dat.nc.gz for research work.

As in NeTCDF file it contains Monthly Rainfall Data of 10 years (2011 - 2020) and other file contains 3 years data (2021 - 2023) of file **cru_ts4.08.2011.2020 & cru_ts4.08.2021.2023** respectively, where the precipitation data are categorized with their individual bands.

Hence, cru_ts4.08.2011.2020 contains 120 Bands i.e.,

[1 year = 12 months],

and, 1 Month = 1 Bands

Therefore, 10 years = 12 * 10 = 120 Months = 120 * 1 = 120 Bands

YEA	JANUA	FEBRUA	MAR	APRI	MA	JUN	JUL	AUGU	SEPTEMB	остов	NOVEMB	DECEMB
R	RY	RY	СН	L	Y	E	Y	ST	ER	ER	ER	ER
			BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2011	BAND 1	BAND 2	3	DAIN DAIN	DAIL D 5	DAI	DAIL D7	BAILD 8	BAND 0	10	BAND 11	BAND 12
2011	DAND I	DAILD 2	5	D 4	D 3	D 0	D7	0	DAND	10	DAND II	DAILD 12
	BAND		BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2012	13	BAND 14	15	D 16	D 17	D 18	D 19	20	BAND 21	22	BAND 23	BAND 24
	DAND		DAND	DAN	DAN	DAN	DAN	DAND		DAND		
2012	BAND 25	DAND 26	BAND 27	BAN D 29	BAN D 20	BAN D 20	BAN D 21	BAND	DAND 22	BAND 24	DAND 25	DAND 26
2015	25	DAND 20	21	D 28	D 29	D 30	D 31	32	DAIND 33	34	DAND 35	DAIND 30
	BAND		BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2014	37	BAND 38	39	D 40	D 41	D 42	D 43	44	BAND 45	46	BAND 47	BAND 48
	DAND		DAND	DAN	DAN	DAN	DAN	DAND		DAND		
2015	BAND	DAND 50	BAND	BAN D 52	BAN D 52	BAN	BAN D 55	BAND	DAND 57	BAND	DAND 50	
2015	49	BAND 50	51	D 52	D 53	D 54	D 55	50	BAND 57	58	BAND 59	BAND 60
	BAND		BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2016	61	BAND 62	63	D 64	D 65	D 66	D 67	68	BAND 69	70	BAND 71	BAND 72
	BAND		BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2017	73	BAND 74	75	D 76	D 77	D 78	D 79	80	BAND 81	82	BAND 83	BAND 84
	BAND		BAND	BAN	BAN	BAN	BAN	BAND		BAND		
2018	85	BAND 86	87	D 88	D 89	D 90	D 91	92	BAND 93	94	BAND 95	BAND 96
					BAN	BAN	BAN					
	BAND		BAND	BAN	D	D	D	BAND		BAND		
2019	97	BAND 98	99	D 100	101	102	103	104	BAND 105	106	BAND 107	BAND 108
					BAN	BAN	BAN					
	BAND	BAND	BAND	BAN	D	D	D	BAND		BAND		
2020	109	110	111	D 112	113	114	115	116	BAND 117	118	BAND 119	BAND 120

Table: - 4.1 BAND as per month with different period

Here yellow marked row is considered for calculating Rainfall erosivity factor of period 2014.

Similarly,

For cru_ts4.08.2021.2023 contains 36 Bands i.e.,

[1 year = 12 months],

and, 1 Month = 1 Bands

Therefore, 3 years = 12 * 3 = 36 Months = 36 * 1 = 36 Bands

YE	JANU	FEBRU	MAR	APR	MA	JUN	JUL	AUG	SEPTEM	ОСТО	NOVEM	DECEM
AR	ARY	ARY	СН	IL	Y	Е	Y	UST	BER	BER	BER	BER
					BA	BA	BA					
202	BAND		BAN	BAN	ND	ND	ND	BAND		BAND		BAND
1	1	BAND 2	D 3	D 4	5	6	7	8	BAND 9	10	BAND 11	12
					BA	BA	BA					
202	BAND	BAND	BAN	BAN	ND	ND	ND	BAND		BAND		BAND
2	13	14	D 15	D 16	17	18	19	20	BAND 21	22	BAND 23	24
					BA	BA	BA					
202	BAND	BAND	BAN	BAN	ND	ND	ND	BAND		BAND		BAND
3	25	26	D 27	D 28	29	30	31	32	BAND 33	34	BAND 35	36
			Tables	400						0000		
			Table: -	· 4.2 B/	and a	as per	month	with pe	erioa 2022,	2023		

Here yellow marked row is considered for calculating Rainfall erosivity factor of **period 2022** and 2023.

4.2.1.1 Working with precipitation in NetCDF file of CRU of period 2014

Firstly, create a blank page in ArcMap and add file name **cru_ts4.08.2011.2020.pre.dat.nc.gz** by clicking ArcToolbox, a drop-down meu appears then **go to > Multidimensional Tools** >**Make NetCDF Raster Layer**

A dialog box appears, then add all credentials and corresponding file for calculation.

Fig: - 4.2 NetCDF MAP 2014

After, preparing the NetCDF file to precipitation layer format the file has been exported to Current Data Frame of **WGS 1984** for calculation of monthly precipitation map.

Now, for calculation of annual precipitation of study area above map Fig [4.3] is converted by using following step –

Spatial Analyst Tool > Local > Cell Statistics

A dialog box appears where required band of corresponding period 2014 is considered on adding **Band 37 to Band 48** as earlier highlighted in above table [] and at **Overlay statistic option** > *SUM*, is being selected for chosen bands.

	Inp	out rast	ers or constant values			
	Look	c in:	I Study_area_pre.tif	~ 📤 🏠 🗔 🖠	▼ 😂 8	
Cell Statistics input rasters or constant values C:\Users\annaj\Downloads\Subanshiri\RUSLE\R_FACTOR_1\Study_area_pre.tif\Band C:\Users\annaj\Downloads\Subanshiri\RUSLE\R_FACTOR_1\Study_area_pre.tif\Band	A list of input which a stati: calculated fo within the An window. A number ca as an input; howe cell size and exter	Band_3 Band_3 Band_3 Band_3 Band_3 Band_3 Band_3 Band_3 Band_3 Band_4 Ba	II III Band_4 II IIII Band_4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Band_48 Band_49 Band_5 Band_50 Band_51 Band_51 Band_52 Band_53 Band_53 Band_54 Band_55	III Bai III Bai III Bai III Bai III Bai III Bai III Bai III Bai	nd_56 nd_57 nd_58 nd_69 nd_60 nd_60 nd_61 nd_62 nd_63 Add Cancel
C:\Users\anna\UoWnloads\Subanshiri\RUSLE\R_FACTOR_1\slubv area bre.di\band Output raster C:\Users\annaj\Downloads\Subanshiri\RUSLE\R_FACTOR_1\annualpre2014	cell size and extel first be set in the environment.	nt mus	 Distance Extraction Generalization Groundwater Hydrology Interpolation Local Cell Statistics 		ł	
OK Cancel Environments << Hide Help Fig: - 4.4 Cell statistics interface	Tool Help		Combine Capal To Frequest Greater Than F Children Combine Less Than Frequest Cowest Positio Popularity Rank Combine Naphalgebra Combine Combin	uency rrequency on juency in		

Above Fig [4.5] presented that for period 2014 annual precipitation is shown from 264.7 mm to 4325.2mm of Projected Coordinate System WGS 1984 UTM Zone 43N as file name annualpre_2014_UTM.tif

Now converting Raster format to point where points are defined as empirical rain-gauge station for calculation of varying precipitation intensity of the study area.

Steps are as follows –

ArcToolbox > Conversion Tools > From Raster > Raster to Point, as shown in below

A dialog box adds all the credentials and insert annualpre_2014_UTM.tif in Input Option and point map is created Fig [4.6]

Fig: - 4.6 Annual precipitation point map of 2014

Here, for spatial distribution of annual precipitation in the study area is estimated by using Kringing Interpolation technique by converting output cell size into 30 * 30 resolutions.

Kriging Input point features RasterT_tif3 Z value field grd_code Output surface raster C:\Usersianna\]townloads\Subanshiri\RUSLE\R_FACTOR_2\Kringing30 Semivariogram properties Kriging method: Ordinary Universal Semivariogram model: Spherical Output cell size (optional) OK Cancel Environments

After interpolation technique is applied the required interpolated map is being generated as Fig [4.8]

And exported of above Fig [4.9] of Kringing Interpolation Technique applied map as below where maximum value is ranged from [2,063 - 2,515]

4.2.1.1.1 Reproject of Monthly Rainfall Data of period 2014

After selecting the **Model Builder** option, as shown in Fig. [4.10], a new window opens. Add the required band for conversion to UTM Zone 46N. Once the process runs successfully, a dialog box confirming completion will appear.

4.2.1.1.2 Calculation of R factor using projected Rainfall data of period 2014

Here, R =
$$\sum_{i=1}^{12} 1.735 * 10 (1.5 * \log_{10} \left(\frac{P_i^2}{P}\right) - 0.08188)$$

where:

P_i is a monthly rainfall (mm)

P annual rainfall (mm)

Above equation is used for calculation R value as proposed by Wischmeier and Smith, 1978; Arnoldus, 1980 where evaluation will be done on Model Builder as shown in Fig [4.11] Steps as follows –

After adding Bands_UTM file in Model Builder window then drag **Raster Calculator** option from **Spatial Analyst** option and then add **Cell Statistics Option** for Summation of Bands Value as present in the above equation in Fig [4.12]

Here in Raster Calculator box given equation is used for evaluation of monthly rainfall data as shown in Fig [1.30]

	🔨 Raster Calculator							\times
2	Map Algebra expression					^	Output raster	\sim
	Layers and variables Band_37_UTM Band_38_UTM Band_39_UTM Band_40_UTM Band_41_UTM Band_42_UTM	7 8 9 4 5 6 1 2 3	/ == * > - <	!= 4 >= (<= (Conditional — Con Pick SetNull Math — Abs Exp	I	The output raster resulting from the Map Algebra expression.	
מסוכו כמוי	1.735 * Power(10,1.5 * Log10("%Band_37_UTM%" * "% Output raster	%Band_37_	nual pr Ulidain 7Ra Cale	ster ulator	NN Net Agent of table Deer and version Deer and version Deer and version			A Raster Calculator
1 1 1	C:\Users\annaj\Downloads\Subanshiri\RUSLE\R_FACTO	R_1\R_mor	armusi.pr a_UUUUui	Raster Calculator (2)	R_FEB	01("Seend_24_11795" * "%	1 2 2 4 4 4 1 2 2 4 4 4 0 - 4 7 4 4 0 - 4 7 1	expression so python syntax calculator-like interface.
<u>ה</u> -			annual pr e_jijiMid annual_pr o_UFBt.cl + C	Raster (3) Rester alculator (4)		Sama ((8/217)), Factor	TRA worthood, base OK Cannod Apply «Crashenely	Tool Hep
	•							

4.2.1.2 Working with precipitation in NetCDF file of CRU of period 2022

Similar method is applied with period 2022 but file name taken as cru_ts4.08.2022.2023.pre.dat.nc.gz by clicking ArcToolbox, a drop-down meu appears then go to > Multidimensional Tools >Make NetCDF Raster Layer

A dialog box appears, then add all credentials and corresponding file for calculation.

After converting NetCdf file to raster calculation of annual precipitation is performed in similar manner but bands are considered as Band 13 to Band 24

for period 2022 annual precipitation is shown from **388.1 mm to 2639mm** of **Projected Coordinate System WGS 1984 UTM Zone 43N** as file name **annualpre_2022_UTM.tif** Again, converting Raster format to point where points are defined as empirical rain-gauge station for calculation of varying precipitation intensity of the study area.

Steps are as follows -

ArcToolbox > Conversion Tools > From Raster > Raster to Point

A dialog box adds all the credentials and insert **annualpre_2022_UTM.tif** in Input Option and point map is created Fig [4.15]

Then, spatial distribution of annual precipitation in the study area was estimated using the Kriging Interpolation technique, with the output cell size set to a 30×30 resolution. After applying the interpolation method, the required precipitation map was generated and exported, as shown in Fig. [4.16], representing the interpolated values derived from the Kriging Interpolation Technique with interval data as [2103.29 – 2638.93] in fig[4.17]

4.2.1.2.1 Reproject of Monthly Rainfall Data of period 2022

After selecting the **Model Builder** option, as shown in Fig. [4.18], a new window opens. Add the required band for conversion to UTM Zone 46N. Once the process runs successfully, a dialog box confirming completion will appear.

Fig: - 4.18 Model building of raster projection

4.2.1.2.2 Calculation of R factor using projected Rainfall data of period 2022

Here, R =
$$\sum_{i=1}^{12} 1.735 * 10 (1.5 * \log_{10} \left(\frac{P_i^2}{P}\right) - 0.08188)$$

where:

P_i is a monthly rainfall (mm)

P annual rainfall (mm)

Above equation is used for calculation R value as proposed by Wischmeier and Smith, 1978; Arnoldus, 1980 where evaluation will be done on Model Builder as shown in Fig [4.19] Steps as follows –

After adding Bands_UTM file in Model Builder window then drag **Raster Calculator** option from **Spatial Analyst** option.

Here in Raster Calculator box given equation is used for evaluation of monthly rainfall data.

Fig: - 4.19 Model building of raster projection

4.2.1.3 Working with precipitation in NetCDF file of CRU of period 2023

Similar method is applied with period 2023 but file name taken as cru_ts4.08.2022.2023.pre.dat.nc.gz by clicking ArcToolbox, a drop-down meu appears then go to > Multidimensional Tools >Make NetCDF Raster Layer

A dialog box appears, then add all credentials and corresponding file for calculation.

Fig: - 4.20 NetCDF MAP 2023

After converting NetCdf file to raster calculation of annual precipitation is performed in similar manner but bands are considered as Band 13 to Band 24

for period 2022 annual precipitation is shown from **313.2 mm to 2138.7 mm** of **Projected Coordinate System WGS 1984 UTM Zone 43N** as file name **annualpre_2023_UTM.tif**
Again, converting Raster format to point where points are defined as empirical rain-gauge station for calculation of varying precipitation intensity of the study area.

Steps are as follows –

ArcToolbox > Conversion Tools > From Raster > Raster to Point

A dialog box adds all the credentials and insert **annualpre_2023_UTM.tif** in Input Option and point map is created Fig [4.22]

Then, spatial distribution of annual precipitation in the study area was estimated using the Kriging Interpolation technique, with the output cell size set to a 30×30 resolution. After applying the interpolation method, the required precipitation map was generated and exported, as shown in Fig. [4.23], representing the interpolated values derived from the Kriging Interpolation Technique with interval data as [1699.47 – 2138.68]

Fig: - 4.23 Interpolation precipitation map of 2023

4.2.1.3.1 Reproject of Monthly Rainfall Data of period 2023

After selecting the **Model Builder** option, as shown in Fig. [4.24], a new window opens. Add the required band for conversion to UTM Zone 46N. Once the process runs successfully, a dialog box confirming completion will appear.

4.2.1.3.2 Calculation of R factor using projected Rainfall data of period 2023

Here, R =
$$\sum_{i=1}^{12} 1.735 * 10 (1.5 * \log_{10} \left(\frac{P_i^2}{P}\right) - 0.08188)$$

where:

P_i is a monthly rainfall (mm)

P annual rainfall (mm)

Above equation is used for calculation R value as proposed by Wischmeier and Smith, 1978; Arnoldus, 1980 where evaluation will be done on Model Builder as shown in Fig [4.25] Steps as follows –

After adding Bands_UTM file in Model Builder window then drag **Raster Calculator** option from **Spatial Analyst** option and then add **Cell Statistics Option** for Summation of Bands Value as present in the above equation

Here in Raster Calculator box given equation is used for evaluation of monthly rainfall data.

4.2.2 SOIL ERODIBILITY (K)

The soil erodibility which reflects the rate of soil loss depending on the erosion (R factor), and calculated on the basis of soil textures, is an empirical measure of soil erosion and represents the susceptibility of the soil to erosion.

Formula used for analyzing soil characteristics proposed by Williams (1995)

 $K_{USLE} = K_W = F_{csand} X F_{cl-si} X F_{orgc} X F_{hisand}$ $F_{csand} = (0.2 + 0.3 \exp [-0.256 x m_s x (1 - \frac{m_{silt}}{100})])$ $F_{cl-si} = (\frac{m_{silt}}{m_c + m_{silt}})^{0.3}$ $F_{orgc} = (1 - \frac{0.250egC}{0rgC + exp[3.72 - 2.95 X orgC]})$ $F_{hisand} = (1 - \frac{0.7 X (1 - \frac{m_s}{100})}{(1 - \frac{m_s}{100}) + \exp [-5.51 + 22.9 (1 - \frac{m_s}{100})]})$

4.2.2.1 USE OF FAO (FOOD AND AGRICULTURAL ORGANISATION) FOR SOIL STUDIES CONDUCTED IN THE YEAR 2014, 2022 AND 2023

Initially, the FAO soil data is downloaded from (<u>https://data.apps.fao.org/map/catalog</u>) where desired study area will be overlayed in ArcGIS for soil characteristics study.

Since the same DEM is used as the input file for different years, the soil types would remain consistent across the study area. As a result, the soil types derived from the FAO soil map would not vary for different years.

Fig: - 4.27 FAO SOIL WITH STUDY AREA MAP

Here, after overlapped two different soil types is observed from the selected area with different SNUM (soil number) as per FAO attribute table

4.2.2.2 K factor extracted from FAO soil data for dominant soil

Firstly, extracted the study area shape file from soil map in ArcGIS where dominant soil of the required area will be visible in the corresponding attribute table.

Fig: - 4.28 K_FACTOR ATTRIBUTE CHART

From the above Fig [4.28] the FAOSOIL type is marked and look into the soil map data for requirements of **Williams.et.al** proposed formula for calculation.

Soil	sand	sand			clay	clay	pН	pН	
unit	%	%	silt %	silt%	%	%	water	water	OC %
symbo	topsoi	subsoi	topsoi	subsoi	topsoi	subsoi	topsoi	subsoi	topsoi
1	l	1	l	1	l	l	l	1	l
Ao	53.6	43.4	15.8	16	30.6	40.6	5.1	5.2	2.25
Be	36.4	41.7	37.2	32.1	26.4	26.3	6.9	7.1	1.07
Table: - 4.3 FAO SOIL MAP DATA FOR DOMINANT SOIL							JIL		

Above table [4.3] is the FAO soil map data from where yellow marked column is prioritized for evaluation.

Here, soil unit symbol for the study area is Ao and Be

From the table [3.3] K factor is being calculated which will displayed in Chapter [3] for detailed analysis.

4.2.2.3 CONVERSION OF K FACTOR MAP TO RASTER IMAGE

Since the K-factor map is in shapefile format, it needs to be converted into raster format using the K-factor attribute data to ensure accuracy.

So, Go To

30

<

Arc Toolbox > Conversion Tools > To Raster > Polygon to Raster,

A dialog box appears after filling all credentials desired raster map Fig [4.29] and Fig[4.30] classification soil raster map is obtained by keeping value field option as K_factor and cell size as 30m

Environments...

Cancel

2

>

Tool Help

<< Hide Help

Fig: - 4.31 CONVERSION OF POL TO RASTER

Polygon to Raster
Polyline to Raster Raster To Other Format (multiple)

🗄 🦠 To Shapefile

4.2.3 SLOPE LENGTH (LS) FACTOR FOR SOIL STUDIES CONDUCTED IN THE YEAR 2014, 2022 AND 2023

Topographic factor – Slope Length and Steepness (LS) is a combination of slope gradient factor (S) and a slope – length (L), which are determined from the DEM

Slope – length factor is a vital parameter in soil erosion modeling and computing transport capacity of surface runoff.

An increase in the slope length of area indicates the steepness in which soil loss per unit area increases.

The flow accumulation raster obtained was then used for the estimation of the L factor by using the following formula

$$\mathbf{L} = \left(\frac{Flow \ accumulation * cell \ size}{22.13}\right)^m$$

generalised LS formula is -

 $LS = [flow \ accumulation * \ \frac{Cell \ Size}{22.13}]^{0.4} * [\frac{\sin Slope}{0.00896}]^{1.3}$

4.2.3.1 FLOW DIAGRAM FOR LS FACTOR CALCULATION

4.2.3.2 CREATION OF FILL AND FLOW DIRECTION

After downloading DEM (Data Elevation Model) from USGS earth explorer corresponding Fill and flow direction map have been created in ArcGIS for measuring slope length.

From above generalised equation, required parameters for calculation is *flow accumulation* and *Sin Slope* value with cell size as 30m

Steps for creating fill and flow direction map in Model Builder

Go to Model builder tool > Drag the .tif file > Arc Toolbox > Spatial Analyst Tools > Hydrology > Fill & Flow Direction

Defination of Fill – *Fill sinks in a surface raster to remove small imperfections in the given data*

Put all the credentials in the pop-up box on Fill menu.

Similarly, drag the Flow Direction option in the model builder menu for operation.

Connect the data .tif file to fill and flow option and create corresponding flow and fill file in the desired folder for further operation.

Now for merging Fill and Flow direction map, Mosaic is better way to merged the file in new raster map

Steps are as follows -

Go to Data Management Tools > Raster > Raster Dataset > Mosaic to New Raster,

Drag the Mosaic option to builder and run the model for validation outcome.

Below figure [4.34] is the mosaic flow direction map of value ranged from (1 - 128) where low is 1 and high is 128

4.2.3.3 CREATION OF FLOW ACCUMULATION MAP

As Flow direction map is obtained, now flow accumulation map will be created from the FD map for LS calculation which is being mosaic by model builder. Steps to create *flow accumulation* map by following ways –

Method 1 – Go to Arc Toolbox > Spatial Analyst Tools > Hydrology > Flow Accumulation, A dialog box appears where after filling all the credentials with flow direction type D8.

Method 2 -

Go to Toolbar and select Geoprocessing > Environments Settings > Parallel processing > Parallel processing factor = 0; by turning off the Background Processing disabled

Here method 2 is taken into account for smooth interpretation of the data.

After then add all the FD (flow direction) map in ArcGIS and drag to model builder window

Then, Go to Arc Toolbox > Spatial Analyst tools > Hydrology > Flow Accumulation

Drag the flow accumulation option in Model Builder window for Mosaic the FD.tif files as shown in fig [4.35] by connecting each FD file

4.2.3.4 CALCULATION OF SLOPE IN RADIANS

Initially, add all the Fill Map in ArcGIS under layers at Table of contents bar.

Now mosaic the fill maps by following ways -

Go to Arc Toolbox > Data Management tools > Raster > Raster Dataset > Mosaic to New Raster

A dialog box appears add all the credentials and changed pixel type as **16-BIT UNSIGNED** and No of bands as 1

Then to calculate slope of the area

Go to Arc Toolbox > Spatial Analyst Tools > Surface > Slope

Add mosaic_fill maps as in input in the surface dialog box and unchanged output measurements

as DEGREE with Z- factor as 1 as shown in fig [4.38]

Again, change slope of the area from degree to radian as per requirements of **Williams.et.al** proposed formula

As we know, 1 degree = 0.0174533 radians

Hence, above conversion will be perform in **Raster Calculator** followed by Spatial Analyst tools under Map Algebra option as shown below Fig [4.37] and formula used for evaluation with Spatial reference as WGS 1984 UTM Zone 46N

Fig: - 4.38 RADIAN MAP

4.2.3.5 EVALUATION OF LS MAP

After conversion of slope and flow accumulation generation, add the above data in ArcGIS window and then perform Raster Calculation in Map Algebra option

```
Add formula LS = [flow \ accumulation * \frac{Cell \ Size}{22.13}]^{0.4} * [\frac{\sin Slope}{0.00896}]^{1.3}
```

Add map algebra expression as -

- SIN_SLOPE_RAD map
- FLOW_ACCU map, as shown in fig [4.38]

ap Algebra expression												Raster
Layers and variables									Ln			Calculator
LS_SA.tif		7	8	q	1			8	Log10			Builds and executes a
ls_trial.tif									Log2	1.1		single Map Algebra
<pre>sin_slope_rad_30m.tif</pre>		4	5	6	*	>	>=	1.	Power			expression using
slope mos deg tif			Ē	\equiv			<=	^	RoundDown			calculator-like interface.
> slope_mos_deg.tit		1	2	3	Ľ.	<			RoundUp			
New Group Laver\FILL 4.tif			n		+	1						
ower("FA_30M.tif" * 30 / 22.14,0.4) * Por tput raster :\Users\anna]\OneDrive\Documents\ArcG	ver("sin_slope	e_rad_	30m.ti calc1	f" / 0.0	09,1.3)			~	Square			
ower("FA_30M.tif" * 30 / 22.14,0.4) * Por tput raster :\Users\annaj\OneDrive\Documents\ArcG;	wer("sin_slope S\Default.gdb	e_rad_	30m.ti rcalc1	f" / 0.0	09,1.3)			~	Square			
wer("FA_30M.tbf" * 30 / 22.14,0.4) * Por put raster \Users\annaj\OneDrive\Documents\ArcG	wer("sin_slope S\Default.gdb	e_rad_	30m.ti rcalc1	۴" / ۵.0	09,1.3)			~	Square			
wer("FA_30M.tif" * 30 / 22.14,0.4) * Por iput rester \Users\annaj\OneDrive\Documents\ArcG	wer("sin_slope S\Default.gdb	e_rad_	30m.ti rcalc1	F" / 0.0	09,1.3)			~	Square			
wer("FA_30M.tdf" * 30 / 22.14,0.4) * Por put raster (Users\anna)(OneDrive\Documents\ArcG)	wer("sin_slope	e_rad_	30m.ti	۴ / ۵.c	09,1.3)	~	Square			
wer("FA_30M.tdf" * 30 / 22.14,0.4) * Por put raster (Users\anna)(OneDrive\Documents\ArcG	wer("sin_slope	e_rad_	30m.ti	f" / 0.0	09,1.3)			~	Square			
wer("FA_30M.tbf" * 30 / 22.14,0.4) * Por put raster (Users\anna)\OneDrive\DocumentS\ArcG	wer("sin_slope	e_rad_	30m.ti	f" / 0.0	09,1.3)			~	Square			
wer("FA_30M.thf" = 30 / 22.14,0.4) = Por tput raster (Users\anna)(OneDrive\Documents\ArcG	ver("sin_slope	e_rad_	30m.ti	f" / 0.0	09,1.3)			~	Square			
wer("FA_30M.tif" = 30 / 22.14,0.4) = Por tput raster (Users\anna)(OneDrive\Documents\ArcG	wer("sin_slope	e_rad_	30m.ti	۴ ⁴ / ۵.۵	09,1.3)	ſ	J	~	Square		~	

As per various research papers and from researchers LS value cannot exceed 100, but due to unavailability of field data it's difficult to evaluate correct LS value map

So, SAGA GIS is the useful software for finding LS factor which is more accurate than ArcGIS evaluated map independent of any field data (Šimůnek et al. (2017), **Panagos et al.** (2015), **Mitasova et al.** (1996). Hence, with accurate LS map overall evaluation of desired result will be appropriate to present where value range from (0 - 74.4633) which is accurate as shown in Fig [4.39]

4.2.4 C – FACTOR (LAND USE AND LAND COVER)

The cover-management factor (C) is a fundamental component in estimating soil erosion rates, particularly within models like the Revised Universal Soil Loss Equation (RUSLE). It reflects the influence of vegetation cover, cropping systems, and land management practices on soil erosion, serving as a key indicator of how human activities and natural land cover affect the soil's vulnerability to erosive forces. As highlighted by **Koirala et al. (2019)**, the significance of the C factor lies in its ability to quantify the protective role of vegetation in mitigating soil erosion, ranking second only to topography as a determinant of erosion risk.

The values of the C factor range from 0 to 1, with lower values indicating better soil protection and reduced erosion.

Formula proposed by Durgion et al, 2014

$$C = \frac{(-NDVI+1)}{2}$$

Another one proposed by Vatandaslar et al. 2017.

C = 0.431 - 0.805 * NDVI

Above equations are taken into account for evaluation of C - factor

4.2.4.1 WORKING WITH LANDSAT IMAGE OF 2014 FOR C- FACTOR CALCULATION

Firstly, Landsat image of 2014 is downloaded from USGS earth explorer of file name as – LC08_L2SP_135041_2014 of 30m resolution of Cloud Coverage percentage 30% as shown in fig [4.50]

4.2.4.1.1 EVALUATION OF COMPOSITE BAND OF YEAR 2014

After downloading Landsat gridded image from USGS, add the file in ArcGIS window of band (.tif) file from zip file of the gridded file.

Steps for generating composite band -

Go to Arc Toolbox > Data Management Tools > Raster > Raster Processing > Composite Bands

A dialog box appears, add only band no 5, 4, 3, 2

Where Band No = 5 (Near Infrared) for Landsat 8 & Band No = 4 for Landsat 7

Red, Green and Blue for Band 3, 2, 1 respectively of Landsat 7 & Band 4, 3, 2 for Landsat 8

After following above steps composite band image generated of 30 m resolution as shown in Fig [4.41] & band for 4, 3, 2 of RGB map is defined as True Color Composite map fig [4.42]

Fig: - 4.42 COMPOSITE BAND TRUE COLOR 2014

4.2.4.1.2 EVALUATION OF NDVI MAP OF YEAR 2014

Here, NDVI (Normalized Difference Vegetation Index) is generated from composite band which mentioned in above Fig [4.41]

Steps of NDVI generation -

Go to Toolbar > Windows > Image Analysis

A side menu appears, Go to Image analysis option and changed Red bands as 4 and Infrared bands as 5

Then, go to processing bar and click NDVI button

A new NVDI map is being generated as shown in fig [4.43]

Here, fluctuation of value is due to variability of intensity of vegetation on that area

4.2.4.1.3 EVALUATION OF C – FACTOR MAP OF YEAR 2014

Here, after above mentioned steps now calculation of C – factor is done with considered parameters as per **Vatandaslar.et.al and Durgion.et.al** proposed formula and considered appropriate map for further calculation

• Considered Vatandaslar.et.al,2017 proposed formula – C = 0.431 – 0.805 * NDVI

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Vatandaslar.et.al** formula as shown in fig [4.44] where value ranges from (0.00132 - 0.566143).

• Considered **Durgion.et.al** proposed formula – $C = \frac{(-NDVI+1)}{2}$

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Durgion.et.al** formula as shown in fig [4.45] where value ranges from (0.233122 - 0.58394).

4.2.4.2 WORKING WITH LANDSAT IMAGE OF 2022 FOR C- FACTOR CALCULATION

Firstly, Landsat image of 2022 is downloaded from USGS earth explorer of file name as – LC08_L2SP_135041_2022 of 30m resolution of Cloud Coverage percentage 30%

Fig: - 4.46 LANDSAT IMAGE OF YEAR 2022

4.2.4.2.1 EVALUATION OF COMPOSITE BAND OF YEAR 2022

After downloading Landsat gridded image from USGS, add the file in ArcGIS window of band (.tif) file from zip file of the gridded file.

Steps for generating composite band –

Go to Arc Toolbox > Data Management Tools > Raster > Raster Processing > Composite Bands

A dialog box appears, add only band no 5, 4, 3, 2

Where Band No = 5 (Near Infrared) for Landsat 8 & Band No = 4 for Landsat 7

Red, Green and Blue for Band 3, 2, 1 respectively of Landsat 7 & Band 4, 3, 2 for Landsat 8

After following above steps composite band image generated of 30 m resolution

4.2.4.2.2 EVALUATION OF NDVI MAP OF YEAR 2022

Here, NDVI (Normalized Difference Vegetation Index) is generated from composite band

Steps of NDVI generation -

Go to Toolbar > Windows > Image Analysis

A side menu appears, Go to Image analysis option and changed Red bands as 4 and Infrared bands as 5

Then, go to processing bar and click NDVI button. A new NVDI map is being generated of value ranges from (-0.244963 - 0.539822) as shown in fig [4.47]

4.2.4.2.3 EVALUATION OF C – FACTOR MAP OF YEAR 2022

Here, after above mentioned steps now calculation of C – factor is done with considered parameters as per **Vatandaslar.et.al and Durgion.et.al** proposed formula and considered appropriate map for further calculation

• Considered Vatandaslar.et.al,2017 proposed formula – C = 0.431 – 0.805 * NDVI

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Vatandaslar.et.al** formula as shown in fig [4.48] where value ranges from (-0.00355 - 0.628195).

• Considered **Durgion.et.al** proposed formula – $C = \frac{(-NDVI+1)}{2}$

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Durgion.et.al** formula as shown in fig [4.49] where value ranges from (0.230089 - 0.622481)

4.2.4.3 WORKING WITH LANDSAT IMAGE OF 2023 FOR C- FACTOR CALCULATION

Firstly, Landsat image of 2023 is downloaded from USGS earth explorer of file name as – LC08_L2SP_135041_2023 of 30m resolution of Cloud Coverage percentage 30%

Fig: - 4.50 LANDSAT IMAGE OF YEAR 2023

4.2.4.3.1 EVALUATION OF COMPOSITE BAND OF YEAR 2023

After downloading Landsat gridded image from USGS, add the file in ArcGIS window of band (.tif) file from zip file of the gridded file.

Steps for generating composite band -

Go to Arc Toolbox > Data Management Tools > Raster > Raster Processing > Composite Bands

A dialog box appears, add only band no 5, 4, 3, 2

Where Band No = 5 (Near Infrared) for Landsat 8 & Band No = 4 for Landsat 7

Red, Green and Blue for Band 3, 2, 1 respectively of Landsat 7 & Band 4, 3, 2 for Landsat 8

After following above steps composite band image generated of 30 m resolution

4.2.4.3.2 EVALUATION OF NDVI MAP OF YEAR 2023

Here, NDVI (Normalized Difference Vegetation Index) is generated from composite band

Steps of NDVI generation -

Go to Toolbar > Windows > Image Analysis

A side menu appears, Go to Image analysis option and changed Red bands as 4 and Infrared bands as 5

Then, go to processing bar and click NDVI button. A new NVDI map is being generated of value ranges from (-0.237862 - 0.556076) as shown in fig [4.51]

4.2.4.3.3 EVALUATION OF C – FACTOR MAP OF YEAR 2023

Here, after above mentioned steps now calculation of C – factor is done with considered parameters as per **Vatandaslar.et.al and Durgion.et.al** proposed formula and considered appropriate map for further calculation

• Considered Vatandaslar.et.al,2017 proposed formula – C = 0.431 – 0.805 * NDVI

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Vatandaslar.et.al** formula as shown in fig [4.52] where value ranges from (-0.01664 - 0.62247)

• Considered **Durgion.et.al** proposed formula – $C = \frac{(-NDVI+1)}{2}$

Go to Arc Toolbox > Spatial Analyst tool > Map Algebra > Raster Calculation

At map algebra expression added **Durgion.et.al** formula as shown in fig [4.53] where value ranges from (0.2219 - 0.618931)

4.2.5 P – FACTOR (CONSERVATION PRACTICE FACTOR)

The conservation practice factor (P), also known as the support factor, represents the soil-loss ratio after implementing specific conservation practices, indicating their effectiveness in reducing soil and water loss. The P-factor ranges from 0 to 1, with lower values signifying more effective practices. For this study, a value of 1 was assigned across the entire study area in the RUSLE model due to the absence of significant conservation practices. In regions like Manafwa, conservation efforts, primarily tree planting, are more relevant to the cover management factor (C) rather than the P-factor.

4.2.5.1 P – FACTOR WORKING FOR STUDY AREA 2014

4.2.5.1.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2014

Initially, add the composite band tif file in the ArcGIS under layers bar for classification. Extract the study area from composite band tif file by using extract by mask in Arc Toolbox

followed by Spatial Analyst tools > Extraction

Before classification, changed the colour Red to band 5 as NIR for convenient identification of vegetation while training samples.

Now, from classification bar select polygon option and start collecting samples from the study area as shown in fig [4.55] (*collecting agricultural samples*) and value will be recorded on Training sample manager.

In this way samples are selected of different types for supervised classification where final land cover image is generated Fig [4.54]

4.2.5.1.2 RECLASSIFY SLOPE AND COMBINE WITH CLASSIFICATION MAP

Here, slope is converted to percentage for evaluation of P - FACTOR. As P values varied with slope percentage which will be validate for study land use/land cover factor of the study area. Steps for operation –

At first add Mosaic_fill.tif files into ArcGIS window followed by layer column.

Go to Arc Toolbox >Spatial Analyst Tools > Surafce > Slope

A dialog box appears add all the credentials followed by Output Measurement as Percent_Rise with unchanged Z – factor as 1 and extract the study area followed by Extract by Mask under Extraction option in Arc Toolbox.

Now in slope percentage map, from continue dataset it converts to discrete dataset as in discrete dataset contains integer values.

So, in order to make both map discrete i.e, classification map fig [1.72] & slope percentage map combine operation is required

Go to Arc Toolbox > Spatial Analyst Tools > Reclass > Reclassify

Put slope percentage map as an input and classify the existing table with modification on table [3.7] and figure is shown Fig [4.56] & Fig [4.57] interface of the reclassify window for editing the slope value manually for accurate calculation without any error due to unavailability of filed data.

nput raster			
mosaic_fill.tif			
utput raster			
C:\Users\annaj\OneDrive\Docu	ments\ArcGIS\Default.gdb\Slop	e_tif2	2
utput measurement (optional)			
PERCENT_RISE			~
factor (optional)			
			1
Fig: - 4.56 SL	OPE PERCEN	FAGE INPUT DIAL	.OG BOX
Reclassify			
Input raster			
SLOPE_SA_PERT_30			
Reclass field			
VALUE			~
Reclassification			
Recidssification			
Old values	New values	Classifi	
0 - 5	1	Classify	
5 - 10	2	Unique	
10 - 19.808107	3		
19.808107 - 30	4		
50 - 50	6	Add Entry	
NoData	NoData		
	Hobala	Delete Entries	
	Reverse New Values	Precision	
Load Save			
Load Save			
Load Save Output raster			
Load Save Output raster C:\Users\annai\OneDrive\Doo	:uments\ArcGIS\Default.adb\Re	dass SLOP1	

SLOPE_SA_PERT_30			– 🖻
VALUE			~
Reclassification			
Old values	Neuroluee		
Old values	1	Classify	
5 - 10	2		
10 - 19 808107	3	Unique	
19.808107 - 30	4		
30 - 50	5	A H FAN	
50 - 105.831696	6	Add Entry	
NoData	NoData	Delete Entries	
		Delete Entres	
Load Save	Reverse New Values	Precision	
Jutnut raster			
Culture annu (One Drive) Dee	umante) AssCIC) Default adh) De	dage CLORI	
C: (Users (anna) (UneDrive (Duc	uments (ArcG15 (Derault.gub (Ke	uass_SLOP1	

After reclassification and combining the two discrete entities following map is generated for further analysis as shown in fig [4.58] & fig [4.59] respectively where 30 different classes is obtained for accurate identification.

4.2.5.1.3 ASSIGNING P – FACTOR VALUES FOR CLASSES IN ATTRIBUTE TABLE

Here, combined map that have generated earlier is technically a P – factor map without any assigned P – values.

So, assigning P -values is mandatory for classification of the P – FACTOR map.

Hence, assigning is done by the following steps -

Right Click on combined_map at Layers column > click on Attribute Table

A table will pop up > Click Add field from toolbar > Name the field as P_Factor; Type changed to Float

Now, assigned the value according to its class number by taking reference from table [3.7] for accurate outcome and assigned table of 2014 P -factor is table [4.4]

ATTRIBUTE TABLE OF COMBINED SLOPE CLASS 2014						
Value	Count	Reclass_SL	CLASS_SA_M	P_factor		
1	121204	1	169	0.00		
2	1194075	1	96	0.25		
3	108639	2	96	0.35		
4	271554	2	1	0.12		
5	14847	2	169	0.00		
6	1332474	1	1	0.10		
7	32677	1	256	0.00		
8	2744	3	169	0.00		
9	48119	3	1	0.14		
10	4758	2	256	0.00		
11	12339	3	96	0.45		
12	39167	1	255	0.10		
13	26630	2	255	0.13		
14	10235	4	1	0.19		
15	505	3	256	0.00		
16	23351	3	255	0.15		
17	613	4	96	0.55		
18	15673	4	255	0.20		
19	5077	5	1	0.25		
20	11396	5	255	0.40		
21	1659	6	255	0.70		
22	388	6	1	0.70		
23	169	5	96	0.75		
24	45	4	256	0.00		
25	102	4	169	0.00		
26	19	5	169	0.00		
27	7	6	169	0.00		
28	9	5	256	0.00		
29	14	6	96	1.00		

Table: - 4.4 Attribute table of period 2014

After assigning the value Go to Layer properties and changed Fields Value as P_factor and classes to 5. Here, fig [4.60] is assigned P_factor map and fig [4.61] P factor map in UTM format.

4.2.5.2 P – FACTOR WORKING FOR STUDY AREA 2022

4.2.5.2.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2022

Initially, add the composite band tif file in the ArcGIS under layers bar for classification.

Extract the study area from composite band tif file by using extract by mask in Arc Toolbox followed by Spatial Analyst tools > Extraction

Before classification, changed the colour Red to band 5 as NIR for convenient identification of vegetation while training samples.

Now, from classification bar select polygon option and start collecting samples from the study area as shown in fig [4.63] (*collecting agricultural samples*) and value will be recorded on Training sample manager.

In this way samples are selected of different types for supervised classification where final land cover image is generated Fig [4.62]

4.2.5.2.2 RECLASSIFY SLOPE AND COMBINE WITH CLASSIFICATION MAP

Here, slope is converted to percentage for evaluation of P – FACTOR. As P values varied with slope percentage which will be validate for study land use/land cover factor of the study area. Steps for operation –

At first add Mosaic_fill.tif files into ArcGIS window followed by layer column.

Go to Arc Toolbox >Spatial Analyst Tools > Surafce > Slope

A dialog box appears add all the credentials followed by Output Measurement as Percent_Rise with unchanged Z – factor as 1 and extract the study area followed by Extract by Mask under Extraction option in Arc Toolbox.

Now in slope percentage map, from continue dataset it converts to discrete dataset as in discrete dataset contains integer values.

So, in order to make both map discrete i.e. classification map fig [4.62] & slope percentage map combine operation is required

Go to Arc Toolbox > Spatial Analyst Tools > Reclass > Reclassify

Put slope percentage map as an input and classify the existing table with modification on table [3.7] and figure is shown Fig [4.64] & Fig [4.65] interface of the reclassify window for editing the slope value manually for accurate calculation without any error due to unavailability of filed data.

put raster			
SLOPE_SA_PERT_30			– 🖻
eclass field			
ALUE			~
eclassification			
Old values	New values		
0 - 5	1	Classify	
5 - 10	2		
10 - 19.808107	3	Unique	
19.808107 - 30	4		
30 - 50	5	Add Entry	
50 - 105.831696	b		
NoData	NoData	Delete Entries	
Load Save	Reverse New Values	Precision	
utput raster			

After reclassification and combining the two discrete entities following map is generated for further analysis as shown in fig [4.66] & fig [4.67] respectively where 30 different classes is obtained for accurate identification.

4.2.5.2.3 ASSIGNING P – FACTOR VALUES FOR CLASSES IN ATTRIBUTE TABLE

Here, combined map that have generated earlier is technically a P – factor map without any assigned P – values.

So, assigning P -values is mandatory for classification of the P – FACTOR map.

Hence, assigning is done by the following steps -

Right Click on combined_map at Layers column > click on Attribute Table

A table will pop up > Click Add field from toolbar > Name the field as P_Factor; Type changed to Float

Now, assigned the value according to its class number by taking reference from table [3.7] for accurate outcome and assigned table of 2014 P -factor is table [4.5]

ValueCountReclass_SICLASS_SA_2P_FACTOR18159411680.002116180611140.2531382508110.104267239210.1253700512500.0061140721680.0079953221140.358249131680.0094234122490.101035596310.14111093131140.45125668412490.1313590922500.00143790232490.151544432500.00164961410.19172070342490.201857241140.55191397352490.70213342500.00222529510.252315351140.7524187610.70259341680.00261152500.00281161141.00					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Value	Count	Reclass_Sl	CLASS_SA_2	P_FACTOR
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	81594	1	168	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1161806	1	114	0.25
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1382508	1	1	0.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	267239	2	1	0.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	37005	1	250	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	11407	2	168	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	99532	2	114	0.35
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	2491	3	168	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	42341	2	249	0.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	35596	3	1	0.14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	10931	3	114	0.45
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	56684	1	249	0.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	5909	2	250	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	37902	3	249	0.15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	444	3	250	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	4961	4	1	0.19
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	20703	4	249	0.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	572	4	114	0.55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	13973	5	249	0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1870	6	249	0.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	33	4	250	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	2529	5	1	0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	153	5	114	0.75
25 93 4 168 0.00 26 11 5 250 0.00 27 4 5 168 0.00 28 11 6 114 1.00	24	187	6	1	0.70
26 11 5 250 0.00 27 4 5 168 0.00 28 11 6 114 1.00	25	93	4	168	0.00
27 4 5 168 0.00 28 11 6 114 1.00	26	11	5	250	0.00
28 11 6 114 1.00	27	4	5	168	0.00
	28	11	6	114	1.00

ATTRIBUTE TABLE OF COMBINED SLOPE CLASS 2022

Table: - 4.5 Attribute table of period 2022

After assigning the value Go to Layer properties and changed Fields Value as P_factor and classes to 5. Here, fig [4.68] is assigned P_factor map and fig [4.69] P factor map in UTM format.

103

4.2.5.3 P – FACTOR WORKING FOR STUDY AREA 2023

4.2.5.3.1 SUPERVISED CLASSIFICATION FOR THE YEAR 2023

Initially, add the composite band tif file in the ArcGIS under layers bar for classification.

Extract the study area from composite band tif file by using extract by mask in Arc Toolbox followed by Spatial Analyst tools > Extraction

Before classification, changed the colour Red to band 5 as NIR for convenient identification of vegetation while training samples.

Now, from classification bar select polygon option and start collecting samples from the study area as shown in fig [4.70] (*collecting agricultural samples*) and value will be recorded on Training sample manager.

In this way samples are selected of different types for supervised classification where final land cover image is generated.

Fig: - 4.70 TRAINING SAMPLES

4.2.5.3.2 RECLASSIFY SLOPE AND COMBINE WITH CLASSIFICATION MAP

Here, slope is converted to percentage for evaluation of P – FACTOR. As P values varied with slope percentage which will be validate for study land use/land cover factor of the study area. Steps for operation –

At first add Mosaic_fill.tif files into ArcGIS window followed by layer column.

Go to Arc Toolbox >Spatial Analyst Tools > Surafce > Slope

A dialog box appears add all the credentials followed by Output Measurement as Percent_Rise with unchanged Z – factor as 1 and extract the study area followed by Extract by Mask under Extraction option in Arc Toolbox.

Now in slope percentage map, from continue dataset it converts to discrete dataset as in discrete dataset contains integer values.

So, in order to make both map discrete i.e., classification map & slope percentage map combine operation is required

Go to Arc Toolbox > Spatial Analyst Tools > Reclass > Reclassify

Put slope percentage map as an input and classify the existing table with modification on table [3.7] figure is shown Fig [4.71] & Fig [4.72] interface of the reclassify window for editing the slope value manually for accurate calculation without any error due to unavailability of filed data.

put raster			
nosaic_fill.tif			- 🔁
utput raster			
:\Users\annaj\OneDrive\Docume	ents\ArcGIS\Default.gdb\Slop	e_tif2	
utput measurement (optional)			
FRCENT_RISE			~
ractor (optional)			1
FIG: - 4.71 SL	JPE PERCEN	TAGE INPUT DI	ALOG BOX
Reclassify			
input raster			
Nput raster SLOPE_SA_PERT_30			<u> </u>
nput raster SLOPE_SA_PERT_30 Reclass field			
Input raster SLOPE_SA_PERT_30 Reclass field VALUE			· ·
Input raster SLOPE_SA_PERT_30 Reclass field VALUE Reclassification			
Input raster SLOPE_SA_PERT_30 Reclass field VALUE Reclassification Old values	New values	Charolin	✓
Input raster SLOPE_SA_PERT_30 Reclass field VALUE Reclassification Old values 0 - 5 5 - 10	New values	Classify	.
Input raster SLOPE_SA_PERT_30 Reclass field VALUE Reclassification 0Id values 0 - 5 5 - 10 10 - 19 808107	New values	Classify Unique	▼
Input raster SLOPE_SA_PERT_30 Reclassified VALUE O-5 0-5 5-10 10-19.808107 19.808107-30	New values	Classify Unique	× 2
Input raster SLOPE_SA_PERT_30 Reclassification 0 - 5 0 - 5 5 - 10 10 - 19,808107 - 30 30 - 50	New values 1 2 3 4 5	Classify Unique	✓
Input raster SLOPE_SA_PERT_30 Reclass field VALUE Reclass field 0 - 5 5 - 10 10 - 19 808107 - 30 30 - 50 50 - 105 831696	New values 1 2 3 4 5 6	Classify Unique Add Entry	 ∑ ≥
Input raster SLOPE_SA_PERT_30 Reclassification Old values 0 - 5 5 - 10 10 - 19.808107 19.808107 30 - 50 50 - 105.831696 NoData	New values 1 2 3 4 5 6 NoData	Classify Unique Add Entry Delete Entrice	× 2
Input raster SLOPE_SA_PERT_30 Reclassification Old values 0 - 5 5 - 10 10 - 19 808107 - 30 30 - 50 50 - 105 831696 NoData NoData	New values 1 2 3 4 5 6 NoData	Classify Unique Add Entry Delete Entries	× 2
Opt rater SLOPE_SA_PERT_30 seclass field VALUE Reclassification Old values 0.5 5.10 10.19.808107 30.50 50.105.831696 NoData Load Save	New values 1 2 3 4 5 6 NoData Reverse New Values	Classify Unique Add Entry Delete Entries Precision	× 2
Input raster SLOPE_SA_PERT_30 Reclassification Old values 0 - 5 5 - 10 10 - 19 808107 - 30 30 - 50 50 - 105 831596 NoData Load Save Dutnut raster	New values 1 2 3 4 5 6 NoData Reverse New Values	Classify Unique Add Entry Delete Entries Precision	× 2

1 Reclassify		
Input raster		_ ^
SLOPE_SA_PERT_30		🗾 🖻
Reclass field		
VALUE		~
Reclassification		
Old values	New values	
0 - 5	1	Classify
5 - 10	2	
10 - 19.808107	3	Unique
19.808107 - 30	4	
30 - 50	5	Add Entry
50 - 105.831696	6	rio unu y
NoData	NoData	Delete Entries
Load Save	Reverse New Values	Precision
Output raster		
C:\Users\annaj\OneDriv	/e\Documents\ArcGIS\Default.gdb\Re	class_SLOP1
Change missing val	ues to NoData (optional)	

After reclassification and combining the two discrete entities following map is generated for further analysis as shown in fig [4.73] & fig [4.74] respectively where 30 different classes is obtained for accurate identification.

4.2.5.3.3 ASSIGNING P – FACTOR VALUES FOR CLASSES IN ATTRIBUTE TABLE

Here, combined map that have generated earlier is technically a P – factor map without any assigned P – values.

So, assigning P -values is mandatory for classification of the P – FACTOR map.

Hence, assigning is done by the following steps -

Right Click on combined_map at Layers column > click on Attribute Table

A table will pop up > Click Add field from toolbar > Name the field as P_Factor; Type changed to Float

Now, assigned the value according to its class number by taking reference from table []

Here, mentioned figure [4.75] is P_factor map of 2023

CHAPTER 5 RESULTS AND DISCUSSION

5.1 RAINFALL EROSIVITY (R) FACTOR

5.1.1 ANNUAL PRECIPITATION OF STUDY AREA FOR THE YEAR 2014, 2022 & 2023

The precipitation map indicates a variation in annual rainfall across the years 2014, 2022, and 2023, with the range of rainfall being (2137.55–1666.78) mm in 2014, (2638.93–2103.29) mm in 2022, and (2138.68–1699.47) mm in 2023. Notably, 2022 recorded the highest rainfall compared to the other two years. When comparing the annual rainfall, there was an increase of approximately **23.48%** from 2014 to 2022. However, from 2022 to 2023, the rainfall decreased by about **18.96%**, reflecting a significant drop. Over the entire period from 2014 to 2023, there was a slight increase of **0.05%**, showing a nearly stable trend in long-term rainfall. These variations highlight the significant impact of climatic and regional factors influencing annual precipitation patterns as shown in table [5.1] and variation in fig [5.1]

Year	Min Rainfall (mm) Max Rainfall (mm)		Average Rainfall (mm)
2014	1666.78	2137.55	1889.101
2022	2103.29	2638.93	2393.44
2023	1699.47	2138.68	1885

Here, variation of precipitation of different periods i.e., 2014, 2022, 2023 annually is displayed in fig [5.2], [5.3] & [5.4] along with different locations falls in the selected area of Subanshiri basin.

Average precipitation across different locations is being tabulated in table no [5.2] with variation in rainfall (mm) value in bar graph for better understanding in fig [5.5]

Annual Rainfall Data Across Locations (2014–2023)							
Location	2014 Rainfall	2022 Rainfall	2023 Rainfall				
	(mm)	(mm)	(mm)				
Dhakuakhana	21218.73	2598.164	2097.32				
Gogamukh	1908.32	2541.48	1817.6				
North Lakhimpur	1835.096	2449.93	1814.78				
Banderdawa	1735	2203.906	1739.797				
Dhalpur	1731.97	2180.976	1963.38				
Jengraimukh	1972.93	2442.505	1768.97				

Table: - 5.2 Precipitation	data as per locations
----------------------------	-----------------------

5.1.2 RAINFALL EROSIVITY (R) OF STUDY AREA FOR THE YEAR 2014, 2022 & 2023

Rainfall erosivity, quantified by the R factor, exhibits noticeable fluctuations across the years 2014, 2022, and 2023, reflecting the potential of rainfall to cause soil erosion. In 2014, the R factor ranged from **4930.68 to 3292.13 MJ mm/ha/h/year**, with an average value of **4047.50 MJ mm/ha/h/year**, setting a baseline for comparison. By 2022, the R factor increased significantly, ranging from **5647.75 to 3503.95 MJ mm/ha/h/year**, with an average value of **4755.97 MJ mm/ha/h/year**, representing a **17.53% rise** in mean erosivity compared to 2014. This increase highlights a period of intensified rainfall erosivity, indicating greater potential for soil erosion during this time. However, by 2023, the R factor saw a steep decline, dropping to a range of **3002.72 to 2132.15 MJ mm/ha/h/year**, with an average value of **2528.61 MJ mm/ha/h/year**. This marked a **46.84% decrease** in mean erosivity from 2022 and a **37.55% reduction** compared to 2014, signifying a substantial reduction in rainfall's erosive capacity. These variations underscore the dynamic nature of rainfall intensity and its erosive potential, driven by changing climatic factors. The peak erosivity in 2022 demonstrates the rainfall's highest capacity to erode soil during this period, followed by a pronounced decline in 2023, reflecting a shift towards less intense rainfall conditions

Here, Variation of R – FACTOR value is arranged in a tabulated form in table [5.3] with variation graph for better understanding with change in its percentage.

Year	R Factor	Mean R	Percentage				
	Range (MJ	Factor (MJ	Change				
	mm/ha/h/year)	mm/ha/h/year)					
	4930.68 to						
2014	3292.13	4047.5	-				
	5647.75 to		+17.53%				
2022	3503.95	4755.97	(vs 2014)				
			-46.84%				
			(vs 2022), -				
	3002.72 to		37.55% (vs				
2023	2132.15	2528.61	2014)				
	Table: - 5.3 R – factor data with different period						

Here, variation of R-factor of different periods i.e., 2014, 2022, 2023 is displayed in fig [5.7], [5.8] & [5.9] as generated from ArcGIS software by Kringing Interpolation method.

5.2 SOIL ERODIBILITY (K) – FACTOR

The soil erodibility factor (K factor) is a key measure of how prone soils are to erosion. In the study area, two primary soil types were identified: **Ao79-a and Be82-a**.

The Ao79-a soil type, which occupies the largest portion of the area at 14972 sq. km (66%), has a K factor of 0.109214 (tons·yr)/(MJ·mm). This low value indicates that it is less susceptible to erosion. Its sandy clay loam texture contributes to this stability, as the cohesive nature of this soil type makes it more resistant to erosive forces.

In comparison, the **Be82-a** soil type spans a total area of **7855 sq. km** (24% + 10%) and exhibits a **K factor of 0.15482** (tons·yr)/(**MJ·mm**), suggesting a higher tendency for erosion. Classified as loam, this soil has a lower cohesion than sandy clay loam, making it easier to erode and transport under rainfall or runoff.

Additionally, the USLE_K1 values provide further insight into the erodibility of these soils. The Ao79-a soil has a value of 0.2727 (tons·yr)/(MJ·mm), whereas the Be82-a soil records a slightly higher value of 0.2886 (tons·yr)/(MJ·mm), confirming its greater vulnerability to erosion.

To summarize, the **Ao79-a** soil, which dominates the landscape, **is more stable and less erodible** due to its texture and **lower K factor**. Conversely, **the Be82-a soil**, with its higher erodibility, requires more focused soil conservation efforts to prevent erosion and maintain soil health, especially in the areas it occupies.

Moreover, the observed soil types, **Ao79-a and Be82-a**, align seamlessly with classifications presented in the **Indian Texture Soil Map**, fig [5.10] further validating their accuracy and relevance. This concurrence reinforces the reliability of the findings and underscores the consistency of soil characteristics within the regional context.

Here, soil characteristics map generated in ArcGIS for FAO soil data is shown in fig [5.11]

Here, records of study area with different texture obtained from attribute table and variation of area coverage of different texture in the study area is displayed in bar graph and K value (tons·yr)/(MJ·mm) which is calculated manually by using *Williams.et.al* proposed formula as shown in fig [5.12] and table [5.4]

FI D	SNU M	FAOSOI L	DOMSOI L	CNT_NAM E	SQK M	PERCEN T COVER	COUNTR Y
0	3650	Ao79-a	Ao	IN	14972	66%	INDIA
1	3683	Be82-a	Be	IN	5587	24%	INDIA
2	3683	Be82-a	Be	IN	2268	10%	INDIA
		—					

ATTRIBUTE TABLE OF SOIL MAP STUDY AREA

Table: - 5.4 Attribute table of soil map of study area

K factor value is calculated by considering predefined data from soil texture database from FAO soil data as shown in table [] (look at literature review) and soil erodibility value (tons·yr)/(MJ·mm) is evaluated by *Williams.et.al* formula as shown in table [5.5]

Soil unit symb ol	sand % tops oil	silt % tops oil	clay % tops oil	OC % tops oil	Fcsand	Fcl-silt	Forg	Fhisand	K factor
Ao	53.6	15.8	30.6	2.25	0.200002 88	0.723838 588	0.75586 665	0.99805 584	0.1092 14
Be	36.4	37.2	26.4	1.07	0.200862 282	0.851384 516	0.90537 038	0.99994 797	0.1548 2
				Table: - 5.5 Soil erodibility data					

Now, soil erodibility map of the study area is shown in figure [5.11] with area coverage of calculated K value (**tons·yr**)/(**MJ·mm**) shown in figure [5.13] with table [5.6] and its texture type in table [5.7];

		Table' - P	Table: - 5.6 Coverage K – factor data					
				Table 5.0 Coverage R – lactor data			PERCENT	
FID	SNUM	FAC	OSOIL	DOMSOIL	SQKM	/	COVER	K factor
0	3650	Ao	79-a	Ao	14972	2	66%	0.109214
1	3683	Be	82-a	Be	5587		24%	0.15482
2	3683	Be	82-a	Be	2268		10%	0.15482

SNUM	FAOSOIL	SQKM	Туре	Texture		USLE_K1
3650	Ao79-a	14972	Ao79-a-3650	Ao79-a-3650 SANDY_CLAY_LOAM		0.2727
3683	Be82-a	5587	Be82-a-3683	LOAM		0.2886
3683	Be82-a	2268	Be82-a-3683	LOAM		0.2886

5.3 SLOPE LENGTH (LS) – FACTOR VALUE FOR THE YEAR 2014, 2022 AND 2023

According to various research papers it found that slope length value cannot exceed 100. So, due to unavailability of field data SAGA GIS where (0 - 74.4633) is the most appropriate software for evaluation of LS – factor value as shown in figure [] at –

CHAPTER 4: METHODOLOGY >LS-STUDY PART

Here, figure [5.15] of 30m resolution & fig [5.16] of 100m resolution is shown where generated by ArcGIS which is may not be considered but a prediction can be done for variation of slope length in different location of the study area.

Fig: - 5.16 LS (SLOPE LENGTH) MAP UTM

5.4 C – FACTOR (LAND USE AND LAND COVER)

5.4.1 C- FACTOR STUDY FOR PERIOD 2014, 2022 AND 2023

The **C** factor in the RUSLE model, representing the cover management factor, is a crucial parameter for assessing soil erosion risk under different land cover conditions. It is defined as the ratio of soil loss from land under specific conditions to the soil loss from bare soil, where **C** = **1** indicates bare soil with no protective cover, resulting in maximum erosion, and values **less than 1** reflect varying levels of erosion protection due to vegetation or soil management practices. A **C value close to 0** signifies nearly complete protection from soil erosion, typically observed in areas with dense vegetation cover, such as forests, grasslands, or well-maintained croplands. In this study, the **C factor values** were calculated using the formula proposed by **Durgion et al.**, as the formula by **Vatandaslar et al.** was deemed inappropriate for the study area. The resulting C factor values for the years **2014**, **2022**, **and 2023** ranged from **0.233–0.584**, **0.23–0.6225**, and **0.2219–0.6189**, respectively.

The NDVI (Normalized Difference Vegetation Index), which plays a significant role in determining the C factor, reflects the density and health of vegetation cover. Higher NDVI values indicate increased vegetation cover, which correlates with lower C factor values, providing better protection against soil erosion. The NDVI values for 2014, 2022, and 2023 were 0.534, 0.5398, and 0.556, respectively. These results indicate a gradual increase in vegetation cover over the years, leading to reduced erosion susceptibility. Specifically, the higher NDVI in 2023 signifies improved vegetative conditions compared to previous years, resulting in a lower C factor and enhanced protection against soil erosion. The relationship between NDVI and the C factor highlights the importance of vegetation cover in controlling soil erosion, as areas with higher NDVI values are more effective in mitigating soil loss.

Year		C-Factor Range	NDVI Value
2014	0.233 – 0.5	84	0.534
2022	0.23 – 0.62	25	0.5398
2023	0.2219 – 0.	6189	0.556
		Table: - 5.8 C -factor and NDVI	data of different years

C-Factor and NDVI for Different Years

The above table [5.8] clearly demonstrates the gradual increase in NDVI values over the years, which correlates with slightly reduced C factor values. This trend highlights the positive impact of increasing vegetation cover on soil erosion control, where higher NDVI values signify healthier and denser vegetation, leading to improved erosion protection and C factor map is shown in figure [5.17], [5.18] & [5.19]

5.5 P – FACTOR (CONSERVATION PRACTICE FACTOR)

5.5.1 P- FACTOR STUDY FOR PERIOD 2014, 2022 AND 2023

The support practice factor P express the effects of surface practices that are applied to reduced soil loss through erosion processes.

These practices include among others terracing strip cropping and contour ploughing The P factor value ranges between 0 and 1, where 0 shows the highest effectiveness of the conservation practice and 1 indicates that there are no support practices or measures implemented.

Here, fig [5.20], [5.21] & [5.22] is the conservation practice factor map for given period for preventing soil erosion.

5.6 R.U.S.L.E. WORKS

5.6.1 R.U.S.L.E. A-FACTOR STUDY FOR PERIOD 2014, 2022 AND 2023

The **RUSLE** (**Revised Universal Soil Loss Equation**) model was applied to analyze the annual soil erosion intensity of the study area for the years **2014**, **2022**, **and 2023**, using key parameters such as **rainfall erosivity** (**R factor**), **soil erodibility** (**K factor**), **slope length and steepness** (**LS factor**), **land use land cover** (**C factor**), and the **conservation practice factor** (**P factor**). The A value, which represents annual soil erosion, was calculated for each year by integrating these parameters.

For 2014, the average rainfall erosivity was 4047.4994 MJ mm ha⁻¹ h⁻¹ y⁻¹, the land use land cover factor (C) was 0.393, and the conservation practice factor (P) was 0.162. The resulting annual soil erosion (A factor) had a mean value of 12 t ha⁻¹ y⁻¹ with a standard deviation of 84 t ha⁻¹ y⁻¹.

For 2022, the rainfall erosivity increased to 4755.97 MJ mm ha⁻¹ h⁻¹ y⁻¹, while the land use land cover factor slightly decreased to 0.3863, and the conservation practice factor improved to 0.1613. Despite the improvements in land cover and conservation practices, the higher rainfall erosivity led to an increase in the annual soil erosion mean value, reaching 24.2 t ha⁻¹ y⁻¹ with a standard deviation of 123 t ha⁻¹ y⁻¹.

For 2023, the average rainfall erosivity dropped significantly to 2528.61 MJ mm ha⁻¹ h⁻¹ y⁻¹, while the land use land cover factor further improved to 0.3823, and the conservation practice factor reduced slightly to 0.1605. These changes resulted in a substantial decline in the annual soil erosion, with a mean value of 10.78 t ha⁻¹ y⁻¹ and a standard deviation of 64.57 t ha⁻¹ y⁻¹.

The results demonstrate the dynamic nature of soil erosion, primarily influenced by changes in rainfall erosivity and moderated by land cover and conservation practices. While **2022** experienced higher erosion rates due to intense rainfall, improvements in land management and conservation practices over time contributed to lower erosion values in **2023**, highlighting the importance of sustainable practices in controlling soil loss as shown in table [5.9] and annual soil erosion A- value (**t** ha⁻¹ y⁻¹) trend figure [].

Year	Mean Annual Soil Erosion (t ha ⁻¹ y ⁻¹)	Standard Deviation (t ha⁻¹ y⁻¹)
2014	12	84
2022	24.2	123
2023	10.78	64.57

Table: - 5.9 Annual soil erosion data

The RUSLE map is symbolized into 7 different classes where the entities in the map is classified as follows table [] -

*7 11 1
Very slight
Very severe
Slight
Severe
Moderate severe
Moderate
Extremely severe

Table: - 5.10 Soil erosion description chart

Here, annual soil erosion graph is generated with corresponding A – value by considering all required parameters in figure [5.24(a)], [5.25(b)] of 2014, fig [5.26(a)], [5.27(b)] of 2022 & fig [5.28(a)], [5.29(b)] of 2023.

5.7 VALIDATION OF SOIL EROSION BY RUSLE KEY PARAMETERS AND SOIL EROSION & DEPOSITION DATA FOR DIFFERENT PERIODS

5.7.1 Rainfall Erosivity (R-Factor)

The R-factor measures the erosive power of rainfall, which strongly influences soil erosion rates. The analysis shows considerable variation across the studied years:

2014: The mean R-factor was 4047.5 MJ mm/ha/h/year.

2022: The R-factor rose to **4755.97 MJ mm/ha/h/year**, indicating a **17.53%** increase compared to 2014. This rise reflects more intense and erosive rainfall, contributing to higher erosion rates.

2023: A significant reduction in rainfall intensity led to a lower R-factor of **2528.61 MJ mm/ha/h/year**, representing a **46.84%** decrease relative to 2022 and **37.55%** lower than 2014. The peak R-factor in 2022 directly correlates with increased soil erosion, while the decline in 2023 marks a period of reduced rainfall-driven erosion.

5.7.2. Soil Erodibility (K-Factor)

The K-factor identifies soil's vulnerability to erosion based on its physical and chemical properties. The study area includes two dominant soil types:

A079-a (Ao): Covers 66% of the area with a relatively low K-factor of 0.109214.

Be82-a (Be): Occupies **34% of the area** (split into 24% and 10%) and has a higher K-factor of 0.15482.

The **Be82-a soil**, being more erodible, likely **experienced greater soil loss**, particularly during **2022**, when rainfall erosivity was highest. The combination of high **R-factor and K-factor** in 2022 exacerbated erosion.

5.7.3. Vegetation Cover (C-Factor) and NDVI

Vegetation cover reduces soil erosion by intercepting rainfall, slowing surface runoff, and stabilizing the soil. The C-factor and NDVI (Normalized Difference Vegetation Index) values highlight changes in vegetation cover:

2014: C-factor ranged from 0.233 to 0.584, with an NDVI value of 0.534.

2022: C-factor increased slightly, ranging between **0.23 and 0.6225**, while NDVI improved to **0.5398**.

2023: The C-factor dropped to a range of 0.2219 to 0.6189, and NDVI increased to 0.556.

The gradual improvement in NDVI values from **2014 to 2023** reflects enhanced vegetation cover, particularly in 2023. This improvement contributed to reduced soil erosion by providing better ground protection.

5.7.4. Soil Erosion Rates

The mean annual soil erosion rates (t $ha^{-1} y^{-1}$) and standard deviations provide insight into erosion severity:

2014: Soil erosion averaged 12 t $ha^{-1} y^{-1}$ with a standard deviation of 84.

2022: Erosion increased dramatically to **24.2 t ha**⁻¹ y⁻¹, with a higher standard deviation of **123**. **2023**: Erosion rates fell to **10.78 t ha**⁻¹ y⁻¹, and the standard deviation reduced to **64.57**.

The data confirms that **2022 experienced the highest erosion rates**, driven by intense rainfall and soil susceptibility. In contrast, the **reduced erosion in 2023** corresponds to lower rainfall erosivity and improved vegetation cover.

5.7.5 Erosion and Deposition Analysis

Erosion and deposition dynamics further validate the soil loss trends observed between the years:

2014 to 2022: Soil erosion areas increased to 9331 m^2 , while deposition areas covered 7453 m^2 . The spike in erosion highlights the combined effect of high rainfall erosivity and erodible soils.

2022 to 2023: Erosion areas dropped significantly to **2462 m²**, while deposition areas expanded to **9048 m²**. This shift indicates reduced erosive forces and improved soil stability, likely due to enhanced vegetation cover and lower rainfall erosivity.

Here, river meandering and changing of course where erosion and deposition of Subansiri river affected for severe soil erosion is mentioned with trend table [5.11] and unchanged course area table [5.12] and graphical representation fig [5.31] & for better clarity with the figures [5.30] with some affected area.

In this figure [5.30], erosion and deposition caused by changes in the river course are observed during the periods **2014**, **2022**, and **2023**.

YEAR	PREVIOUS 8 YEARS	NEXT 8 YEARS	UNCHANGED	EROSION	DEPOSITION
2014-2022	10710	8833	1379	9331	7453
2014-2023	10710	8344	1260	9450	7083
2022-2023	5204	11789	2742	2462	9048

Table: - 5.11 Soil erosion and deposiotion trend

	AREA_2014	AREA_2023	AREA_UNCHA	EROSION	DEPOSITION
	179	3518	24	155	3494
	4828	3518	974	3854	2544
	4828	72	60	4768	13
	875	1235	203	672	1032
TOTAL	10710	8344	1260	9450	7083
	AREA_2014	AREA_2022	AREA_UNCHA	EROSION	DEPOSITION
	179	3629	27	152	3602
	4828	201	35	4793	166
	4828	3629	999	3829	2630
	875	1374	319	556	1055
TOTAL	10710	8833	1379	9331	7453
	AREA_2022	AREA_2023	AREA_UNCHA	EROSION	DEPOSITION
	0	3518	0	0	3518
	201	3518	33	168	3485
	3629	3518	2119	1510	1399
	1374	1235	590	784	645
TOTAL	5204	11789	2742	2462	9048

Table: - 5.12 Unchanged river-course area chart

Fig: - 5.35 RIVER BANK EROSION 2014-23

Fig: - 5.36 RIVER BANK EROSION 2014-22

Fig: - 5.37 RIVER BANK EROSION 2022-23

CHAPTER 6 CONCLUSION

This study examined soil erosion dynamics for 2014, 2022, and 2023 using the Revised Universal Soil Loss Equation (RUSLE) model. It focused on understanding the influence of rainfall erosivity (R-factor), soil erodibility (K-factor), vegetation cover (C-factor), and associated soil erosion rates, shedding light on temporal changes in erosion and deposition patterns.

In 2022, soil erosion reached its peak, recording an average rate of 24.2 t ha⁻¹ y⁻¹, nearly doubling the 12-t ha⁻¹ y⁻¹ observed in 2014. This sharp rise correlates with a 17.53% increase in rainfall erosivity (R-factor 4755.97 MJ mm/ha/h/year) compared to 2014. Additionally, the significant presence of Be82-a soil, which accounts for 34% of the study area, exacerbated the erosion due to its higher erodibility. Sparse vegetation cover further intensified the erosion process, expanding erosion-prone areas to 9331 m² while deposition was limited to 7453 m². Conversely, 2023 demonstrated a notable improvement, with average soil erosion rates dropping to 10.78 t ha⁻¹ y⁻¹, marking a 55.4% reduction compared to 2022. This positive trend resulted from a substantial decline in rainfall erosivity (R-factor 2528.61 MJ mm/ha/h/year) and improved vegetation cover, as reflected by an NDVI value of 0.556. Consequently, erosion-prone areas decreased to 2462 m², and deposition areas increased to 9048 m², indicating enhanced soil stability and reduced runoff impact.

The results underscore the dominant role of rainfall intensity and vegetation cover in driving soil erosion trends. The extreme erosion witnessed in **2022** highlights the vulnerability of highly erodible soils under intense rainfall conditions. In contrast, the improvements in **2023** demonstrate the effectiveness of increased vegetation cover and reduced rainfall erosivity in mitigating soil loss. This research highlights the importance of proactive soil management strategies, including the promotion of vegetation cover and stabilization of erodible soils, to reduce erosion risks. Continued monitoring and the adoption of sustainable land management practices are essential for protecting soil resources and mitigating erosion in the face of climate variability.

CHAPTER 7 REFERENCES

Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., & Montanarella, L. (2017). An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. *Nature Communications*, 8(1), 2013. <u>https://doi.org/10.1038/s41467-017-02142-7</u>

Das, P. J., & Baruah, S. (2018). Rainfall-Runoff and Soil Erosion Trends in the Subansiri River Basin of Northeast India. *Journal of Environmental Hydrology*, *26*(3), 56-67.

FAO (2021). Soil Erosion Assessment Using RUSLE for Land Degradation Neutrality. *FAO Soils Bulletin Series*.

Hazarika, M. K., & Honda, K. (2001). Estimation of Soil Erosion Using Remote Sensing and GIS: A Case Study at the Subansiri Watershed. *International Journal of Applied Earth Observation and Geoinformation*, *3*(1), 20-26.

Jaiswal, R. K., Tiwari, H. L., & Verma, N. (2014). Soil Erosion Modeling Using RUSLE and GIS in a Sub-Humid Region of India: A Case Study of Subansiri Basin. *International Journal of Geomatics and Geosciences*, *4*(3), 485-498.

Lal, R. (2001). Soil Degradation by Erosion and Its Impact on Crop Productivity. *Land Degradation & Development*, *12*(6), 519-539. <u>https://doi.org/10.1002/ldr.472</u>

Mishra, A., Kar, S., & Singh, V. P. (2007). Soil Erosion Assessment Using GIS and RUSLE Model in a Himalayan Region. *Water Resources Management, 21*(10), 1783-1798.

Morgan, R. P. C. (2005). Soil Erosion and Conservation (3rd Edition). Blackwell Publishing.

NDVI Data Source: NASA MODIS Vegetation Indices. Retrieved from: <u>https://modis.gsfc.nasa.gov/data/dataprod/mod13.php</u>

Panagos, P., Borrelli, P., & Poesen, J. (2019). Soil Erosion and Vegetation Dynamics—An Interplay between Climate and Land Use Change. *Science of the Total Environment*, 658, 312-326. <u>https://doi.org/10.1016/j.scitotenv.2018.12.001</u>

Prasannakumar, V., Vijith, H., & Abinod, S. (2012). Estimation of Soil Erosion Risk within a GIS Framework: A Case Study of the Western Ghats, India. *Natural Hazards*, *59*(2), 791-802. <u>https://doi.org/10.1007/s11069-011-9798-6</u>

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). *Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE).* United States Department of Agriculture, Agriculture Handbook No. 703.

Renschler, C. S., & Harbor, J. (2002). Soil Erosion Assessment Tools from Point to Regional Scales—The Role of Geomorphologists in Land Management Research and Implementation. *Geomorphology*, 47(2-4), 189-209. <u>https://doi.org/10.1016/S0169-555X(02)00082-X</u>

Sarma, A. K., & Das, S. K. (2007). Flood and Erosion in the Subansiri River Basin: An Environmental Perspective. *Environmental Monitoring and Assessment*, *134*(1-3), 327-336. https://doi.org/10.1007/s10661-007-9614-2

Sharma, J. K., & Tripathi, N. (2020). Hydrological and Soil Erosion Assessment of Subansiri River Basin Using SWAT and RUSLE Models. *Journal of Hydrology*, *6*(4), 132-145.

Subansiri River Basin Data Source: India-WRIS (Water Resources Information System). Retrieved from: <u>https://indiawris.gov.in</u>

Vrieling, A., Sterk, G., & Beaulieu, N. (2008). Erosion Estimates Derived from NDVI: A CaseStudyinKenya.Geomorphology,97(3-4),491-503.https://doi.org/10.1016/j.geomorph.2007.08.006

Wischmeier, W. H., & Smith, D. D. (1978). *Predicting Rainfall Erosion Losses: A Guide to Conservation Planning*. United States Department of Agriculture, Agriculture Handbook No. 537.