# Analysis of Long-Term Rainfall Trends in The District of Tinsukia, Assam: Implications for Climatic Adaptation and Water Resource

# Management

M. Tech 3<sup>rd</sup> semester report Submitted in Partial Fulfillment of the Requirements for the Degree of

# **MASTER OF TECHNOLOGY**

# WATER RESOURCE ENGINERING

Submitted by:

Name: Sonakshi Deori

MTech 3<sup>rd</sup> Semester

Roll no: PG/C/23/36

ASTU Roll no :230620061017

Guided by:

Dr. Triptimoni Borah

Professor,

**Civil Engineering Department**,

**Assam Engineering College** 



DEPARTMENT OF CIVIL ENGINEERING, ASSAM ENGINEERING COLLEGE, JALUKBARI, GUWAHATI – 781013

# ASSAM ENGINEERING COLLEGE

## JALUKBARI, GUWAHATI - 781013



### **CERTIFICATE OF SUPERVISOR**

This is to certify that the work contained in the report entitled "Analysis of Long-Term Rainfall Trends in Tinsukia, Assam: Implications for Climate Adaptation and Water Resource Management." submitted by

#### SONAKSHI DEORI (PG/C/23/36)

A Student of M-Tech 3<sup>RD</sup> Semester to the Department of Civil Engineering, Assam Engineering College for the successful completion of the course **CEW202321- MINI PROJECT** as a partial fulfillment of the degree in **Master of Technology in Water Resource Engineering**, Civil Engineering, has been carried out under my guidance and supervision

Dr. Triptimoni Borah

Date:

Professor, Department Of Civil Engineering Assam Engineering College Jalukbari,781013- India

# ASSAM ENGINEERING COLLEGE JALUKBARI, GUWAHATI – 781013



## **CERTIFICATE OF HEAD OF THE DEPARTMENT**

This is to certify that the work contained in the report entitled "Analysis of Long-Term Rainfall Trends in Tinsukia, Assam: Implications for Climate Adaptation and Water Resource Management." submitted by-

#### SONAKSHI DEORI (PG/C/23/36)

A Student of M-Tech 3<sup>RD</sup> Semester to the Department of Civil Engineering, Assam Engineering College for the successful completion of the course **CEW202321- MINI PROJECT** as a partial fulfillment of the degree in **Master of Technology in Water Resource Engineering**, Civil Engineering, has been carried out as per university protocols. The dissertation which is based on candidate's own work has not been submitted to any other institution in any form

**Dr. Jayanta Pathak** 

Professor & Head Department Of Civil Engineering Assam Engineering College Jalukbari,781013- India

Date:

# **DECLARATION BY THE CANDIDATE**

I, a student of the Department of Water Resource Engineering, Civil Engineering, Assam Engineering College, hereby declare that we have compiled this report on the topic titled **"Analysis of Long-Term Rainfall Trends in Tinsukia, Assam: Implications for Climate Adaptation and Water Resource Management"** in 3<sup>rd</sup> Semester as a part of my M. Tech curriculum.

I also declare that the same report or any substantial portion of this report has not been submitted anywhere else as part of any requirements for any degree/diploma etc.

Date:

NAME Sonakshi Deori **ROLL NO.** 230620061017

SIGNATURE

### ACKNOWLEDGEMENT

It gives me a great sense of pleasure to present the report on "Analysis of Long-Term Rainfall Trends in Tinsukia, Assam: Implications for Climate Adaptation and Water Resource Management" completed during my M. Tech 3<sup>rd</sup> Semester. I owe special debt of gratitude to Dr Triptimoni Borah, Professor, CED of Assam Engineering College, Jalukbari, Guwahati for her constant support and guidance throughout the course of our work. Her, sincerity, thoroughness and perseverance have been a constant source of inspiration for us. It is only her cognizant efforts that my endeavours have seen light of the day. I would also want to take this opportunity to thank the whole faculty of the department for their support and cooperation during the development of our project. Finally, I recognize the participation of my friends to the project's completion. Also, this project would not have been possible without the assistance of my seniors, whose benignant guidance helped me throughout the project.

It was a great source of motivation and helped me keep the momentum alive throughout this study.

# **TABLE OF CONTENTS**

#### **CONTENTS PAGE NUMBER** INTRODUCTION 9-10 1. 2. LITERATURE REVIEW 12-14 3. OBJECTIVES OF STUDY 15 4. METHODOLOGY 16-29 4.1 Study Area and Data Collection 18 4.1.1 Data preprocessing 16 4.1.2 Statistical Analysis Techniques 16 4.1.3 Analytical tools 21 4.1.4 Steps in Analysis 21 4.1.5 Methodological limitations 22 4.2 Data Used 23-29 **5** RESULTS AND DISCUSSIONS 30-62 5.1 Mann Kendall Trend Tests 30-52 Linear Regression 5.2 53-57 5.3 **Descriptive Statistics** 58-62 6 CONCLUSION 63 7 REFERENCES 64

# LIST OF TABLES

| TABLES                                                         | PAGE NUMBER |
|----------------------------------------------------------------|-------------|
| Table 4.2 1: Monthly Rainfall of Tinsukia District (1901-1919  | 9) 23       |
| Table 4.2.2: Monthly Rainfall of Tinsukia District (1920-1964  | 4) 24       |
| Table 4.2.3: Monthly Rainfall of Tinsukia District (1965-2007  | 7) 25       |
| Table 4.2.4: Monthly Rainfall of Tinsukia District (2008-2022  | 2) 26       |
| Table 4.2.5: Calculated annual and seasonal rainfall (1901-19  | 239) 27     |
| Table 4.2.6: Calculated annual and seasonal rainfall (1939-19  | 83) 28      |
| Table 4.2.7: Calculated annual and seasonal rainfall (1984-20  | 22) 29      |
| Table 5.1: Mann Kendall Trend Test Statistical Analysis        | 49          |
| Table 5.2: Regression Statistical Results                      | 56          |
| Table 5.3: Descriptive Statistics of Annual Rainfall (1901-193 | 37) 58      |
| Table 5.4: Descriptive Statistics of Annual Rainfall (1938-197 | 78) 59      |
| Table 5.5: Descriptive Statistics of Annual Rainfall (1978-20) | 16) 60      |
| Table 5.6: Descriptive Statistics of Annual Rainfall (2017-202 | 22) 61      |

# LIST OF FIGURES

| FIGURES                                                 | PAGE NUMBER   |
|---------------------------------------------------------|---------------|
| Figure 1: Study area Map of Tinsukia District           | 11            |
| Figure (5.1-5.12): Monthly Rainfall Trends (January-Dec | cember) 32-43 |
| Figure 5.13: Annual Rainfall Trend                      | 44            |
| Figure 5.14: Winter season Rainfall Trend               | 45            |
| Figure 5.15: Pre-Monsoon Season Rainfall Trend          | 46            |
| Figure 5.16: Monsoon Season Rainfall Trends             | 47            |
| Figure 5.17: Post Monsoon Season Rainfall Trends        | 48            |
| Figure 5.18: P- values of Rainfall trends               | 51            |
| Figure 5.19: Average monthly rainfall (1901-2022)       | 52            |
| Figure 5.20: Summary of Y's vs Years                    | 53            |

#### ABSTRACT

Understanding long-term trends in rainfall is critical for assessing the impacts of climate change and ensuring sustainable agricultural practices, water resource management, and disaster mitigation. This study analyzes over a century of rainfall data from the district of Tinsukia, a region with a high dependence on seasonal precipitation, to identify temporal trends and their implications. Using robust statistical techniques such as the Mann-Kendall trend test and linear regression analysis, this research provides a comprehensive evaluation of rainfall patterns across monthly, seasonal, and annual scales.

The Mann-Kendall trend test, a non-parametric method, was employed to detect monotonic trends in rainfall data, while Sen's slope estimator quantified the rate of change of rainfall. Linear regression analysis complemented this by providing insights into the strength and magnitude of the relationship between rainfall and time. The analyses were conducted using XLSTAT, a statistical software integrated with Microsoft Excel, which facilitated efficient data handling, computation, and visualization.

Results revealed significant decreasing trends in rainfall during several months, particularly January, February, and April, with p-values below the 5% significance threshold. Seasonal analysis highlighted a substantial decline in monsoon rainfall (June to September), which constitutes the primary agricultural period in the district. Annual rainfall trends also showed a consistent decline, indicating potential long-term impacts on regional water availability. Low R<sup>2</sup> values in some months suggest that additional climatic or anthropogenic factors may contribute to rainfall variability, underscoring the complexity of precipitation dynamics.

This study's findings emphasize the need for adaptive strategies to address changing rainfall patterns. The observed decline in monsoon rainfall could have profound implications for crop yields and water resources, while reductions in winter and post-monsoon precipitation might affect recharge rates of aquifers and ecosystems. The research highlights the value of integrating statistical tools like XLSTAT in climatic studies to ensure accuracy and clarity in trend analysis.

KEY WORDS: Mann Kendall Trend Test, Linear regression, Rainfall, Trend analysis, Seasonal trend

### **1.INTRODUCTION**

Climate change and its implications on local and regional weather patterns have become critical areas of research in recent decades. Precipitation, as one of the fundamental components of the hydrological cycle, plays a pivotal role in agriculture, water resource management, and ecological sustainability. Understanding rainfall trends and their variations over time is essential for devising strategies to adapt to climate variability and mitigate associated risks. This study focuses on analyzing rainfall patterns in Tinsukia, a region with significant agricultural dependency, over a span of more than a century using statistical tools and techniques.

The dataset comprises monthly, seasonal, and annual rainfall records spanning over 100 years, allowing for a comprehensive assessment of trends and variability. Two primary analytical methods—Mann-Kendall trend tests and linear regression—were applied to determine the presence and magnitude of trends. These methods, complemented by statistical software XLSTAT, enabled a detailed exploration of the temporal evolution of rainfall patterns.

Tinsukia, located in the northeastern state of Assam, India, is a vibrant district known for its natural beauty, cultural diversity, and economic significance. It lies in the upper Brahmaputra Valley and is bordered by Arunachal Pradesh to the east. Tinsukia town serves as the district headquarters. The region is characterized by lush greenery, tea gardens, wildlife sanctuaries, and a significant contribution to Assam's economy through industries such as tea, oil, and natural gas.

The district is a part of the subtropical monsoon region, with a landscape dominated by alluvial plains, rolling hills, and wetlands. It experiences three main seasons according to district administration :

- Summer (March to May): Hot and humid, with temperatures ranging from 24°C to 36°C.
- Monsoon (June to September): Heavy rainfall, influenced by the southwest monsoon.
- Winter (October to February): Cool and pleasant, with temperatures dropping to 10°C.

Tinsukia is home to diverse communities, including Assamese, Bengali, and indigenous tribes such as the Tai Ahom's and Sing Phos. Its ecological assets include the Dibru-Saikhowa National Park, a biodiversity hotspot known for its rich flora and fauna. The district receives substantial rainfall, with annual precipitation ranging between 2000 mm and 3000 mm according to Indian Meteorological Department, Pune . Its rainfall is a key driver of its agriculture and ecology.

#### 1. Monsoon Dominance:

- About **80-85% of the annual rainfall** occurs during the monsoon season (June to September).
- The southwest monsoon brings torrential rain, which often leads to localized flooding in low-lying areas.

#### 2. Pre-Monsoon Showers:

• The region also experiences pre-monsoon rainfall in April and May, known as "nor' westers," which are accompanied by thunderstorms and gusty winds.

#### 3. Winter and post-monsoon:

• Rainfall during winter and post-monsoon months is minimal, contributing to less than 10% of the annual total.

Using historical rainfall data from the Indian Meteorological Department (IMD), INDIA (WRIS) and processed through XLSTAT software, this study identifies statistically significant trends. Notable findings include declining monsoon rainfall and reduced winter and post-monsoon precipitation, highlighting potential challenges for agriculture, water availability, and aquifer recharge. The low R<sup>2</sup> values in some analyses suggest additional environmental and anthropogenic factors influencing rainfall variability.

This research helps in developing adaptive strategies to address changing precipitation patterns. The findings offer valuable insights into the regional implications of climate variability and provide a robust foundation for policy development and future research. The study also demonstrates the ability of integrating statistical techniques in climatic studies, ensuring accuracy in analyzing long-term trends.

#### STUDY AREA MAP

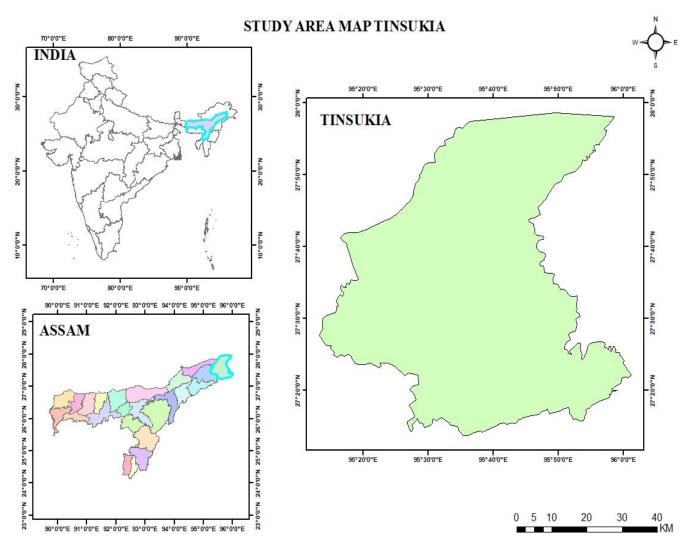



Fig 1: Study area map of Tinsukia District, Assam

The map i.e. Fig 1 depicts the study area of Tinsukia District, Assam, with a multi-level geographical representation. It consists of three panels: the first highlights India, with the state of Assam marked to show its location within the country. The second panel zooms into Assam, illustrating its various districts and emphasizing Tinsukia District. The third and largest panel provides a detailed view of Tinsukia District itself, showcasing its boundaries, geographic extent, and topographical layout. The map includes a coordinate grid for spatial reference and a scale bar indicating distances in kilometres, aiding in precise spatial analysis. This cartographic representation is vital for understanding the geographic context of the study area and serves as a foundational visual for study focused on Tinsukia District.

#### **2. LITERATURE REVIEW**

# 2.1 Mondal and Kundu 2012 Department of Water Resources Development & Management, Indian Institute of Technology, Roorkee,

Their study is mainly concerned with the changing trend of rainfall of a river basin of Orissa near the coastal region. It is facing adverse effects of flood almost every year. This is an effort to analyze one of the most important climatic variables i.e. precipitation, for analyzing the rainfall trend in the area. Daily rainfall data of 40 years from 1971 to 2010 was processed in the study to find out the monthly variability of rainfall for which Mann-Kendall (MK) Test, Modified Mann-Kendall Test have been used together with the Sen's Slope Estimator for the determination of trend and slope magnitude. Monthly precipitation trend was identified there to achieve the objective which was shown with 40 years of data. There were rising rates of precipitation in some months and decreasing trend in some other months obtained by these statistical tests suggesting overall insignificant changes in the area

#### 2.2 Dutta et.al.2018, National Institute of Technology, Durgapur

Their study was an attempt to examine annual rainfall and temperature trends over ten selected stations of Assam. The Mann–Kendall test has been carried out to analyze the trend of mean rainfall and temperature data series during the period of 1901–2014. Though no clear trend has been observed for the region, there are seasonal trends for some seasons and for some of the hydrometeorological subdivisions. However, there is an increasing temperature trend in all the selected stations. Mann–Kendall tests too clearly indicate the increasing trends for all the stations and their computed p-values are found to be less than or equal to 0.05 ( $\alpha \leq 0.05$ ).

#### 2.3 Nyatuame et.al. 2019 Agricultural Engineering Department, HO Polytechnic

Their study was conducted to establish the rainfall trends in Volta Region and also to provide the evidence of climate change by analyzing available rainfall recordfor30-yearperiodof 1981 to2011.Records of monthly and yearly rainfall were obtained from the headquarters of Ghana Meteorological Department, Accra, for analysis. The region was grouped into three zones characteristic of the whole country, namely, coastal zone, middle zone, and northern zone, respectively. Graphs were constructed to illustrate the changing trends within the months and years of the zones. Statistical analysis (i.e., LSD, ANOVA) was performed to assess any significant

difference among the three zones and within the months and years under study. Significant differences were observed among the three zones. The northern zone recorded the highest precipitation followed by the middle zone and lastly the coastal zone. However, the rainfall trends within the zones were oscillatory. The highest annual mean rainfall was202.6mm and the lowest was 29.9 mm. Linear regression analysis revealed upward and downward trends in the data in some months and years in the mentioned zones but statistically insignificant.

# 2.4 Gusmayanti et.al 2021, West Kalimantan, Indonesia 2 Study Program of Environmental Science, Graduate Programme, Tanjungpura University,

This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.

# 2.5 Tuğba et.al (2024) Gebze Technical University, Faculty of Engineering, Department of Environmental Eng., Kocaeli

A half-century precipitation dataset was selected and analyzed to reveal the effects of global climate change on the rainfall amounts of Türkiye. Precipitation data of each geographical region have been analyzed with respect to annual and seasonal basis in the period of 1969-2018. For this purpose, the non-parametric Mann-Kendall trend test which is recommended by World Meteorological Organizations (WMO) and linear regression method have been implemented to each geographical region of Türkiye. As a result of analysis belonging to 85 meteorological stations, the presence of any increasing and decreasing linear trends in annual and seasonal precipitation series have been studied on a regional scale. While the Black Sea Region has the highest increase with 148 mm/50 years, the total annual precipitation in the Southeastern Anatolia Region has decreased by 3.2 mm/50 years. Another important finding of linear regression has been

observed that increase in precipitation has occurred in the Black Sea Region in all seasons, because of seasonal analysis. To determine whether these trends are statistically significant, they used Mann-Kendall test results. The test proved the existence of an increasing trend at 99% significance level in the annual precipitation series of the Black Sea Region. A statistically significant increasing trend was also obtained for the autumn season of the Black Sea Region at a 95% confidence level.

### **3. OBJECTIES OF THE STUDY**

The primary objective of this study is to identify and analyse long-term trends in rainfall patterns in Tinsukia. Specifically, it aims to:

- Assess the presence of monotonic trends in monthly, seasonal, and annual rainfall using the Mann-Kendall test i.e. the study aims to identify and analyse monotonic (consistent directional) trends in monthly, seasonal, and annual rainfall patterns in the Tinsukia District using the Mann-Kendall test. This statistical method is widely used to detect trends in time-series data.
- Quantify the rate of change in rainfall over time using Sen's slope estimator. The study seeks to calculate the rate of change in rainfall over time by employing Sen's slope estimator, a non-parametric method for determining the magnitude of trends.
- Evaluate the relationship between rainfall and time through linear regression analysis. The study examines the relationship between rainfall and time using linear regression analysis. This helps in understanding how rainfall patterns have evolved over the years.
- Interpret the implications of observed trends for agriculture, water resource management, and climate adaptation in the region. Finally, the study interprets the observed rainfall trends to understand their potential impacts on agriculture, water resource management, and climate adaptation strategies in the region

#### 4. METHODOLOGY

#### 4.1 Study Area and Data Collection

This study focuses on analysing rainfall patterns in Tinsukia, a region characterized by its dependence on agriculture and seasonal rainfall. The dataset comprises monthly, seasonal, and annual rainfall records spanning over a century. The data were sourced from historical weather records, ensuring consistency and reliability for trend analysis. Observations include rainfall measurements for all twelve months, aggregated seasonal data (winter, pre-monsoon, monsoon, and post-monsoon), and annual totals.

#### **4.1.1 Data Preprocessing**

Prepare the data for analysis:

- Managing Missing Values: Missing data points were identified and addressed using the mean or mode of the corresponding time series. This ensured that the dataset remained complete while maintaining statistical integrity.
- **Outlier Detection**: Visual inspection and basic statistical techniques were employed to identify outliers, which were retained to preserve the authenticity of long-term climatic trends.
- **Data Organization**: The data were structured into monthly, seasonal, and annual series, formatted for input into XLSTAT for statistical analysis.

#### 4.1.2 Statistical Analysis Techniques

#### 4.1.2.1 Mann-Kendall Trend Test

The Mann-Kendall test, a non-parametric statistical method, was used to detect monotonic trends in the time series data. The test operates under the following hypotheses:

• Ho: No trend exists in the dataset.

• Ha: A trend (either increasing or decreasing) exists in the dataset.

Key aspects of the Mann-Kendall test include:

- Significance Level: A 5% significance level ( $\alpha$ =0.05\alpha = 0.05 $\alpha$ =0.05) was used to determine the statistical significance of trends.
- Continuity Correction: Adjustments were made for tied ranks to ensure accurate test results.
- Sen's Slope Estimation: To quantify the rate of change, Sen's slope estimator was applied alongside the Mann-Kendall test. This provided an interpretable measure of the trend's magnitude.
- Steps in the Mann-Kendall Test:
- a) Define the Time Series: A dataset of n observations: x<sub>1</sub>, x<sub>2</sub>.....x<sub>n</sub> where xi represents the observed value at time i.
- **b)** Calculating the Test Statistic: The Mann-Kendall test compares all possible pairs of observations. The test statistic S is defined as:

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sign (x_j - x_i)$$

sign 
$$(x_j - x_i) = \begin{cases} 1 \\ 0 \\ -1 \end{cases}$$
 if  $x_j - x_i > 0$ , if  $x_j - x_i = 0$ , if  $x_j - x_i < 0$ 

*S* summarizes the number of positive differences minus the number of negative differences in the dataset.

c) Compute the Variance of S: If there are no ties (duplicate values), the variance of S is

VAR (S)=
$$\frac{n(n-1)(2n+5)}{18}$$

For datasets with ties, the formula incorporates correction terms:

VAR (S)= 
$$\frac{n(n-1)(2n+5)}{18} - \sum_{t} \frac{(t-1)(2t+15)}{18}$$
 where t represents the

number of tied values in each group.

d) Calculate the Standardized Test Statistic Z: The test statistic Z is computed to standardize S:

$$Z = \begin{cases} \frac{S-1}{\sqrt{VAR(S)}} \\ 0 \\ \frac{S+1}{\sqrt{VAR(S)}} \end{cases} \text{ if } S > 0, \text{ if } S = 0, \text{ if } S < 0 \end{cases}$$

#### e) Hypothesis Testing:

- Null hypothesis (H<sub>o</sub>): There is **no trend** in the time series (S=0).
- Alternative hypothesis (H<sub>1</sub>): There is a **monotonic trend** (increasing or decreasing).
- The p-value is derived from the z-statistic using the standard normal distribution.

#### f) Interpretation of Results:

- If the p-value < significance level (α typically 0.05), reject H<sub>0</sub>, indicating a significant trend in the data.
- The sign of Z indicates the direction of the trend:
  - Z>0: Increasing trend.
  - Z<0: Decreasing trend

#### 4.1.2.2 Linear Regression Analysis

Linear regression was conducted to further investigate the relationship between rainfall (dependent variable) and time (independent variable). This method complements the Mann-Kendall test by offering insights into the proportion of variability explained and the consistency of trends over time. Key metrics used in this analysis include:

- **R**<sup>2</sup> (**Coefficient of Determination**): Measures the proportion of variance in rainfall explained by the regression model.
- **Regression Coefficient**: Indicates the rate of change in rainfall per unit of time.
- **p-value**: Determines the statistical significance of the trend, with p<0.05 indicating significance.
- > Steps in formulating a Linear Regression Model

#### a) Defining the model

The linear Regression Model equation can be represented as -

 $y=\beta_0+\beta_1x+\epsilon$ 

Where:

- y: Rainfall in a specific year (dependent variable).
- x: Year (independent variable, ranging from 1901 to 2022).
- $\beta_0$ : Intercept (rainfall when x=0).
- $\beta_1$ : Slope (rate of change in rainfall per year).
- $\epsilon$ : Residual error.

#### b) Calculating the Slope $(\beta 1)$

The slope  $(\beta 1)$  is computed as:

$$\beta 1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- x<sub>i</sub>: Year i.
- y<sub>i</sub>: Rainfall in year i.

- $\bar{\mathbf{x}}$ : Mean of the years.
- $\bar{y}$ : Mean of the rainfall values.

#### c) Calculate the Intercept (β0)

The intercept  $(\beta)$  is calculated using:

 $\beta 0 = \overline{y} - \beta 1 \overline{x}$ 

This ensures that the regression line passes through the point  $(\overline{x},\overline{y})$  representing the means of the independent and dependent variables.

#### d). Formulate the Regression Equation

Once  $\beta 0$  and  $\beta 1$  are computed, the regression equation becomes:

$$y=\beta 0+\beta 1x$$

#### e). Calculating the Goodness of Fit $({\bf R}^{2)}$

The coefficient of determination  $(R^2)$  measures how well the regression line fits the data:

$$R^2 = 1 - \frac{SSR}{TSS}$$
 where

SSR =  $\sum_{i=1}^{n} (y_i - \bar{y}_i)^2$  Sum of squared residuals (unexplained variance).

TSS= $\sum_{i=1}^{n} (y_i - \bar{y})^2$  Total sum of squares (total variance in rainfall).

If the  $R^2$  value comes nearly equal to 1 we consider the fit to be good in regression

#### 4.1.3 Analytical Tools

The analyses were performed using **XLSTAT**, a statistical software integrated with Microsoft Excel. XLSTAT was chosen for its advanced statistical functionalities and user-friendly interface, which facilitated the following:

- 1. **Data Management**: XLSTAT's automated handling of missing data and outlier detection enhanced data preparation efficiency.
- 2. **Statistical Computations**: Both the Mann-Kendall test and linear regression analyses were executed with high accuracy, ensuring robust and reliable results.
- 3. **Visualization**: Graphs and charts generated by XLSTAT provided a clear representation of trends and residuals, aiding in result interpretation.

#### 4.1.4 Steps in Analysis

#### a) Trend Detection:

- Monthly, seasonal, and annual data were input into XLSTAT.
- The Mann-Kendall test was applied to identify significant trends.
- Sen's slope estimates were calculated for each dataset to quantify the trends.
- b) Regression Modelling:
- Linear regression models were developed for each time series, examining the relationship between rainfall and year.
- Goodness-of-fit metrics (e.g., R<sup>2</sup>, adjusted R<sup>2</sup>) and diagnostic statistics (e.g., residual analysis) were evaluated.

#### c) Interpretation and Validation:

- Results from the Mann-Kendall test and linear regression were compared to ensure consistency.
- Trends were interpreted in the context of climatic and regional variability.

#### 4.1.5 Methodological Limitations

While the methodology provides a robust framework for analysing rainfall trends, certain limitations must be acknowledged:

- $\circ$  Low R<sup>2</sup> Values: In some months, the linear regression analysis yielded low R<sup>2</sup> values, indicating that only a small portion of the variability in rainfall could be explained by the temporal trends. This suggests the influence of additional climatic or anthropogenic factors not accounted for in the study.
- Assumption of Linearity: Linear regression assumes a constant rate of change in rainfall over time, which may not fully capture the non-linear and complex nature of climatic phenomena, such as sudden weather pattern shifts or extreme events.
- **Data Quality and Continuity**: The reliability of the findings depends heavily on the accuracy and consistency of historical rainfall data. Any gaps, inaccuracies, or biases in the dataset could affect trend detection and analysis.
- **Regional Specificity**: The findings are region-specific and may not fully represent broader climatic trends. Variability in microclimates within the district may lead to local discrepancies in rainfall patterns.
- Unaccounted External Factors: External influences such as land-use changes, deforestation, and industrial activities were not explicitly considered, though they may significantly impact rainfall variability.

#### 4.2 DATA USED

The trend analysis of rainfall was done by extracting the IMD rainfall data yearly from INDIA-WRIS (India Water Resource Information System) and from Indian Meteorological Department, Ministry of Earth Sciences Pune, of TINSUKIA district, Assam from the year 1901-2023.

The climate of the area is wet, sub-tropical with summer from December to March, rainy season from April to September and winter from October to November. This area experiences rainfall for 8-9 months. The temperature varies from a maximum of  $36^{\circ}$  C to a minimum of  $6^{\circ}$  C. The area receives an average annual rainfall of 2964 mm based on rainfall data of Margherita NEC office. The area has high humidity (87 - 91%). The dry period of about 150 days in full year lies between Decembers to March

The rainfall data collected is given below:

|          |      |      | 1     |       |       |       | 1     | 1     |       |       |       |      |      |
|----------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| DISTRICT | YEAR | JAN  | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV  | DEC  |
| TINSUKIA | 1901 | 76.2 | 105.7 | 55.3  | 303.5 | 170.7 | 264.8 | 354   | 549.1 | 294.6 | 118.3 | 48   | 0    |
| TINSUKIA | 1902 | 18.6 | 26.9  | 155.3 | 268   | 104.7 | 463.6 | 513   | 453.1 | 523.9 | 155.5 | 7.6  | 5    |
| TINSUKIA | 1903 | 45.8 | 37.1  | 119.6 | 340   | 244.6 | 502.3 | 327.2 | 692.9 | 475.1 | 128.8 | 58.6 | 3.6  |
| TINSUKIA | 1904 | 14   | 50.4  | 150.5 | 431.3 | 225.4 | 306.5 | 493.7 | 453.2 | 169.6 | 123.5 | 64.5 | 0    |
| TINSUKIA | 1905 | 45   | 26.4  | 209.1 | 222.9 | 204   | 476.8 | 507.4 | 446.8 | 236.6 | 87.6  | 35.6 | 37.7 |
| TINSUKIA | 1906 | 30.5 | 97.7  | 276.9 | 596.4 | 259.1 | 290.5 | 366.9 | 605   | 133.8 | 119.3 | 29.9 | 0    |
| TINSUKIA | 1907 | 80.4 | 111.1 | 169.4 | 237.6 | 110.9 | 540.8 | 557.2 | 553.7 | 570.7 | 25.2  | 0    | 15   |
| TINSUKIA | 1908 | 63.7 | 50.2  | 42.7  | 377.3 | 254.8 | 569.9 | 695.6 | 388.7 | 431.3 | 188.8 | 3.6  | 0    |
| TINSUKIA | 1909 | 71.7 | 28.6  | 18.1  | 191.9 | 214.5 | 554.4 | 517.6 | 469.3 | 169.2 | 152.4 | 5.3  | 2    |
| TINSUKIA | 1910 | 28.9 | 86.3  | 175.6 | 253.7 | 229.3 | 544.6 | 465.9 | 447.8 | 272.2 | 243.9 | 29.7 | 15   |
| TINSUKIA | 1911 | 81.9 | 22.6  | 153.2 | 203.5 | 243.5 | 331   | 490.8 | 440.6 | 229.3 | 206   | 78.8 | 3.8  |
| TINSUKIA | 1912 | 24.7 | 119.7 | 109.9 | 220.8 | 225.2 | 666.8 | 551.3 | 390.6 | 374.3 | 121   | 21.3 | 5.4  |
| TINSUKIA | 1913 | 42.7 | 127.8 | 216.5 | 695.3 | 266.9 | 504.7 | 478.4 | 393.3 | 370.6 | 136.7 | 6.6  | 53.9 |
| TINSUKIA | 1914 | 7.8  | 108.6 | 117.8 | 167.3 | 158.2 | 302.7 | 299.7 | 634.8 | 253.5 | 146.8 | 13.5 | 0    |
| TINSUKIA | 1915 | 26.2 | 71.7  | 127.8 | 132.7 | 467.2 | 293.2 | 542.9 | 624.1 | 374.4 | 110.5 | 24.6 | 26.2 |
| TINSUKIA | 1916 | 31   | 71.8  | 180   | 284.6 | 205.7 | 354.3 | 609.6 | 440.5 | 164.5 | 198.8 | 19.3 | 0    |
| TINSUKIA | 1917 | 36.1 | 114   | 79.2  | 292.9 | 222.6 | 472.5 | 495.5 | 220.2 | 244.8 | 127.8 | 3.8  | 9.7  |
| TINSUKIA | 1918 | 20.9 | 57.1  | 179.4 | 126.3 | 290.4 | 511.3 | 489.3 | 540.7 | 481.8 | 113.3 | 4.8  | 5.4  |
| TINSUKIA | 1919 | 48.9 | 68.3  | 12.7  | 174   | 155.8 | 517.7 | 624.1 | 225.5 | 472.8 | 105.3 | 28   | 4.9  |
| TINSUKIA | 1920 | 6.6  | 71    | 254.2 | 174.7 | 263.8 | 437.5 | 227.3 | 500.2 | 207.1 | 116.8 | 2.8  | 4.8  |
| TINSUKIA | 1921 | 70.2 | 32.7  | 217.5 | 420   | 230.3 | 207.7 | 523.7 | 506.9 | 321.8 | 154.9 | 0    | 19.3 |

TABLE 4.2.1: MONTHLY RAINFALL DATA OF TINSUKIA

#### TABLE 4.2.2: MONTHLY RAINFALL DATA OF TINSUKIA

| DISTRICT | YEAR         | JAN         | FEB                | MAR   | APR                 | MAY    | JUN   | JULY                 | AUG          | SEP   | OCT   | NOV   | DEC                |
|----------|--------------|-------------|--------------------|-------|---------------------|--------|-------|----------------------|--------------|-------|-------|-------|--------------------|
| TINSUKIA | 1922         | 64.1        | <b>FED</b><br>17.8 | 117.9 | <b>AFK</b><br>336.6 | 121.9  | 559.3 | <b>JUL1</b><br>464.4 | 446          | 268.1 | 107.8 | 23.4  | 23.3               |
| TINSUKIA | 1922<br>1923 | 04.1        | 60.4               | 117.5 | 230.8               | 233    | 340.7 | 641.1                | 417.9        | 480.6 | 117.8 | 38.6  | <u>23.3</u><br>9.4 |
| TINSUKIA | 1923<br>1924 | 26.7        | 54.8               | 48.4  | 269.5               | 255.2  | 406   | 519.3                | 466.1        | 226.8 | 211.5 | 59.4  | 0                  |
| TINSUKIA | 1924         | 37.5        | 32.6               | 197.1 | 243.3               | 490.7  | 350   | 317.3                | 615          | 187   | 144.4 | 0     | 0                  |
| TINSUKIA | 1925         | 75          | 36.5               | 203.8 | 145.7               | 269.4  | 346.6 | 508.6                | 454          | 318.1 | 322.3 | 15    | 0<br>14            |
| TINSUKIA | 1920         | 21.1        | 85.8               | 143.1 | 381.1               | 192    | 335.2 | 352.7                | 286.4        | 408.4 | 116.6 | 25.1  | 0                  |
| TINSUKIA | 1927         | 20          | 46.9               | 148.8 | 120.5               | 229    | 407.9 | 332.4                | 424.5        | 452.5 | 184.8 | 17.6  | 7.4                |
| TINSUKIA | 1929         | <b>69.5</b> | 11.2               | 81.8  | 361.7               | 308.5  | 470.6 | 480.5                | 273.4        | 435.6 | 178.3 | 48.8  | 33.3               |
| TINSUKIA | 1930         | 29          | 33.5               | 76.7  | 231.6               | 225.3  | 254.7 | 320.3                | 472.3        | 635.3 | 214.4 | 95    | 17.6               |
| TINSUKIA | 1931         | 33.1        | 124.2              | 106.4 | 442.4               | 235.5  | 490.5 | 651.5                | 312.4        | 367.1 | 189.7 | 30.3  | 20.1               |
| TINSUKIA | 1932         | 29.1        | 42.5               | 150.4 | 111.5               | 450.1  | 641.7 | 341                  | 429.1        | 404.6 | 47    | 106.7 | 43.4               |
| TINSUKIA | 1933         | 23.8        | 73.6               | 47.5  | 261.7               | 244.9  | 543.5 | 616                  | 672.9        | 155.6 | 83.2  | 21.6  | 3.8                |
| TINSUKIA | 1934         | 47.5        | 59.6               | 82.6  | 420.2               | 253.4  | 406.8 | 703.5                | 261.3        | 385.9 | 174.6 | 88.3  | 18.6               |
| TINSUKIA | 1934         | 5.6         | 105.5              | 101.2 | 219.4               | 233.4  | 559.2 | 568.7                | <b>524.4</b> | 413.6 | 39.7  | 35    | 0                  |
| TINSUKIA | 1935<br>1936 | 28.7        | 105.5              | 29.7  | 219.4               | 227.4  | 394.6 | 669.9                | 324.4        | 364.1 | 149.3 | 40.1  | 34.8               |
| TINSUKIA | 1937         | 0           | 83.6               | 55.6  | 126.1               | 427.9  | 346   | 418.6                | 314.5        | 451.8 | 133.5 | 7.4   | 0                  |
| TINSUKIA | 1938         | 52.5        | 50                 | 217.9 | 228.3               | 193.9  | 655.4 | 662.4                | 445.2        | 432.2 | 84.4  | 48.2  | 0                  |
| TINSUKIA | 1939         | 0           | 106.7              | 0     | 548.2               | 393.2  | 411   | 645.5                | 215.4        | 277.5 | 182.3 | 6.6   | 17.3               |
| TINSUKIA | 1940         | 3           | 56.6               | 184.2 | 127.5               | 426.9  | 316.5 | 546.3                | 279.6        | 260.7 | 0     | 0     | 7.6                |
| TINSUKIA | 1941         | 0           | 24.2               | 133.3 | 391.6               | 314.7  | 484.4 | 524.3                | 360.6        | 404.7 | 74.9  | 0     | 20.9               |
| TINSUKIA | 1942         | 5.3         | 31                 | 193.4 | 263.3               | 588    | 604.1 | 355.9                | 359.5        | 381.1 | 27.9  | 15.2  | 0                  |
| TINSUKIA | 1943         |             | 80.3               | 343.8 | 269.1               | 265.6  | 359.2 | 427                  | 553.7        | 311.7 | 65.6  | 0     | 9.4                |
| TINSUKIA | 1944         | 54.4        | 86.5               | 84.7  | 115.1               | 383.8  | 629.7 | 323.2                | 182.6        | 540.4 |       | 10.7  | 78.1               |
| TINSUKIA | 1945         | 34.6        | 41.4               | 48.2  | 79.5                | 241.1  | 417.2 | 426.8                | 433.3        | 191.7 | 63.7  |       |                    |
| TINSUKIA | 1946         |             |                    | 30.8  | 202.9               | 166.4  | 608.8 | 694.4                | 411.7        | 261.4 | 185   | 0     | 0                  |
| TINSUKIA | 1947         | 14.2        | 71.6               | 112.8 | 444.1               | 401.4  | 406.2 | 800.3                | 434.4        | 112.7 | 239   | 0     | 37.9               |
| TINSUKIA | 1948         | 45.2        | 49                 | 75.2  |                     |        | 588   | 567.2                | 469          | 241.1 | 145   | 51.1  | 9.4                |
| TINSUKIA | 1949         | 45.8        | 118.9              | 197.6 | 237.8               | 355.9  | 953.5 | 444.2                | 379.7        | 254   | 277.1 | 37.6  | 18.8               |
| TINSUKIA | 1950         | 77          | 46.7               | 76    | 115.5               | 410.2  | 356.4 | 529.1                | 547.1        | 234   | 180.2 | 57.5  | 123.7              |
| TINSUKIA | 1951         | 8.1         | 8.1                | 98.7  | 410.1               | 181.1  | 521.7 | 453.3                | 335.6        | 215.8 | 114.1 | 46.4  | 30.7               |
| TINSUKIA | 1952         | 10.7        | 32.7               | 140   | 216                 | 292.2  | 429.9 | 475.2                | 512.8        | 345.9 | 201.8 | 53.1  | 10.2               |
| TINSUKIA | 1954         | 56.9        | 87.1               | 69.1  | 381.4               | 681.3  | 386.8 | 511.3                | 521.3        | 148.6 | 171.7 | 3.3   | 51                 |
| TINSUKIA | 1955         | 34.4        | 28                 | 278.5 | 146.9               | 179.7  | 261.3 | 868.3                | 529.3        | 342.3 | 258.6 | 25.4  | 5.6                |
| TINSUKIA | 1956         | 130.4       | 6.6                | 278.6 | 238.3               | 289.9  | 490.5 | 513.3                | 338          | 113.2 | 285.6 | 47.6  | 26                 |
| TINSUKIA | 1957         | 54.1        | 68.1               | 42.9  | 399.2               | 605.4  | 549   | 479.3                | 434.9        | 172.6 | 39.1  | 25.4  | 40.4               |
| TINSUKIA | 1958         | 48.4        | 57.2               | 13.5  | 106.5               | 501.5  | 205   | 453.4                | 467          | 212   | 249.6 | 0.2   | 17                 |
| TINSUKIA | 1959         | 38          | 127.5              | 82.8  | 251                 | 499.5  | 336.2 | 529.2                | 392.4        | 364.7 | 204.9 | 7     | 0                  |
| TINSUKIA | 1960         | 34          | 48                 | 215.5 | 373.5               | 268.09 | 644.5 | 653.2                | 432.3        | 429.6 | 15    | 20    | 12                 |
| TINSUKIA | 1961         | 43          | 44                 | 304.5 |                     |        |       | 337.5                |              | 147   |       | 39    | 22                 |
| TINSUKIA | 1964         |             |                    |       |                     |        |       |                      |              |       |       | 10.5  | 37.4               |
| TINSUKIA | 1965         | 17          | 40.1               | 38.7  | 76.3                | 158.4  | 301.5 |                      |              |       |       |       |                    |
| TINSUKIA | 1966         | 8.8         | 85.4               | 75.6  | 267.6               | 165.8  |       |                      |              | 291.1 | 84.6  | 12.6  | 1.1                |
| TINSUKIA | 1967         | 11.7        |                    | 143.7 | 59.9                | 230.5  |       | 465.1                | 383.5        | 347.5 | 154.5 |       |                    |

#### TABLE 4.2.3: MONTHLY RAINFALL DATA OF TINSUKIA

| DISTRICT | YEAR | JAN  | FEB                | MAR    | APR    | MAY    | JUN    | JULY   | AUG    | SEP    | OCT   | NOV          | DEC  |
|----------|------|------|--------------------|--------|--------|--------|--------|--------|--------|--------|-------|--------------|------|
| TINSUKIA | 1968 | 32.8 | <b>TED</b><br>72.9 | 132    | 127.5  |        | 317.2  | 450    | AUG    | 229.5  | 27.9  | 7.1          | 1.4  |
| TINSUKIA | 1969 | 64.1 | 8.1                | 132    | 232.6  | 192.5  | 517.2  | 450    | 494.2  | 227.5  | 21.9  | / <b>.</b> 1 | 1.4  |
| TINSUKIA | 1970 | 04.1 | 0.1                | 127.0  | 252.0  | 172.5  |        |        | 719.4  |        | 161.9 | 23.4         |      |
| TINSUKIA | 1971 | 40.9 | 44.6               |        | 87     | 184.6  | 343.7  | 512.4  | 525.5  |        | 274.3 | 40.2         | 30.2 |
| TINSUKIA | 1972 | 44.1 |                    | 184.8  | 07     | 10110  | 273.7  | 251.7  | 292.4  | 301.8  | 116.8 | 2.9          | 25.7 |
| TINSUKIA | 1973 |      |                    | 10 110 |        | 79     | 638    | 330.2  | 472.8  | 391    | 64.6  | 17           | 0    |
| TINSUKIA | 1974 | 64.8 | 48.8               | 42.2   | 58.6   |        |        |        |        |        | 0.00  |              | •    |
| TINSUKIA | 1975 | 29   | 32.1               | 76.7   | 231.6  | 225.3  | 352.7  | 320.3  | 472.3  | 635.3  | 214.4 | 95           | 17.6 |
| TINSUKIA | 1977 | 63.7 | 50.2               | 42.7   | 377.3  | 254.8  | 569.9  | 695.6  | 388.7  | 451.3  | 48.1  | 52.8         | 48.2 |
| TINSUKIA | 1978 | 23   | 26                 | 76.1   | 142.8  | 154.3  | 395.8  | 433.4  | 151.1  | 314.9  | 74.3  | 102.3        | 0    |
| TINSUKIA | 1979 | 16.6 | 16                 | 63.7   | 94.3   | 180.4  | 265.9  | 594.3  | 250.6  | 329.2  | 272.5 | 52.7         | 59.4 |
| TINSUKIA | 1980 | 41.5 | 74.8               | 187.4  | 369.4  | 217.9  | 479.8  | 389.2  | 327.9  | 283.3  | 137.1 | 2.1          | 0.8  |
| TINSUKIA | 1981 | 33.5 | 72.3               | 162.5  | 144.4  | 175.8  | 395.8  | 578.3  | 435.7  | 297.2  | 55.8  | 20.1         | 17.7 |
| TINSUKIA | 1982 | 1    | 65.3               | 86.9   | 330.1  | 173.1  | 378.8  | 586.8  | 375    | 375.1  | 45.9  | 43.1         | 50.6 |
| TINSUKIA | 1983 | 24.9 | 56.6               | 96     | 230    | 212.2  | 340.5  | 571.5  | 385.3  | 449.7  | 98.1  | 2.8          | 34.3 |
| TINSUKIA | 1984 | 23.1 | 15.3               | 82.8   | 353.6  | 377.9  | 322.8  | 500.5  | 404.4  | 321.4  | 149.9 | 1.8          | 37   |
| TINSUKIA | 1985 | 8.2  | 20.1               | 98.3   | 207    | 86.5   | 401.7  | 787.7  | 303.7  | 191.2  | 23.6  | 4.3          | 15.1 |
| TINSUKIA | 1986 | 22.9 | 44.3               | 79.3   | 269.8  | 127    | 153.4  | 558.5  | 224.8  | 187.8  | 95.3  | 24.7         | 22   |
| TINSUKIA | 1987 | 1    | 14.6               | 132.2  | 185.9  | 161.2  | 410.6  | 614.5  | 379.5  | 348.8  | 73.5  | 30.3         | 16.8 |
| TINSUKIA | 1988 | 5.3  | 47                 | 133.4  | 213.8  | 213.2  | 286.7  | 597.7  | 542    | 314.4  | 210.8 | 27.6         | 0    |
| TINSUKIA | 1989 | 11.3 | 136.8              | 77     | 368.4  | 103.8  | 356.3  | 713.1  | 329    | 272.9  | 135.1 | 15           | 20.8 |
| TINSUKIA | 1990 | 57   | 97.4               | 185    | 261.4  | 276    | 378.7  | 355    | 309.3  | 440.8  | 101.1 | 0            | 9.2  |
| TINSUKIA | 1991 | 10.9 | 83.8               | 82.6   | 188.1  | 451.1  | 406.3  | 485.8  | 332.2  | 247.8  | 71.2  | 16.7         | 58   |
| TINSUKIA | 1992 | 29.6 | 94.5               | 200.5  | 224.3  | 315.9  | 335.3  | 437.8  | 325    | 341    | 227   | 15.2         | 9.6  |
| TINSUKIA | 1993 | 57.1 | 87.1               | 95.1   | 74.5   | 373.7  | 378.1  | 500.6  | 431.5  | 229.8  | 56.7  | 4.5          | 0.6  |
| TINSUKIA | 1994 | 26.4 | 53.7               | 259    | 185.1  | 135.1  | 263.1  | 337.5  | 175.8  | 209    | 112.8 | 10.4         | 1.9  |
| TINSUKIA | 1995 | 12.2 | 80.6               | 70.1   | 197.2  | 425.3  | 532    | 422.1  | 584.5  | 530.7  | 73.1  | 33.1         | 15.7 |
| TINSUKIA | 1996 | 32.7 | 44.1               | 231.7  | 163.3  | 365.8  | 104.5  | 449.5  | 408.9  | 127.1  | 163.2 | 13.5         | 0.2  |
| TINSUKIA | 1997 | 29.7 | 76.6               | 234.6  | 94.2   | 166    | 461.8  | 402.5  | 211.2  | 318.1  | 47.2  | 50           | 22.3 |
| TINSUKIA | 1998 | 41.4 | 55.6               | 157.9  | 116.9  | 296.7  | 575.8  | 437.6  | 331    | 119.8  | 106.5 | 13.9         | 0.4  |
| TINSUKIA | 1999 | 1.6  | 0.3                | 82     | 211.4  | 260.7  | 436.9  | 482.9  | 337.7  | 276.1  | 165.8 | 20           | 0    |
| TINSUKIA | 2000 | 32.3 | 30.9               | 122.5  | 513.9  | 212.5  | 403.6  | 677.4  | 417.8  | 427.7  | 23.4  | 39.9         | 0    |
| TINSUKIA | 2001 | 10.3 | 25.7               | 64.6   | 149.5  | 203.1  | 511.1  | 394.6  | 237.3  | 230.7  | 168.8 | 5.7          | 6.1  |
| TINSUKIA | 2002 | 86.6 | 22                 | 67.2   | 249.2  | 253.8  | 274.4  | 397.6  | 361    | 195.4  | 91    | 57.9         | 10.1 |
| TINSUKIA | 2003 | 19.1 | 61.7               | 101.5  | 195.3  | 210    | 405.6  | 573.2  | 244.1  | 253    | 129.8 | 4.3          | 2.6  |
| TINSUKIA | 2004 | 29.2 | 40.9               | 193.7  | 189    | 375.6  | 290.7  | 687.9  | 314.3  | 351.7  | 149.9 | 1.7          | 16.3 |
| TINSUKIA | 2005 | 63   | 177.1              | 286.3  | 172.4  | 270    | 311.8  | 526.8  | 428.2  | 110.1  | 151.3 | 27.7         | 0    |
| TINSUKIA | 2006 | 0    | 124.8              | 98.6   | 197.1  | 248.5  | 312.3  | 338.5  | 310.9  | 248.5  | 43.8  | 72.2         | 19.6 |
| TINSUKIA | 2007 | 3.6  | 65.9               | 34.2   | 273.4  | 130.6  | 306.6  | 505.6  | 177.3  | 423.3  | 45.9  | 74.7         | 6.2  |
| TINSUKIA | 2008 | 66   | 59.4               | 149.3  | 215.6  | 147.2  | 359.1  | 533.4  | 552.5  | 171.6  | 96.8  | 6.2          | 5.8  |
| TINSUKIA | 2009 | 23.1 | 52                 | 27.4   | 218.2  | 122.3  | 272.1  | 305.9  | 533.6  | 227.5  | 118.1 | 39.9         | 18.1 |
| TINSUKIA | 2010 | 0.9  | 15.2               | 183.2  | 589.3  | 529.3  | 565.8  | 398.6  | 280.7  | 111.4  | 249.1 | 31.6         | 38.9 |
| TINSUKIA | 2011 | 1.75 | 3.58               | 49.42  | 145.99 | 323.07 | 435.93 | 343.22 | 220.22 | 215.21 | 5.63  | 5.3          | 1.01 |

| DISTRICT | YEAR | JAN  | FEB   | MAR   | APR    | MAY    | JUN    | JULY   | AUG    | SEP    | OCT   | NOV  | DEC  |
|----------|------|------|-------|-------|--------|--------|--------|--------|--------|--------|-------|------|------|
| TINSUKIA | 2012 | 3.41 | 4.94  | 2.72  | 149.9  | 265.64 | 107.14 | 406.54 | 385.77 | 234.37 | 47.91 | 72.3 | 0.86 |
| TINSUKIA | 2013 | 0.24 | 11.36 | 57.66 | 187.9  | 435.3  | 356.3  | 549.6  | 331.6  | 148.83 | 37.32 | 34.6 | 1.76 |
| TINSUKIA | 2014 | 0    | 13.92 | 19.21 | 173.6  | 147.37 | 434.17 | 539.97 | 405.92 | 145.44 | 10.91 | 0.22 | 0.78 |
| TINSUKIA | 2015 | 8.7  | 11.11 | 14.62 | 161.62 | 245.57 | 404.61 | 489.2  | 529.79 | 219.49 | 89.74 | 5.44 | 6.03 |
| TINSUKIA | 2016 | 34.4 | 28    | 278.5 | 146.9  | 179.7  | 261.3  | 868.3  | 529.3  | 342.3  | 248.6 | 25.4 | 5.6  |
| TINSUKIA | 2017 | 37.5 | 32.6  | 197.1 | 243.3  | 490.7  | 350    | 382.2  | 600    | 187    | 144.4 | 0    | 0    |
| TINSUKIA | 2018 | 22.9 | 44.3  | 79.3  | 269.8  | 157    | 253.4  | 508.5  | 224.8  | 187.8  | 95.3  | 24.7 | 22   |
| TINSUKIA | 2019 | 14   | 30.4  | 150.5 | 431.3  | 225.4  | 306.5  | 443.7  | 453.2  | 169.6  | 123.5 | 64.5 | 0    |
| TINSUKIA | 2020 | 14.1 | 17.8  | 117.9 | 336.6  | 121.9  | 559.3  | 464.4  | 446    | 268.1  | 109.8 | 23.4 | 23.3 |
| TINSUKIA | 2021 | 0.41 | 4.94  | 2.72  | 49.9   | 165.64 | 147.14 | 387.54 | 305.77 | 234.37 | 57.91 | 50.3 | 0.86 |
| TINSUKIA | 2022 | 28.9 | 86.3  | 175.6 | 253.7  | 229.3  | 544.6  | 465.9  | 447.8  | 275.2  | 243.9 | 29.7 | 15   |

TABLE 4.2.4: MONTHLY RAINFALL DATA OF TINSUKIA

The above tables (4.2.1-4.2.4) depicts the monthly rainfall data that were collected from Indian Meteorological Department.

From these monthly rainfall data seasonal and annual rainfall were calculated as shown in Table (4.2.5-4.2.7) considering that January, February (JF) representing winter season, March, April, May, (MAM) Pre-monsoon season, June, July, August, September, (JJAS) as Monsoon season and October, November, December (OND) as post-monsoon season.

| YEARS | ANNUAL | JF<br>(Winter<br>season) | MAM<br>(Pre-<br>Monsoon | JJAS<br>(Monsoon<br>season) | OND (Post<br>Monsoon<br>season) |
|-------|--------|--------------------------|-------------------------|-----------------------------|---------------------------------|
|       |        |                          | Season)                 |                             |                                 |
| 1901  | 2340.2 | 181.9                    | 529.5                   | 1462.5                      | 166.3                           |
| 1902  | 2695.2 | 45.5                     | 528                     | 1953.6                      | 168.1                           |
| 1903  | 2975.6 | 82.9                     | 704.2                   | 1997.5                      | 191                             |
| 1904  | 2482.6 | 64.4                     | 807.2                   | 1423                        | 188                             |
| 1905  | 2535.9 | 71.4                     | 636                     | 1667.6                      | 160.9                           |
| 1906  | 2806   | 128.2                    | 1132.4                  | 1396.2                      | 149.2                           |
| 1907  | 2972   | 191.5                    | 517.9                   | 2222.4                      | 40.2                            |
| 1908  | 3066.6 | 113.9                    | 674.8                   | 2085.5                      | 192.4                           |
| 1909  | 2395   | 100.3                    | 424.5                   | 1710.5                      | 159.7                           |
| 1910  | 2792.9 | 115.2                    | 658.6                   | 1730.5                      | 288.6                           |
| 1911  | 2485   | 104.5                    | 600.2                   | 1491.7                      | 288.6                           |
| 1912  | 2831   | 144.4                    | 555.9                   | 1983                        | 147.7                           |
| 1913  | 3293.4 | 170.5                    | 1178.7                  | 1747                        | 197.2                           |
| 1914  | 2210.7 | 116.4                    | 443.3                   | 1490.7                      | 160.3                           |
| 1915  | 2821.5 | 97.9                     | 727.7                   | 1834.6                      | 161.3                           |
| 1916  | 2560.1 | 102.8                    | 670.3                   | 1568.9                      | 218.1                           |
| 1917  | 2319.1 | 150.1                    | 594.7                   | 1433                        | 141.3                           |
| 1918  | 2820.7 | 78                       | 596.1                   | 2023.1                      | 123.5                           |
| 1919  | 2438   | 117.2                    | 342.5                   | 1840.1                      | 138.2                           |
| 1920  | 2266.8 | 77.6                     | 692.7                   | 1372.1                      | 124.4                           |
| 1921  | 2705   | 102.9                    | 867.8                   | 1560.1                      | 174.2                           |
| 1922  | 2550.6 | 81.9                     | 576.4                   | 1737.8                      | 154.5                           |
| 1923  | 2590.2 | 60.4                     | 483.1                   | 1880.3                      | 166.4                           |
| 1924  | 2543.7 | 81.5                     | 573.1                   | 1618.2                      | 270.9                           |
| 1925  | 2679.8 | 70.1                     | 931.1                   | 1534.2                      | 144.4                           |
| 1926  | 2709   | 111.5                    | 618.9                   | 1627.3                      | 351.3                           |
| 1927  | 2347.5 | 106.9                    | 716.2                   | 1382.7                      | 141.7                           |
| 1928  | 2392.3 | 66.9                     | 498.3                   | 1617.3                      | 209.8                           |
| 1929  | 2753.2 | 80.7                     | 752                     | 1660.1                      | 260.4                           |
| 1930  | 2605.7 | 62.5                     | 533.6                   | 1682.6                      | 327                             |
| 1930  | 3003.2 | 157.3                    | 784.3                   | 1821.5                      | 240.1                           |
| 1932  | 2797.1 | 71.6                     | 712                     | 1816.4                      | 197.1                           |
| 1932  | 2797.1 | 97.4                     | 554.1                   | 1988                        | 108.6                           |
| 1934  | 2902.3 | 107.1                    | 756.2                   | 1757.5                      | 281.5                           |
| 1935  | 2799.7 | 1111.1                   | 548                     | 2065.9                      | 74.7                            |
| 1936  | 2768.4 | 164.5                    | 566.8                   | 1812.9                      | 224.2                           |
| 1937  | 2365   | 83.6                     | 609.6                   | 1530.9                      | 140.9                           |
| 1938  | 3070.4 | 102.5                    | 640.1                   | 2195.2                      | 132.6                           |
| 1938  | 2803.7 | 102.5                    | 941.4                   | 1549.4                      | 206.2                           |

Table 4.2.5: Calculated Annual and seasonal rainfall over the years (1901-39)

| YEARS | ANNUAL  | JF<br>(Winter<br>season) | MAM<br>(Pre-<br>Monsoon | JJAS<br>(Monsoon<br>season) | OND (Post<br>Monsoon<br>season) |
|-------|---------|--------------------------|-------------------------|-----------------------------|---------------------------------|
| 1040  | 2208.0  | 50.6                     | Season)                 | 1402.1                      | 7.6                             |
| 1940  | 2208.9  | 59.6                     | 738.6                   | 1403.1                      | 7.6                             |
| 1941  | 2733.6  | 26.2                     | 839.6                   | 1774                        | 95.8                            |
| 1942  | 2824.7  | 36.3                     | 1044.7                  | 1700.6                      | 43.1                            |
| 1943  | 2685.4  | 140.0                    | 878.5                   | 1651.6                      | 75                              |
| 1944  | 2489.2  | 140.9                    | 583.6                   | 1675.9                      |                                 |
| 1945  | 1977.5  | 76                       | 368.8                   | 1469                        | 105                             |
| 1946  | 2561.4  | 07.0                     | 400.1                   | 1976.3                      | 185                             |
| 1947  | 3074.6  | 85.8                     | 958.3                   | 1753.6                      | 276.9                           |
| 1948  |         | 94.2                     |                         | 1865.3                      | 205.5                           |
| 1949  | 3320.9  | 164.7                    | 791.3                   | 2031.4                      | 333.5                           |
| 1950  | 2621.64 | 123.7                    | 601.7                   | 1666.6                      | 361.4                           |
| 1951  | 2423.7  | 16.2                     | 689.9                   | 1526.4                      | 191.2                           |
| 1952  | 2720.5  | 43.4                     | 648.2                   | 1763.8                      | 265.1                           |
| 1954  | 3069.8  | 144                      | 1131.8                  | 1568                        | 226                             |
| 1955  | 2958.4  | 62.5                     | 605.2                   | 2001.1                      | 289.6                           |
| 1956  | 2758    | 137.1                    | 806.8                   | 1455                        | 359.1                           |
| 1957  | 2910.4  | 122.2                    | 1047.5                  | 1635.8                      | 104.9                           |
| 1958  | 2331.3  | 105.6                    | 621.5                   | 1337.4                      | 266.8                           |
| 1959  | 2833.1  | 165.4                    | 833.3                   | 1622.5                      | 211.9                           |
| 1960  | 3417.49 |                          |                         |                             | 47                              |
| 1961  | 3489.58 | 87                       |                         |                             |                                 |
| 1964  | 1605.72 |                          |                         |                             |                                 |
| 1965  | 3731.79 | 57.1                     | 273.4                   |                             |                                 |
| 1966  | 4520.98 | 94.2                     | 509                     |                             | 98.3                            |
| 1967  | 3992.72 |                          | 434.1                   |                             |                                 |
| 1968  | 2790.53 | 105.7                    |                         |                             | 36.4                            |
| 1969  | 2359.1  | 72.2                     | 554.6                   |                             |                                 |
| 1970  | 2311.29 |                          |                         |                             |                                 |
| 1971  | 2619.12 | 85.5                     |                         |                             | 344.7                           |
| 1972  | 4999.52 |                          |                         | 1119.6                      | 145.4                           |
| 1974  | 4325.92 | 113.6                    |                         |                             |                                 |
| 1975  | 2698.35 | 61.1                     | 674.8                   | 2105.5                      | 327                             |
| 1977  | 3042.99 | 113.9                    | 373.2                   | 1295.2                      | 149                             |
| 1978  | 2736.67 | 49.1                     | 373.1                   | 1295.2                      | 176.6                           |
| 1979  | 3005    | 32.6                     | 338.4                   | 1440.1                      | 384.6                           |
| 1980  | 4068.77 | 116.3                    | 774.7                   | 1440.1                      | 140                             |
| 1981  | 2389    | 105.8                    | 482.7                   | 1706.9                      | 93.6                            |
| 1982  | 2511.8  | 66.3                     | 590.2                   | 1715.7                      | 139.6                           |
| 1982  | 2502.1  | 81.6                     | 538.3                   | 1747                        | 135.3                           |

Table 4.2.6: Calculated Annual and seasonal rainfall over the years (1940-83)

| YEARS | A<br>NNUAL | JF<br>(Winter<br>season) | MAM<br>(Pre-<br>Monsoon<br>Season) | JJAS<br>(Monsoon<br>season) | OND (Post<br>Monsoon<br>season) |
|-------|------------|--------------------------|------------------------------------|-----------------------------|---------------------------------|
| 1984  | 2590.3     | 38.3                     | 814.2                              | 1549.1                      | 188.7                           |
| 1985  | 2147.3     | 28.3                     | 391.8                              | 1684.3                      | 42.9                            |
| 1986  | 1809.7     | 67.2                     | 476.1                              | 1124.5                      | 141.9                           |
| 1987  | 2688       | 15.6                     | 479.3                              | 1753.4                      |                                 |
| 1988  | 2958       | 52.3                     | 460.4                              |                             | 238.4                           |
| 1989  | 2539.5     | 148.1                    | 549.2                              | 1671.3                      | 170.9                           |
| 1990  | 2470.8     | 154.4                    | 722.4                              | 1483.7                      | 110.3                           |
| 1991  | 2434.6     | 94.7                     | 721.9                              | 1472.2                      | 145.9                           |
| 1992  | 2555.7     | 124.1                    | 740.7                              | 1439.1                      | 251.8                           |
| 1993  | 2289.2     | 144.2                    | 543.3                              | 1539.9                      | 61.8                            |
| 1994  | 1769.9     | 80.1                     | 579.2                              | 985.4                       | 125.2                           |
| 1995  | 2976.6     | 92.8                     | 692.6                              | 2069.3                      | 121.9                           |
| 1996  | 2104.4     | 76.8                     | 760.7                              | 1089.9                      | 177                             |
| 1997  | 2113.9     | 106.3                    | 494.7                              | 1393.6                      | 119.4                           |
| 1998  | 2253.5     | 96.9                     | 571.6                              | 1464.2                      | 120.8                           |
| 1999  | 2275.2     | 1.9                      | 554                                | 1533.6                      | 185.7                           |
| 2000  | 2901.9     | 63.2                     | 848.9                              | 1926.5                      | 63.3                            |
| 2001  | 2007.5     | 36.1                     | 417.3                              | 1373.6                      | 180.6                           |
| 2002  | 2066       | 108.6                    | 570.2                              | 1228.3                      | 158.9                           |
| 2003  | 2200.2     | 80.8                     | 506.8                              | 1475.9                      | 136.7                           |
| 2004  | 2640.9     | 70.1                     | 758.2                              | 1644.6                      | 167.9                           |
| 2005  | 2524.7     | 240.1                    | 728.7                              | 1377                        | 179                             |
| 2006  | 2014.8     | 124.8                    | 544.2                              | 1210.2                      | 135.6                           |
| 2007  | 2047.3     | 69.5                     | 438.2                              | 1412.8                      | 126.8                           |
| 2008  | 2362.9     | 125.4                    | 512.2                              | 1616.7                      | 108.7                           |
| 2009  | 1958.1     | 75.1                     | 367.9                              | 1339.1                      | 176                             |
| 2010  | 2994       | 16.1                     | 1301.8                             | 1356.5                      | 319.6                           |
| 2011  | 1750.33    | 5.33                     | 518.48                             | 1214.58                     | 11.94                           |
| 2012  | 1688       | 8.35                     | 418.26                             | 1133.82                     | 121.07                          |
| 2013  | 2152       | 11.6                     | 680.86                             | 1386.33                     | 73.68                           |
| 2014  | 1893       | 13.92                    | 340.18                             | 1525.5                      | 11.91                           |
| 2015  | 2185       | 19.81                    | 421.81                             | 1643.09                     | 101.21                          |
| 2016  | 2940       | 62.4                     | 605.1                              | 2001.2                      | 279.6                           |
| 2017  | 2664       | 70.1                     | 931.1                              | 1519.2                      | 144.4                           |
| 2018  | 1889       | 67.2                     | 506.1                              | 1174.5                      | 142                             |
| 2019  | 2411       | 44.4                     | 807.2                              | 1373                        | 188                             |
| 2020  | 2502       | 31.9                     | 576.4                              | 1737.8                      | 156.5                           |
| 2021  | 1407       | 5.35                     | 218.26                             | 1074.82                     | 109.07                          |
| 2022  | 2795.56    | 115.2                    | 658.6                              | 1733.5                      | 288.6                           |

 Table 4.2.7: Calculated Annual and seasonal rainfall over the years (1984-22)

#### 5. RESULTS AND DISCUSSIONS

5.1 The Mann-Kendall test was employed to analyse rainfall trends over a century, with the null hypothesis *Ho* assuming no trend in the data and the alternative hypothesis *Ha* suggesting the presence of a trend. The test's significance level ( $\alpha$ =0.05) was used to determine whether to accept or reject *Ho*. A computed p-value less than 0.05 indicates a significant trend, either increasing or decreasing. The magnitude of the trend was assessed using Sen's slope estimator, which provides the rate of change in rainfall over time.

Corrections were applied for ties and continuity in the dataset to ensure the robustness of the results. The test outcomes are summarized as follows:

#### i. Monthly Trends

- a) Significant Decreasing Trends:
- January: With a Kendall's tau of -0.205 and a p-value of 0.001, the null hypothesis is rejected, indicating a significant declining trend. The Sen's slope (-0.191) suggests a steady reduction in rainfall.
- **February**: The p-value of 0.004 supports rejecting *Ho*, with a slope of -0.256 confirming a decreasing trend.
- April, June, August, and September: These months also exhibit significant decreasing trends (p-values < 0.05), with Sen's slopes ranging from -0.629 (April) to -1.000 (September).</li>
- b) Non-Significant Trends:
- Months like March (p-value = 0.307) and May (p-value = 0.601) show no significant trends, as
   *Ho* cannot be rejected.
- November and December display negligible slopes, indicating no discernible changes in rainfall patterns.

#### ii. Seasonal Trends

- a) Winter (JF): A significant decreasing trend is observed (p-value < 0.0001; Sen's slope = -0.441), rejecting *Ho* and highlighting reduced rainfall.
- b) **Pre-Monsoon (MAM)**: Although a negative slope is noted (-0.859), the p-value (0.072) suggests insufficient evidence to reject *Ho*.
- c) Monsoon (JJAS): With a p-value < 0.0001 and a Sen's slope of -2.852, the null hypothesis is rejected, indicating a substantial decline in monsoon rainfall.
- d) **Post-Monsoon (OND)**: The p-value of 0.041 supports rejecting *Ho*, with a slope of -0.356 pointing to reduced rainfall.

#### iii. Annual Trends

The annual data shows a significant declining trend (p-value = 0.001; Sen's slope = -3.778), leading to the rejection of *Ho*. This reflects a consistent reduction in yearly rainfall over the study period.

The test results provide convincing evidence of declining rainfall trends in Tinsukia, especially during critical agricultural periods like the monsoon season. This highlights potential challenges in water resource management and agricultural productivity. The Mann-Kendall test, combined with Sen's slope analysis, has effectively quantified these trends, offering valuable insights into the region's changing climatic patterns.

The rejection of *Ho* in most significant cases underscores the reliability of the test, while instances of non-significant trends indicate areas for further investigation, possibly accounting for external climatic or anthropogenic factors.

| 1. | Mann-Kendall | trend test / | <b>Two-tailed</b> | test (JANUARY): |
|----|--------------|--------------|-------------------|-----------------|
|----|--------------|--------------|-------------------|-----------------|

| Kendall's | -0.205     |
|-----------|------------|
| tau       |            |
| S         | -1272      |
| Var(S)    | 158134.000 |
| p-value   | 0.001      |
| (Two-     |            |
| tailed)   |            |
| alpha     | 0.05       |

slope:

Sen's

|           | Value   | Lower   | Upper   |
|-----------|---------|---------|---------|
|           |         | bound   | bound   |
|           |         | (5%)    | (5%)    |
| Slope     | -0.191  | -0.196  | -0.187  |
| Intercept | 403.618 | 399.413 | 407.822 |

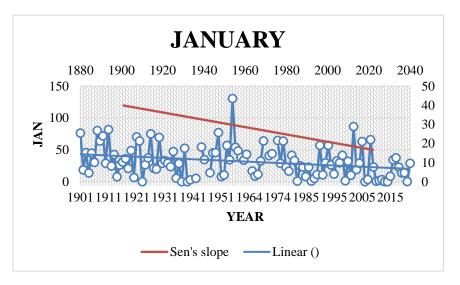



Fig 5.1: January month rainfall trend

• The Mann-Kendall test identified a significant decreasing trend with Kendall's tau of - 0.205 and a p-value of 0.001.

• Sen's slope of -0.191 highlights a consistent decline in rainfall over time, reflecting changing climatic patterns.

| 2. Mann-Kendall trend test / Two-tailed test (FEBRUAL |
|-------------------------------------------------------|
|-------------------------------------------------------|

| Kendall's | -0.185     |
|-----------|------------|
| tau       |            |
| S         | -1149      |
| Var(S)    | 158151.667 |
| p-value   | 0.004      |
| (Two-     |            |
| tailed)   |            |
| alpha     | 0.05       |

|              |           | Value   | Lower   | Upper   |
|--------------|-----------|---------|---------|---------|
| Sen's slope: |           |         | bound   | bound   |
|              |           |         | (5%)    | (5%)    |
|              | Slope     | -0.256  | -0.263  | -0.247  |
|              | Intercept | 553.726 | 545.141 | 560.769 |

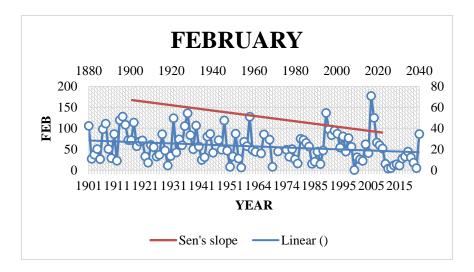



Fig 5.2: Trend test for February month rainfall

• The declining trend is statistically significant (p-value = 0.004) with a Kendall's tau of -0.185.

• A slope of -0.256 indicates a noticeable reduction in rainfall, possibly linked to reduced winter precipitation

| 3. | Mann-Kendall | trend test / | Two-tailed | test | (MARCH): |
|----|--------------|--------------|------------|------|----------|
|----|--------------|--------------|------------|------|----------|

| Kendall's tau | -0.065     |
|---------------|------------|
| S             | -418       |
| Var(S)        | 166739.333 |
| p-value (Two- | 0.307      |
| tailed)       |            |
| alpha         | 0.05       |

Sen's slope:

|           | Value   | Lower bound (5%) | Upper bound (5%) |
|-----------|---------|------------------|------------------|
| Slope     | -0.211  | -0.224           | -0.200           |
| Intercept | 521.978 | 511.144          | 534.671          |

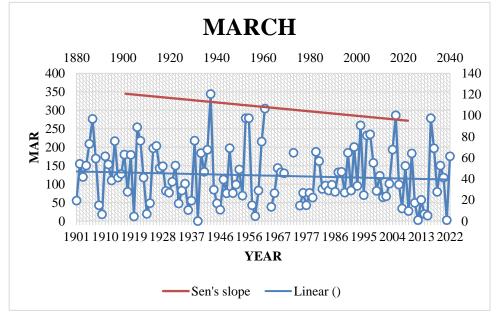



Fig 5.3: Trend test for March month rainfall

• This month exhibits no statistically significant trends, as its p-value 0.307 exceeds the 0.05 threshold. It may require additional investigation into other influencing factors.

#### 4. Mann-Kendall trend test / Two-tailed test (APRIL):

| Kendall's tau | -0.145     |
|---------------|------------|
| S             | -903       |
| Var(S)        | 158153.667 |
| p-value (Two- | 0.023      |
| tailed)       |            |
| alpha         | 0.05       |

Sen's slope:

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -0.629   | -0.644           | -0.614           |
| Intercept | 1457.336 | 1442.988         | 1471.830         |

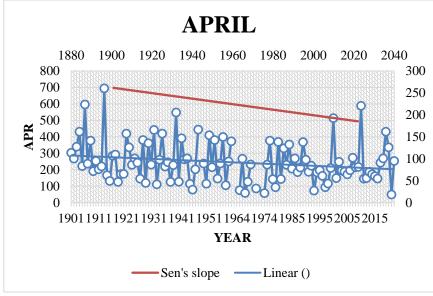



Fig 5.4: Trend test for April month rainfall

• This month show substantial decreasing trends (p-value < 0.05) with Sen's slopes of 0.629.

• This demonstrates changes during transitional and monsoon periods, affecting water availability and agriculture.

#### 5. Mann-Kendall trend test / Two-tailed test (MAY):

| Kendall's tau | -0.034     |
|---------------|------------|
| S             | -206       |
| Var(S)        | 153974.667 |
| p-value (Two- | 0.601      |
| tailed)       |            |
| alpha         | 0.05       |

|           | Value   | Lower bound (5%) | Upper bound (5%) |
|-----------|---------|------------------|------------------|
| Slope     | -0.135  | -0.150           | -0.119           |
| Intercept | 498.942 | 466.021          | 528.250          |

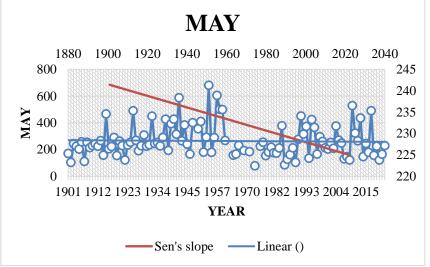



Fig 5.5: Trend test for May month rainfall

- May exhibit no statistically significant trends, as the p-value 0.601 for March exceed the 0.05 threshold.
- It does not show significant changes, indicating stable rainfall. This stability could be critical for transitioning into the monsoon season, providing consistent water availability for agricultural preparations

### 6 Mann-Kendall trend test / Two-tailed test (JUNE):

| Kendall's tau | -0.161     |  |
|---------------|------------|--|
| S             | -984       |  |
| Var(S)        | 153972.667 |  |
| p-value (Two- | 0.012      |  |
| tailed)       |            |  |
| alpha         | 0.05       |  |

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -0.871   | -0.888           | -0.835           |
| Intercept | 2110.486 | 2037.929         | 2142.085         |

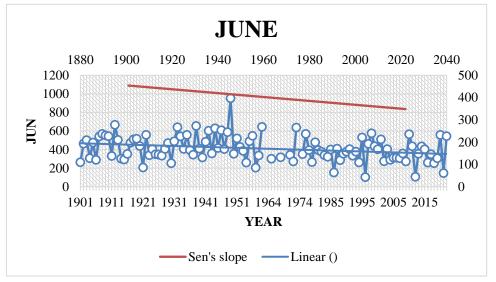



Fig 5.6: Trend test for June month rainfall

- The June month shows substantial decreasing trend of p-value 0.012< 0.05 with a Sen's slope of -0.871.
- A declining trend in June's rainfall is concerning as it marks the start of the monsoon season. Reduced rainfall during this month could delay sowing activities and affect early crop growth

## 7. Mann-Kendall trend test / Two-tailed test (JULY):

| Kendall's tau | -0.035     |
|---------------|------------|
| S             | -215       |
| Var(S)        | 158155.667 |
| p-value (Two- | 0.591      |
| tailed)       |            |
| alpha         | 0.05       |

|           | Value   | Lower bound (5%) | Upper bound (5%) |
|-----------|---------|------------------|------------------|
| Slope     | -0.184  | -0.202           | -0.161           |
| Intercept | 850.920 | 828.215          | 869.547          |

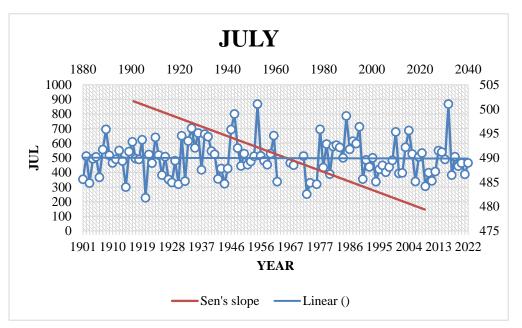



Fig 5.7: Trend test for July month rainfall

- The July month shows a high p-value 0.591>0.05 that implies insufficient evidence to reject the null hypothesis of no trend.
- The Sen's slope of -0.184, indicates a minor reduction in rainfall per year over time.
- July shows no significant trend, indicating relatively stable rainfall. This stability is crucial for maintaining water levels during the peak monsoon period, supporting agricultural and ecological needs.

### 8. Mann-Kendall trend test / Two-tailed test (AUGUST):

| Kendall's tau | -0.198     |
|---------------|------------|
| S             | -1228      |
| Var(S)        | 158154.667 |
| p-value (Two- | 0.002      |
| tailed)       |            |
| alpha         | 0.05       |

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -0.946   | -0.963           | -0.939           |
| Intercept | 2256.060 | 2248.774         | 2272.727         |

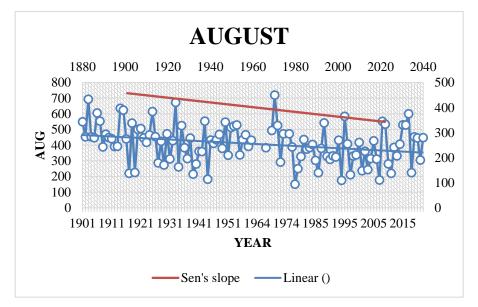



Fig 5.8: Trend test for August month rainfall

- The August month shows substantial decreasing trend of p-value 0.002< 0.05 with a Sen's slope of -0.946.
- This exhibits a marked decline in rainfall. This reduction could severely impact midmonsoon water availability, potentially disrupting crop irrigation and increasing water scarcity risks.

| Kendall's tau | -0.203     |
|---------------|------------|
| S             | -1258      |
| Var(S)        | 158154.667 |
| p-value (Two- | 0.002      |
| tailed)       |            |
| alpha         | 0.05       |

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -1.000   | -1.019           | -0.968           |
| Intercept | 2255.371 | 2223.796         | 2274.646         |

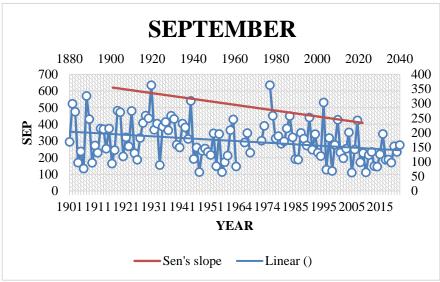



Fig 5.9: Trend Test for September Month rainfall

- The September month shows substantial decreasing trend of p-value 0.002< 0.05 with a Sen's slope of -1.000.
- This month's significant decline suggests a weakening of the monsoon towards its end. This can affect late-stage crops and reduce the replenishment of surface water bodies and aquifers.

| Kendall's tau | -0.133     |
|---------------|------------|
| S             | -827       |
| Var(S)        | 158153.667 |
| p-value (Two- | 0.038      |
| tailed)       |            |
| alpha         | 0.05       |

## 10. Mann-Kendall trend test / Two-tailed test (OCTOBER):

|           | Value   | Lower bound (5%) | Upper bound (5%) |
|-----------|---------|------------------|------------------|
| Slope     | -0.376  | -0.387           | -0.364           |
| Intercept | 856.342 | 845.533          | 866.736          |

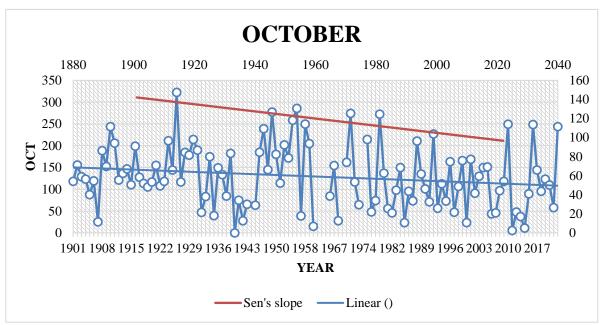



Fig 5.10: Trend test for October month rainfall

- The October month shows a decreasing trend of p-value 0.038< 0.05 with a Sen's slope of -0.376
- October shows a decline in post-monsoon rainfall. Reduced precipitation during this period can hinder aquifer recharge and soil moisture restoration, critical for the winter cropping season

| Kendall's tau | 0.010      |
|---------------|------------|
| S             | 61         |
| Var(S)        | 162272.333 |
| p-value (Two- | 0.882      |
| tailed)       |            |
| alpha         | 0.05       |

# 11. Mann-Kendall trend test / Two-tailed test (NOVEMBER):

|           | Value  | Lower bound (5%) | Upper bound (5%) |
|-----------|--------|------------------|------------------|
| Slope     | 0.000  | 0.000            | 0.003            |
| Intercept | 23.400 | 17.395           | 23.400           |

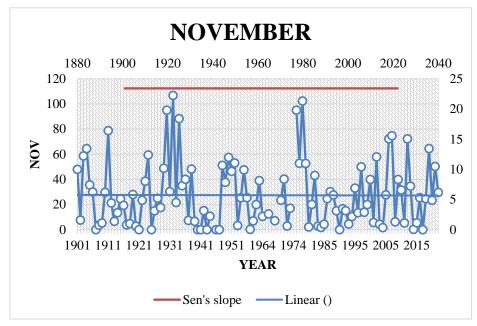



Fig 5.11: Trend test for November month rainfall

- The November month shows no trend of p-value 0.882 > 0.05 with a Sen's slope of 0.00
- November shows no significant trend, suggesting stable rainfall. However, the negligible slope highlights minimal rainfall during this month, typical for the post-monsoon dry season.

### 12. Mann-Kendall trend test / Two-tailed test (DECEMBER):

| Kendall's tau | 0.017      |
|---------------|------------|
| S             | 102        |
| Var(S)        | 156712.000 |
|               |            |
| p-value (Two- | 0.799      |
| tailed)       |            |
| alpha         | 0.05       |

|           | Value | Lower bound (5%) | Upper bound (5%) |
|-----------|-------|------------------|------------------|
| Slope     | 0.000 | 0.000            | 0.000            |
| Intercept | 9.400 | 9.400            | 9.400            |

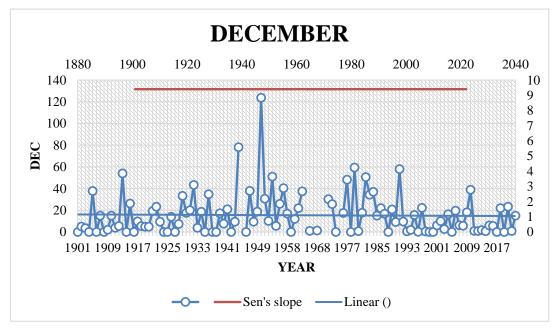



Fig 5.12: Trend test for December month rainfall

- The December month shows no trend of p-value 0.799 > 0.05 with a Sen's slope of 0.00
- December also does not exhibit a significant trend. Like November, rainfall remains negligible and stable, consistent with its role in the dry winter season.

| Kendall's tau | -0.217     |
|---------------|------------|
| S             | -1348      |
| Var(S)        | 158162.667 |
| p-value (Two- | 0.001      |
| tailed)       |            |
| alpha         | 0.05       |

# 13. Mann-Kendall trend test / Two-tailed test (ANNUAL):

|           | Value     | Lower bound (5%) | Upper bound (5%) |
|-----------|-----------|------------------|------------------|
| Slope     | -3.778    | -3.855           | -3.722           |
| Intercept | 10007.667 | 9954.283         | 10081.248        |

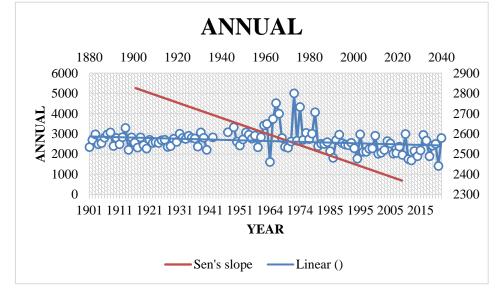



Fig 5.13: Trend test for Annual rainfall

- The Annual rainfall shows a decreasing trend of p-value 0.001< 0.05 with a Sen's slope of -3.778
- This shows a decline in annual rainfall. Reduced precipitation implies hinder aquifer recharge and soil moisture restoration, critical for cropping and other water related activities

| Kendall's tau | -0.244     |
|---------------|------------|
| S             | -1434      |
| Var(S)        | 145833.333 |
| p-value       | 0.000      |
| (Two-tailed)  |            |
| alpha         | 0.05       |

|           | Value   | Lower   | bound | Upper   | bound |
|-----------|---------|---------|-------|---------|-------|
|           |         | (5%)    |       | (5%)    |       |
| Slope     | -0.441  | -0.447  |       | -0.435  |       |
| Intercept | 954.311 | 941.069 |       | 966.435 |       |

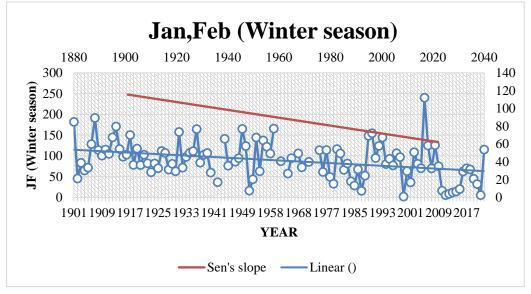



Fig 5.14: Trend test for Winter season rainfall

- The Winter season rainfall shows a decreasing trend of p-value 0.00< 0.05 with a Sen's slope of -0.441
- This shows a declining rainfall trend that might cause potential effects in agriculture and ecosystem.

#### 15. Mann-Kendall trend test / Two-tailed test (MAM) ( Pre Monsoon Season):

| Kendall's | -0.117     |
|-----------|------------|
| tau       |            |
| S         | -678       |
| Var(S)    | 141880.000 |
| p-value   | 0.072      |
| (Two-     |            |
| tailed)   |            |
| alpha     | 0.05       |

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -0.859   | -0.877           | -0.839           |
| Intercept | 2281.562 | 2261.840         | 2298.877         |

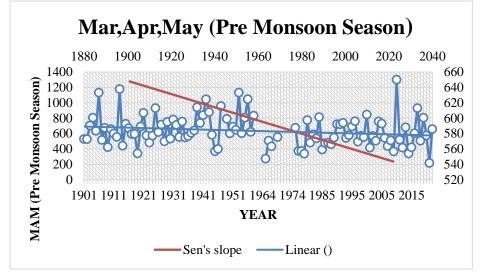



Fig 5.15: Trend test for Pre-Monsoon Season rainfall

- The Pre-Monsoon season rainfall shows slightly declining trend of p-value 0.072< 0.05 with a Sen's slope of -0.859
- This shows a declining rainfall trend that might cause potential effects in agriculture and ecosystem

| Kendall's | -0.274     |
|-----------|------------|
| tau       |            |
| S         | -1523      |
| Var(S)    | 134176.333 |
| p-value   | < 0.0001   |
| (Two-     |            |
| tailed)   |            |
| alpha     | 0.05       |

### 16. Mann-Kendall trend test / Two-tailed test (JJAS (Monsoon):

|           | Value    | Lower bound (5%) | Upper bound (5%) |
|-----------|----------|------------------|------------------|
| Slope     | -2.852   | -2.895           | -2.800           |
| Intercept | 7186.755 | 7135.892         | 7228.240         |

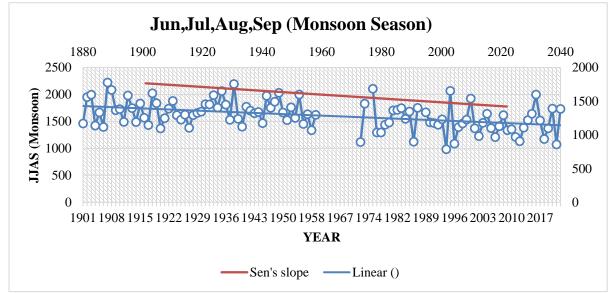



Fig 5.16: Trend test for Monsoon Season rainfall

- The Monsoon season rainfall shows a decreasing trend of p-value 0.0001< 0.05 with a Sen's slope of -2.852</li>
- This shows a declining rainfall trend that might cause potential effects in agriculture and ecosystem

# 17. Mann-Kendall trend test / Two-tailed test (OND (Post Monsoon)):

| Kendall's | -0.133     |
|-----------|------------|
| tau       |            |
| S         | -770       |
| Var(S)    | 141875.333 |
| p-value   | 0.041      |
| (Two-     |            |
| tailed)   |            |
| alpha     | 0.05       |

|           | Value   | Lower bound (5%) | Upper bound (5%) |
|-----------|---------|------------------|------------------|
| Slope     | -0.356  | -0.368           | -0.339           |
| Intercept | 852.517 | 836.287          | 863.771          |



Fig 5.17: Trend test for Post Monsoon Season

- Post Monsoon season rainfall shows a decreasing trend of p-value 0.041< 0.05 with a Sen's slope of -0.356</li>
- This shows a declining rainfall trend that might cause potential effects in agriculture and ecosystem.

| Series/Test               | Kendall's tau | p-value | Sen's slope |
|---------------------------|---------------|---------|-------------|
| JANUARY                   | -0.205        | 0.001   | -0.191      |
| FEBRUARY                  | -0.185        | 0.004   | -0.256      |
| MARCH                     | -0.065        | 0.307   | -0.211      |
| APRIL                     | -0.145        | 0.023   | -0.629      |
| МАҮ                       | -0.034        | 0.601   | -0.135      |
| JUNE                      | -0.161        | 0.012   | -0.871      |
| JULY                      | -0.035        | 0.591   | -0.184      |
| AUGUST                    | -0.198        | 0.002   | -0.946      |
| SEPTEMBER                 | -0.203        | 0.002   | -1.000      |
| OCTOBER                   | -0.133        | 0.038   | -0.376      |
| NOVEMBER                  | 0.010         | 0.882   | 0.000       |
| DECEMBER                  | 0.017         | 0.799   | 0.000       |
| ANNUAL                    | -0.217        | 0.001   | -3.778      |
|                           |               |         |             |
| JAN, FEB (Winter season)  | -0.244        | 0.000   | -0.441      |
| MAR APR MAY (PRE-         | -0.117        | 0.072   | -0.859      |
| MONSOON)                  |               |         |             |
| JUN JUL AUG SEP (Monsoon) | -0.274        | <0.0001 | -2.852      |
| OCT NOV DEC (Post         | -0.133        | 0.041   | -0.356      |
| Monsoon)                  |               |         |             |

Table 5.1: Summary of Mann Kendall's Trend Test Statistic

From the above results shown in Table 5.1 it can be justified that the results provide:

- Statistical Significance: The Mann-Kendall test identified significant decreasing trends in monthly rainfall for critical periods, such as January, February, and the monsoon season (June– September). These trends are evidenced by p-values below the 5% significance threshold, confirming the reliability of the findings.
- Seasonal Variability: The monsoon season, which contributes significantly to the region's water resources and agricultural productivity, exhibits a substantial declining trend with a Sen's slope of -2.852. This decline poses potential challenges for water resource management and necessitates adaptive measures in agricultural practices.
- Annual Trends: The annual rainfall data further support the hypothesis of a declining trend, with meaningful results (p-value = 0.001) indicating a consistent reduction in total rainfall over time. The findings align with broader climatic changes observed globally and regionally.
- 4. Methodological Robustness: By employing both non-parametric and parametric methods, the study ensures comprehensive validation of trends. The Mann-Kendall test's ability to handle non-normal distributions and missing data makes it particularly suited for historical datasets. Additionally, Sen's slope estimation provides an interpretable measure of trend magnitude, enhancing the practical implications of the study.
- 5. **Implications**: The declining rainfall trends, particularly during the monsoon season, highlight critical implications for agriculture and water availability in Tinsukia. Furthermore, the study underscores the need for integrated water resource management and adaptive agricultural strategies to mitigate potential risks associated with reduced precipitation.

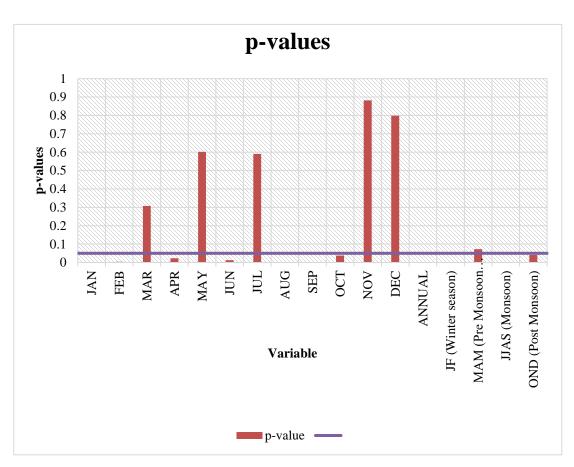



Fig 5.18: P values for rainfall trends

Figure 5.18 serves as a visual representation of the trend results of which months and seasons exhibit significant trends, complementing the numerical analysis.

> Bars **Below 0.05**: Months or seasons showing significant trends.

- January, February, April, June, August, and September have p-values below 0.05, indicating significant trends (mostly decreasing).
- Also, the annual and seasonal rainfall shows significant trends.
  - > Bars Above 0.05: Months or seasons with non-significant trends.
- For instance, *March, May, July, November, and December* exhibit p-values above 0.05, implying no statistically significant change in rainfall trends for these month

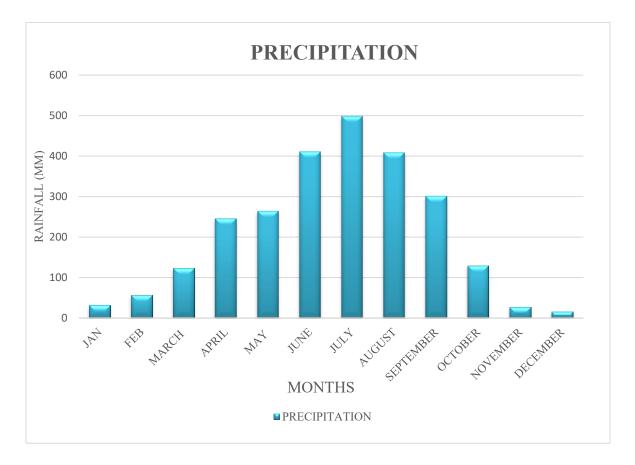



Fig 5.19: Average Monthly rainfall (1901-2022)

Figure 5.19 clearly demonstrates the typical rainfall pattern for the district of Tinsukia, the highest mean monthly rainfall was recorded in July and August and the lowest in January, November, December. It is also evident from the graph that the highest average minor season rainfall occurred in September.

**5.2 Linear regression** was applied to assess the relationship between rainfall (dependent variable) and year (independent variable) for each month and aggregated annual data. The analysis included key statistical metrics like R<sup>2</sup>, p-values, and regression coefficients to determine the trend and strength of associations.

#### **Results of Linear regression for different months and seasons:**

- a) January:
- **R**<sup>2</sup>: 0.078, indicating 7.8% of variability in January rainfall is explained by the year.
- **Regression Coefficient**: -0.185, suggesting a decrease in rainfall by 0.185 units annually.
- **p-value**: 0.002 (**significant**), showing a statistically significant downward trend.
- b) February:
- **R**<sup>2</sup>: 0.055, explaining 5.5% variability.
- **Regression Coefficient**: -0.228, indicating a decline.
- **p-value**: 0.011 (significant).
- c) March:
- **R**<sup>2</sup>: 0.007, indicating negligible variability explained.
- **Regression Coefficient**: -0.179.
- **p-value**: 0.357 (**not significant**), suggesting no clear trend.
- d) April:
- **R**<sup>2</sup>: 0.042, explaining 4.2% variability.
- **Regression Coefficient**: -0.374.
- p-value: 0.026 (significant), indicating a decreasing trend.
- e) Other Months:
- Results vary across months, with some showing insignificant trends (e.g., May and July) and others indicating slight declines in rainfall.

#### Seasonal and Annual Trends:

- a) Annual Rainfall:
- **R**<sup>2</sup>: 0.237, with 23.7% of variability explained by year.
- **Regression Coefficient**: Significant decline observed (details truncated in the provided data).
- b) Winter and Monsoon Seasons:
- Significant trends observed in winter and monsoon rainfall, correlating with broader climatic changes.

The regression results highlight consistent decreasing trends in rainfall for specific months and seasons, particularly during the monsoon period. The statistically significant negative coefficients for January, February, and April indicate that climate variability or other anthropogenic factors might be influencing precipitation patterns. The low R<sup>2</sup> values in many months suggest other factors (e.g., geographic, or atmospheric influences) may play a role in rainfall variability.

This analysis projects the necessity for targeted studies to explore the underlying causes of the observed trends and their implications for water resources, agriculture, and disaster management in the region.

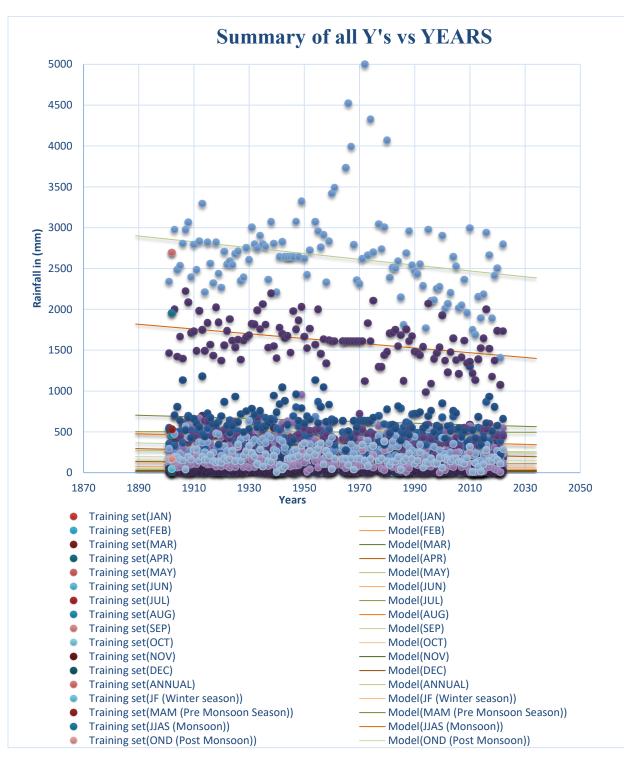



Fig 5.20: Summary of all Y's vs Years done in XLSTAT

| Months      | Regression Equation       | R-square    | P- value | Statistically |
|-------------|---------------------------|-------------|----------|---------------|
|             |                           | value       |          | significant   |
| JANUARY     | Y = 394.461-0.184*X       | 0.077841672 | 0.002    | NO            |
| FEBRUARY    | Y = 503.666-0.227*X       | 0.054802211 | 0.011    | NO            |
| MARCH       | Y = 473.811-0.178*X       | 0.007312631 | 0.357    | NO            |
| APRIL       | Y = 1584.131-0.682*X      | 0.042088433 | 0.026    | NO            |
| MAY         | Y = 504.655-0.122*X       | 0.001468454 | 0.680    | NO            |
| JUNE        | Y = 2274.475-0.950*X      | 0.068495025 | 0.004    | NO            |
| JULY        | Y = 599.550- (5.178E-02)  | 0.00022826  | 0.871    | NO            |
|             | *X                        |             |          |               |
| AUGUST      | Y = 2200.888-0.915*X      | 0.078433807 | 0.002    | NO            |
| SEPTEMBER   | Y = 2057.838-0.895*X      | 0.077108807 | 0.002    | NO            |
| OCTOBER     | Y = 809.218-0.346*X       | 0.031979253 | 0.053    | NO            |
| NOVEMBER    | Y = 36.542- (4.66E-03) *X | 4.57219E-05 | 0.942    | NO            |
| DECEMBER    | Y = 40.510 - (1.27E-02) * | 0.000602972 | 0.792    | NO            |
|             | Х                         |             |          |               |
| ANNUAL      | Y = 9629.6342-3.56*X      | 0.055966449 | 0.010    | NO            |
| WINTER (JF) | Y = 901.807-0.414*X       | 0.121122223 | 0.000    | NO            |
| PRE-        | Y=2535.016-0.969*X        | 0.033991953 | 0.046    | NO            |
| MONSOON     |                           |             |          |               |
| (MAM)       |                           |             |          |               |
| MONSOON     | Y = 7300.515-2.9015*X     | 0.173443991 | < 0.0001 | NO            |
| (JJAS)      |                           |             |          |               |
| POST        | Y = 877.999-0.359*X       | 0.026590759 | 0.078    | NO            |
| MONSOON     |                           |             |          |               |
| (OND)       |                           |             |          |               |

Table 5.2: Regression Statistic Results of monthly, annual, seasonal rainfall

The results of the linear regression trend analysis are presented in Table 5.2 respectively, covering

the district of TINSUKIA. In this trend tests, trend of rainfall for 121 years from January to December has been computed for each month independently along with annual and seasonal rainfall data. The linear trend lines of the monthly rainfall indicated a downward trend in January, February, April, June, August, September, October, annual, seasonal rainfall and an upward trend for other months rainfall data as depicted in fig 5.20. Since the probability value (*P* value) from the regression analysis for the slopes of the monthly trend lines was greater than the significant level  $\alpha = 0.05$ , the null hypothesis (H<sub>0</sub>: there is no trend in the data, fail to reject. That means there is no statistically significant trend in the annual and monthly rainfall data for Tinsukia region. Additionally, the *R*square statistic also indicated a very weak relationship between the variables, rainfall, and year. This type of regression can be termed as **SPURIOUS REGRESSSION.** 

### TABLE 5.3: DESCRIPTIVE STATISTICS OF ANNUAL RAINFALL IN TINSUKIA

| YEARS             | Mean                | Median             | Standard<br>Deviation | Sample<br>Variance   | Kurtosis           | Skewness    | Range              | Minimum          | Maximum            | Annual              |
|-------------------|---------------------|--------------------|-----------------------|----------------------|--------------------|-------------|--------------------|------------------|--------------------|---------------------|
| 1901              | 195.017             | 144.5              | 160.94                | 25904.0              | 0.48               | 0.911578619 | 549.1              | 0                | 549.1              | 2340.2              |
| 1902              | 224.6               | 155.4              | 209.93                | 44069.1              | -1.68              | 0.433938947 | 518.9              | 5                | 523.9              | 2695.2              |
| 1903              | 247.967             | 186.7              | 221.69                | 49144.5              | -0.44              | 0.747975016 | 689.3              | 3.6              | 692.9              | 2975.6              |
| 1904              | 206.883             | 160.05             | 175.77                | 30895.6              | -1.17              | 0.547935791 | 493.7              | 0                | 493.7              | 2482.6              |
| 1905              | 211.325             | 206.55             | 179.04                | 32055.6              | -1.00              | 0.651181601 | 481                | 26.4             | 507.4              | 2535.9              |
| 1906              | 233.833             | 196.45             | 207.12                | 42899.9              | -0.30              | 0.819255342 | 605                | 0                | 605                | 2806                |
| 1907              | 247.667             | 140.25             | 236.69                | 56024.5              | -1.68              | 0.560669082 | 570.7              | 0                | 570.7              | 2972                |
| 1908              | 255.55              | 221.8              | 236.15                | 55765.5              | -0.88              | 0.559385746 | 695.6              | 0                | 695.6              | 3066.6              |
| 1909              | 199.583             | 160.8              | 204.17                | 41683.5              | -0.72              | 0.874341432 | 552.4              | 2                | 554.4              | 2395                |
| 1910              | 232.742             | 236.6              | 179.62                | 32263.7              | -0.90              | 0.42415976  | 529.6              | 15               | 544.6              | 2792.9              |
| 1911              | 207.083             | 204.75             | 154.51                | 23873.0              | -0.42              | 0.550836387 | 487                | 3.8              | 490.8              | 2485                |
| 1912              | 235.917             | 170.9              | 216.36                | 46813.7              | -0.23              | 0.873138343 | 661.4              | 5.4              | 666.8              | 2831                |
| <mark>1913</mark> | <mark>274.45</mark> | <mark>241.7</mark> | <mark>215.97</mark>   | <mark>46644.2</mark> | <mark>-0.60</mark> | 0.53541647  | <mark>688.7</mark> | <mark>6.6</mark> | <mark>695.3</mark> | <mark>3293.4</mark> |
| 1914              | 184.225             | 152.5              | 176.30                | 31081.4              | 3.25               | 1.542700563 | 634.8              | 0                | 634.8              | 2210.7              |
| 1915              | 235.125             | 130.25             | 217.11                | 47138.6              | -1.05              | 0.716537744 | 599.5              | 24.6             | 624.1              | 2821.5              |
| 1916              | 213.342             | 189.4              | 184.34                | 33980.5              | 0.43               | 0.888788532 | 609.6              | 0                | 609.6              | 2560.1              |
| 1917              | 193.258             | 174                | 165.52                | 27396.4              | -0.30              | 0.756023625 | 491.7              | 3.8              | 495.5              | 2319.1              |
| 1918              | 235.058             | 152.85             | 215.61                | 46486.9              | -1.74              | 0.415931801 | 535.9              | 4.8              | 540.7              | 2820.7              |
| 1919              | 203.167             | 130.55             | 215.37                | 46386.1              | -0.28              | 1.070593828 | 619.2              | 4.9              | 624.1              | 2438                |
| 1920              | 188.9               | 190.9              | 162.77                | 26495.4              | -0.23              | 0.645848567 | 497.4              | 2.8              | 500.2              | 2266.8              |
| 1921              | 225.417             | 212.6              | 184.70                | 34114.5              | -1.04              | 0.443920319 | 523.7              | 0                | 523.7              | 2705                |
| 1922              | 212.55              | 119.9              | 194.55                | 37849.5              | -1.12              | 0.674430255 | 541.5              | 17.8             | 559.3              | 2550.6              |
| 1923              | 215.85              | 174.6              | 213.37                | 45525.7              | -0.49              | 0.774480139 | 641.1              | 0                | 641.1              | 2590.2              |
| 1924              | 211.975             | 219.15             | 179.92                | 32370.1              | -1.09              | 0.474284881 | 519.3              | 0                | 519.3              | 2543.7              |
| 1925              | 223.317             | 192.05             | 201.24                | 40497.9              | -0.47              | 0.656897033 | 615                | 0                | 615                | 2679.8              |
| 1926              | 225.75              | 236.6              | 170.87                | 29195.2              | -1.20              | 0.185310001 | 494.6              | 14               | 508.6              | 2709                |
| 1927              | 195.625             | 167.55             | 151.04                | 22813.9              | -1.70              | 0.114983512 | 408.4              | 0                | 408.4              | 2347.5              |
| 1928              | 199.358             | 166.8              | 168.18                | 28283.8              | -1.48              | 0.368547905 | 445.1              | 7.4              | 452.5              | 2392.3              |
| 1929              | 229.433             | 225.85             | 180.43                | 32553.7              | -1.73              | 0.190081153 | 469.3              | 11.2             | 480.5              | 2753.2              |
| 1930              | 217.142             | 219.85             | 189.71                | 35988.9              | 0.77               | 1.046492965 | 617.7              | 17.6             | 635.3              | 2605.7              |
| 1931              | 250.267             | 212.6              | 204.97                | 42011.5              | -0.56              | 0.622043879 | 631.4              | 20.1             | 651.5              | 3003.2              |
| 1932              | 233.092             | 130.95             | 208.82                | 43607.3              | -0.83              | 0.709310996 | 612.6              | 29.1             | 641.7              | 2797.1              |
| 1933              | 229.008             | 119.4              | 246.17                | 60602.0              | -0.63              | 0.982418215 | 669.1              | 3.8              | 672.9              | 2748.1              |
| 1934              | 241.858             | 214                | 206.20                | 42517.1              | 0.66               | 0.983660895 | 684.9              | 18.6             | 703.5              | 2902.3              |
| 1935              | 233.308             | 162.45             | 224.22                | 50276.6              | -1.46              | 0.570031257 | 568.7              | 0                | 568.7              | 2799.7              |
| 1936              | 230.7               | 197.8              | 199.21                | 39686.0              | 0.47               | 0.871274001 | 641.2              | 28.7             | 669.9              | 2768.4              |
| 1937              | 197.083             | 129.8              | 180.61                | 32620.9              | -1.80              | 0.325340031 | 451.8              | 0                | 451.8              | 2365                |

### TABLE 5.4: DESCRITIVE STATISTICS OF ANNUAL RAINFALL IN TINSUKIA

| YEARS             | Mean                 | Median            | Standard<br>Deviation | Sample<br>Variance   | Kurtosis           | Skewness                 | Range            | Minimum          | Maximum            | Annual               |
|-------------------|----------------------|-------------------|-----------------------|----------------------|--------------------|--------------------------|------------------|------------------|--------------------|----------------------|
| 1938              | 255.867              | 205.9             | 237.34                | 56328.3              | -0.78              | 0.77551173               | 662.4            | 0                | 662.4              | 3070.4               |
| 1939              | 233.642              | 198.85            | 224.42                | 50365.8              | -0.85              | 0.590543813              | 645.5            | 0                | 645.5              | 2803.7               |
| 1940              | 184.075              | 155.85            | 184.35                | 33986.6              | -0.52              | 0.684747817              | 546.3            | 0                | 546.3              | 2208.9               |
| 1941              | 248.509              | 314.7             | 200.20                | 40081.2              | -1.86              | -<br>0.040287568         | 524.3            | 0                | 524.3              |                      |
| 1942              | 235.392              | 228.35            | 224.75                | 50512.8              | -1.15              | 0.454474816              | 604.1            | 0                | 604.1              | 2824.7               |
| 1943              | 244.127              | 269.1             | 182.07                | 33151.1              | -1.01              | 0.021512035              | 553.7            | 0                | 553.7              |                      |
| 1944              | 226.291              | 115.1             | 211.53                | 44745.2              | -0.38              | 0.982394931              | 619              | 10.7             | 629.7              |                      |
| 1945              | 197.75               | 135.6             | 171.08                | 29267.0              | -1.67              | 0.559339249              | 398.7            | 34.6             | 433.3              |                      |
| 1946              | 256.14               | 193.95            | 244.63                | 59845.5              | -0.43              | 0.811277864              | 694.4            | 0                | 694.4              |                      |
| 1947              | 256.217              | 175.9             | 243.85                | 59461.4              | 0.55               | 0.94937017               | 800.3            | 0                | 800.3              | 3074.6               |
| 1948              | 224.02               | 110.1             | 230.34                | 53058.2              | -1.20              | 0.834362027              | 578.6            | 9.4              | 588                |                      |
| 1949              | 276.742              | 245.9             | 254.63                | 64834.4              | 4.29               | 1.774856684              | 934.7            | 18.8             | 953.5              | 3320.9               |
| 1950              | 229.45               | 151.95            | 184.85                | 34167.7              | -0.94              | 0.790801107              | 500.4            | 46.7             | 547.1              | 2621.64              |
| 1951              | 201.975              | 147.6             | 184.46                | 34026.2              | -1.16              | 0.604997626              | 513.6            | 8.1              | 521.7              | 2423.7               |
| 1952              | 226.708              | 208.9             | 184.13                | 33904.3              | -1.40              | 0.27421268               | 502.6            | 10.2             | 512.8              | 2720.5               |
| 1954              | 255.817              | 160.15            | 229.01                | 52445.3              | -1.05              | 0.644336998              | 678              | 3.3              | 681.3              | 3069.8               |
| 1955              | 246.525              | 219.15            | 250.67                | 62837.0              | 2.60               | 1.508727862              | 862.7            | 5.6              | 868.3              | 2958.4               |
| 1956              | 229.833              | 258.45            | 169.83                | 28840.8              | -0.84              | 0.312858329              | 506.7            | 6.6              | 513.3              | 2758                 |
| 1957              | 242.533              | 120.35            | 230.27                | 53024.5              | -1.75              | 0.478790772              | 580              | 25.4             | 605.4              | 2910.4               |
| 1958              | 194.275              | 155.75            | 188.04                | 35358.8              | -1.10              | 0.684419088              | 501.3            | 0.2              | 501.5              | 2331.3               |
| 1959              | 236.1                | 227.95            | 188.35                | 35476.3              | -1.37              | 0.204595342              | 529.2            | 0                | 529.2              | 2833.1               |
| 1960              | 262.141              | 241.795           | 243.26                | 59174.5              | -1.22              | 0.454476281              | 641.2            | 12               | 653.2              | 3417.49              |
| 1961              | 133.857              | 44                | 134.54                | 18100.2              | -1.21              | 0.928267447              | 315.5            | 22               | 337.5              | 3489.58              |
| 1964              | 23.95                | 23.95             | 19.02                 | 361.8                | #DIV/0!            | #DIV/0!                  | 26.9             | 10.5             | 37.4               | 1605.72              |
| 1965              | 105.333              | 58.2              | 108.29                | 11727.7              | 1.83               | 1.514362452              | 284.5            | 17               | 301.5              | 3731.79              |
| <mark>1966</mark> | <mark>110.289</mark> | <mark>84.6</mark> | <mark>108.84</mark>   | <mark>11846.1</mark> | <mark>-0.69</mark> | <mark>0.825393733</mark> | <mark>290</mark> | <mark>1.1</mark> | <mark>291.1</mark> | <mark>4520.98</mark> |
| 1967              | 224.55               | 192.5             | 161.31                | 26020.0              | -1.32              | 0.218509287              | 453.4            | 11.7             | 465.1              | 3992.72              |
| 1968              | 139.83               | 100.2             | 149.50                | 22351.5              | 0.60               | 1.172893661              | 448.6            | 1.4              | 450                | 2790.53              |
| 1969              | 186.833              | 161               | 171.40                | 29379.4              | 2.01               | 1.27412472               | 486.1            | 8.1              | 494.2              | 2359.1               |
| 1970              | 301.567              | 161.9             | 368.42                | 135734.1             | #DIV/0!            | 1.460764078              | 696              | 23.4             | 719.4              | 2311.29              |
| 1971              | 208.34               | 135.8             | 196.03                | 38428.3              | -1.01              | 0.764962656              | 495.3            | 30.2             | 525.5              | 2619.12              |
| 1972              | 165.989              | 184.8             | 121.08                | 14660.2              | -1.95              | -<br>0.237017321         | 298.9            | 2.9              | 301.8              | 4999.52              |
| 1973              | 249.075              | 204.6             | 241.10                | 58127.6              | -1.39              | 0.465803546              | 638              | 0                | 638                | 2660.46              |
| 1974              | 53.6                 | 53.7              | 10.06                 | 101.1                | -2.49              | -<br>0.040768771         | 22.6             | 42.2             | 64.8               | 4325.92              |
| 1975              | 225.192              | 219.85            | 193.67                | 37507.5              | 0.21               | 0.868327563              | 617.7            | 17.6             | 635.3              | 2698.35              |
| 1977              | 253.608              | 159.25            | 236.39                | 55882.0              | -0.98              | 0.660496894              | 652.9            | 42.7             | 695.6              | 3042.99              |

# TABLE 5.5: DESCRIPTIVE STATISTICS OF ANNUAL RAINFALL IN TINSUKIA

| YEARS             | Mean    | Median  | Standard            | Sample               | Kurtosis           | Skewness                 | Range            | Minimum          | Maximum            | Annual  |
|-------------------|---------|---------|---------------------|----------------------|--------------------|--------------------------|------------------|------------------|--------------------|---------|
|                   |         |         | Deviation           | Variance             |                    |                          |                  |                  |                    |         |
| 1978              | 157.833 | 122.55  | 146.08              | 21339.3              | -0.25              | 0.990310875              | 433.4            | 0                | 433.4              | 2736.67 |
| 1979              | 182.967 | 137.35  | 170.54              | 29085.0              | 1.84               | 1.288133719              | 578.3            | 16               | 594.3              | 3005    |
| <mark>1980</mark> | 209.267 | 202.65  | <mark>162.12</mark> | <mark>26284.2</mark> | <mark>-1.26</mark> | <mark>0.161726894</mark> | <mark>479</mark> | <mark>0.8</mark> | <mark>479.8</mark> | 4068.77 |
| 1981              | 199.092 | 153.45  | 186.34              | 34722.2              | -0.25              | 0.925360961              | 560.6            | 17.7             | 578.3              | 2389    |
| 1982              | 209.308 | 130     | 190.86              | 36427.3              | -0.77              | 0.669537356              | 585.8            | 1                | 586.8              | 2511.8  |
| 1983              | 208.492 | 155.15  | 189.11              | 35762.7              | -0.74              | 0.697759979              | 568.7            | 2.8              | 571.5              | 2502.1  |
| 1984              | 215.875 | 235.65  | 181.31              | 32874.6              | -1.76              | 0.102690269              | 498.7            | 1.8              | 500.5              | 2590.3  |
| 1985              | 178.95  | 92.4    | 231.13              | 53419.7              | 3.91               | 1.898147593              | 783.4            | 4.3              | 787.7              | 2147.3  |
| 1986              | 150.817 | 111.15  | 152.61              | 23289.3              | 4.34               | 1.900078191              | 536.5            | 22               | 558.5              | 1809.7  |
| 1987              | 197.408 | 146.7   | 197.50              | 39007.4              | -0.03              | 0.92443505               | 613.5            | 1                | 614.5              | 2688    |
| 1988              | 215.992 | 212     | 197.40              | 38965.5              | 0.01               | 0.851905768              | 597.7            | 0                | 597.7              | 2958    |
| 1989              | 211.625 | 135.95  | 206.91              | 42811.7              | 1.94               | 1.326208847              | 701.8            | 11.3             | 713.1              | 2539.5  |
| 1990              | 205.908 | 223.2   | 151.48              | 22945.8              | -1.45              | 0.03050735               | 440.8            | 0                | 440.8              | 2470.8  |
| 1991              | 202.875 | 135.95  | 175.94              | 30953.9              | -1.42              | 0.527431904              | 474.9            | 10.9             | 485.8              | 2434.6  |
| 1992              | 212.975 | 225.65  | 145.75              | 21242.1              | -1.28              | -<br>0.217962447         | 428.2            | 9.6              | 437.8              | 2555.7  |
| 1993              | 190.775 | 91.1    | 181.95              | 33104.3              | -1.38              | 0.629233859              | 500              | 0.6              | 500.6              | 2289.2  |
| 1994              | 147.483 | 155.45  | 109.84              | 12064.5              | -1.06              | 0.147895024              | 335.6            | 1.9              | 337.5              | 1769.9  |
| 1995              | 248.05  | 138.9   | 230.44              | 53103.9              | -1.88              | 0.383249989              | 572.3            | 12.2             | 584.5              | 2976.6  |
| 1996              | 175.375 | 145.15  | 157.03              | 24658.1              | -0.84              | 0.708913668              | 449.3            | 0.2              | 449.5              | 2104.4  |
| 1997              | 176.183 | 130.1   | 151.36              | 22910.3              | -0.61              | 0.802523249              | 439.5            | 22.3             | 461.8              | 2113.9  |
| 1998              | 187.792 | 118.35  | 182.59              | 33339.4              | 0.24               | 1.070078353              | 575.4            | 0.4              | 575.8              | 2253.5  |
| 1999              | 189.617 | 188.6   | 173.25              | 30014.9              | -1.15              | 0.382291156              | 482.9            | 0                | 482.9              | 2275.2  |
| 2000              | 241.825 | 167.5   | 234.69              | 55080.8              | -1.14              | 0.555137058              | 677.4            | 0                | 677.4              | 2901.9  |
| 2001              | 167.292 | 159.15  | 161.73              | 26157.4              | 0.38               | 0.949579239              | 505.4            | 5.7              | 511.1              | 2007.5  |
| 2002              | 172.183 | 143.2   | 133.78              | 17897.1              | -1.26              | 0.401393226              | 387.5            | 10.1             | 397.6              | 2066    |
| 2003              | 183.35  | 162.55  | 172.38              | 29713.3              | 1.08               | 1.112512758              | 570.6            | 2.6              | 573.2              | 2200.2  |
| 2004              | 220.075 | 191.35  | 199.68              | 39870.4              | 1.45               | 1.063944395              | 686.2            | 1.7              | 687.9              | 2640.9  |
| 2005              | 210.392 | 174.75  | 160.29              | 25692.8              | -0.19              | 0.629986997              | 526.8            | 0                | 526.8              | 2524.7  |
| 2006              | 167.9   | 160.95  | 122.72              | 15059.3              | -1.66              | 0.045876377              | 338.5            | 0                | 338.5              | 2014.8  |
| 2007              | 170.608 | 102.65  | 169.50              | 28729.2              | -0.32              | 0.933191552              | 502              | 3.6              | 505.6              | 2047.3  |
| 2008              | 196.908 | 148.25  | 188.45              | 35515.0              | 0.08               | 1.097380931              | 546.7            | 5.8              | 552.5              | 2362.9  |
| 2009              | 163.183 | 120.2   | 155.79              | 24270.6              | 1.58               | 1.262001806              | 515.5            | 18.1             | 533.6              | 1958.1  |
| 2010              | 249.5   | 216.15  | 223.40              | 49909.2              | -1.41              | 0.443129803              | 588.4            | 0.9              | 589.3              | 2994    |
| 2011              | 145.861 | 97.705  | 158.27              | 25049.9              | -1.07              | 0.634488867              | 434.92           | 1.01             | 435.93             | 1750.33 |
| 2012              | 140.125 | 89.72   | 149.39              | 22316.6              | -0.71              | 0.821142855              | 405.68           | 0.86             | 406.54             | 1688    |
| 2013              | 179.373 | 103.245 | 192.09              | 36896.7              | -0.74              | 0.811949872              | 549.36           | 0.24             | 549.6              | 2152    |

| YEARS | Mean    | Median | Standard<br>Deviation | Sample<br>Variance | Kurtosis | Skewness    | Range  | Minimum | Maximum | Annual  |
|-------|---------|--------|-----------------------|--------------------|----------|-------------|--------|---------|---------|---------|
| 2014  | 157.626 | 82.325 | 195.49                | 38216.5            | -0.35    | 1.049866779 | 539.97 | 0       | 539.97  | 1893    |
| 2015  | 182.16  | 125.68 | 197.40                | 38968.2            | -0.87    | 0.78796886  | 524.35 | 5.44    | 529.79  | 2185    |
| 2016  | 245.692 | 214.15 | 250.65                | 62823.4            | 2.63     | 1.521175553 | 862.7  | 5.6     | 868.3   | 2940    |
| 2017  | 222.067 | 192.05 | 198.62                | 39448.4            | -0.60    | 0.613452906 | 600    | 0       | 600     | 2664    |
| 2018  | 157.483 | 126.15 | 143.77                | 20669.8            | 2.10     | 1.337998469 | 486.5  | 22      | 508.5   | 1889    |
| 2019  | 201.05  | 160.05 | 170.54                | 29083.7            | -1.32    | 0.459660036 | 453.2  | 0       | 453.2   | 2411    |
| 2020  | 208.55  | 119.9  | 198.42                | 39371.1            | -1.17    | 0.645743214 | 545.2  | 14.1    | 559.3   | 2502    |
| 2021  | 117.292 | 54.105 | 131.78                | 17365.2            | -0.09    | 1.013708127 | 387.13 | 0.41    | 387.54  | 1407    |
| 2022  | 232.992 | 236.6  | 179.68                | 32285.9            | -0.91    | 0.418996138 | 529.6  | 15      | 544.6   | 2795.56 |

TABLE 5.6: DESCRIPTIVE STATISTICS OF ANNUAL RAINFALL IN TINSUKIA

From Table 5.3, the year with the highest annual rainfall was 1913, which recorded an amount of 3293.4 mm with a corresponding highest mean value of 274.45 mm. The record indicated the standard deviation correlating the highest annual rainfall was 215.97 mm and the data was skewed right, meaning the rainfall distribution is flat. However, the maximum annual rainfall standard deviation occurred in 1907, with a value of 236.69 mm, meaning the rainfall was highly dispersed or there was inconsistency in the rainfall pattern in 1907, with the corresponding highest range value. This observation again was buttressed by the highest variance and coefficient of variation figures recorded, respectively (M. Nyatuame et.al.2014) [vi]. None the less the maximum monthly rainfall occurred in 1947 in July. In addition, the lowest annual rainfall occurred in 2020 with an amount of 1407mm (table 10).

In Table 5.4 it can be inferred that the maximum annual rainfall of 4520.98 mm and the corresponding mean of 110.289 mm occurred in 1966 for the period under consideration. The minimum annual rainfall occurred in 1964 (1605 mm) and the maximum annual standard deviation of 254.63 mm happened in 1949. The high standard deviation value can be easily correlated with the high rainfall range. The rainfall range signifies the difference between the maximum and minimum annual rainfall. The standard deviation and the range indicate the variability of annual rainfall and hence denote how dependable the rainfall is in terms of its persistence as constant and stable replenishing source. To test whether the annual rainfall data follow a normal distribution, the skewness and kurtosis were computed. Skewness is a measure of symmetry or, more precisely, the lack of symmetry. The data set is said to be symmetric if it looks the same to the left and right from the centre point. The skewness for a normal distribution is zero, and any symmetric data should

have skewness near zero. Negative values for the skewness indicate that data are skewed to the left and positive values for the skewness indicate that data are skewed to the right.

Kurtosis is a measure of data peakedness or flatness relative to a normal distribution. That is, data sets with a high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. The standard normal distribution has a kurtosis of zero. Positive kurtosis indicates a peaked distribution, and negative kurtosis indicates a flat distribution. Hence the annual rainfall distribution under consideration did not follow normal distribution. (M. Nyatuame et.al.2014)[vi] As can be observed from Table 5.5 and 5.6 the maximum annual rainfall for the period under review occurred in 1980 (4068.77 mm) with corresponding maximum annual mean and standard deviation of 209.26 mm and 162.12 mm, respectively. The standard deviation is a measure of dispersion. A small value indicates that the data is tightly grouped about the mean. A high value indicates that the data is spread widely on either side of the mean. A high standard deviation also suggests that year-to-year fluctuations are high while a low standard deviation is considered more volatile than rainfall with a low figure. The minimum annual rainfall occurred in 2022 with an amount of 1407 mm for the years under consideration as shown in table no 5.6.

The standard deviation is one way of summarizing the spread of a probability distribution; it relates directly to the degree of uncertainty associated with predicting the value of a random variable. High values reflect more uncertainty than low values.

Table 5.5 clearly revealed that September month had the highest standard deviation. The highest amount of average monthly rainfall was recorded in July (497.97 mm) and contributed to 18.8% of annual rainfall, followed by June with 15.58%, and the lowest was in December with 5.8% of annual total followed by November and January with 1.2%. From the analysis, it was observed that rainfall is usually at its peak between June to September in the major season and between March and April in the minor season.

### **6. CONCLUSION**

The present study comprehensively examined long-term rainfall trends in Tinsukia district using advanced statistical methodologies, including the Mann-Kendall trend test and linear regression analysis. The findings indicate statistically significant declines in rainfall across monthly, seasonal, and annual time scales, reflecting the impact of evolving climatic patterns in the region. Notably, a marked reduction in monsoon rainfall, critical for the district's agrarian economy, was observed alongside significant decreases in rainfall during January, February, and April. These patterns are supported by robust statistical evidence, with significant p-values and declining slopes substantiating the identified trends.

Seasonal analyses further revealed pronounced declines during the winter and monsoon seasons, emphasizing the potential challenges for agricultural productivity and water resource sustainability. The annual trends corroborate these findings, highlighting a consistent downward trajectory in precipitation over the analyzed period.

From the results of the linear regression analysis, there is statistically insignificant increasing trend in annual mean rainfall data among the zones under study. The mean monthly rainfall data from the linear regression analysis revealed an upward trend in some months and a downward trend in others. However, the results indicated a statistically insignificant trend in the monthly rainfall and very weak correlation between rainfall and period. It is evident from the results that there is no significant detectable effect of climate change on both the annual and monthly trend in the District of Tinsukia.

By understanding these significant shifts in rainfall patterns, this research contributes to the growing body of knowledge on climate variability and its regional impacts. It provides a critical foundation for future investigations and informed policy formulation aimed at mitigating the risks associated with changing precipitation patterns in Tinsukia.

Further studies are required to be carried out to establish other rainfall characteristics such as extreme rainfall, rain days, and other climate change parameters for this region to verify whether the significant trend has occurred and also to establish a correlation between temperature and extreme rainfall

# **7.REFERENCES**

- Dash, S. K., & Hunt J. C. R. (2007). Variability of climate change in India, Current Science, 93(6), 782–788.
- Dash, S. K., Kulkarni, M. A., Mohanty, U. C., & Prasad, K. (2009). Changes in the characteristics of rain events in India. Journal of Geophysical Research: Atmospheres, 114(D10).
- Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K., & Das, S. (2013). Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theoretical and applied climatology, 114(1-2), 61-71.
- iv. F Aditya, E Gusmayanti and J Sudrajat 2021 "Rainfall trend analysis using Mann-Kendall and Sen's slope estimator test in West Kalimantan"
- v. J. R. Gat, Planning and Management of a Sustainable and Equi table Water Supply under Stress of Water Scarcity and Quality Deterioration and the Constraints of Societal and Political Divi sions: The Case for a Regional Holistic Approach. Department of Environmental Science and Energy Research, The Weizmann Institute of Science, Rehovot, Israel, 2004.
- vi. M.Nyatuame, V. Owusu-Gyimah, and F. Ampiaw 2019 Rainfall Trend Analysis by Mann Kendall Test: A Case Study of North-Eastern part of Cuttack District, Orissa
- vii. R. E. Dewar and J. R. Wallis, "Geographical patterning of inter annual rainfall variability in the tropics and neotropics' L-moments approach," The American Meteorology Society, vol. 12, no. 12, pp. 3457–3466, 1999.
- viii. R. F. Adler, G. Huffman. T. Bolvin, S. Curtis, and E. J. Nelkin, "Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information," Journal of Applied Meteorology, vol.39, no.12, pp.2007 2023, 2000
- ix. Tuğba ÇELEBİOĞLU\*<sup>1</sup> Mete TAYANÇ <sup>2</sup>A Study on Precipitation Trends in Türkiye via Linear Regression Analysis and Non-Parametric Mann-Kendall Test.
- v. Ujjal Protim Dutta et.al.2019 "Time Series Analysis of Temperature and Rainfall over Brahmaputra Basin, Assam"