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ABSTRACT
Stability of slopes is a very serious issue in the field of geotechnical engineering. The analysis and design 
of failing slopes requires a thorough knowledge of the failure mechanism in order to choose the right 
slope stability analysis method. The two-dimensional (2D) slope stability methods are very common to 
the engineers because of the simplicity in their assumptions. As a result the analysis results vary greatly 
between the different analysis methods. The importance of three-dimensional (3D) slope stability analysis 
greatly increased where the geometry of the problem becomes complex which makes it very difficult to 
solve using 2D analysis. A lot many 2D slope stability methods were extended to 3D methods since 1970s 
based on limit equilibrium (LE) and finite element approaches. In this paper, slopes were analysed using 3D 
limit equilibrium method (LEM) using SLIDE3 software having different geometry and soil parameters and 
finally stability charts were prepared to calculate the FOS of the slopes. It is found that the slope stability 
factor can be read from the stability charts without the need for iterations.

Introduction

Three-dimensional (3D) slope stability problems are very rarely 
used in practice because of higher complicacy compared to 
two-dimensional (2D) methods. 2D LE methods are based on 
plane strain conditions that assumes the slide mass or cross-sec-
tion do not change in the direction perpendicular to the slide 
movement, and therefore, the 3D effects are neglected. This 
assumption is acceptable if the ratio of width (B) to the height 
(H) of the slope is greater than four. However, in most of the 
cases, the width to height ratio is not sufficiently long and varies 
perpendicular to the slide movement. Therefore, the application 
of 2D analyses to 3D problem is not accurate but believed to be 
conformist from the engineering perspective because the end 
effects are neglected. Hence, a 2D (plane strain) analysis can be 
regarded as conservative where 3D failure is expected to occur 
and it is often preferred in the design (Cornforth 2005). The 
importance of 3D analysis grows significantly where the nature 
of the slope is highly complex and it is difficult to select a 2D plane 
strain analysis. Fredlund and Krahn in 1978 illustrated the benefits 
associated with performing 3D slope stability. In the recent past, 
many 3D slope stability methods were developed ranging from 
method of columns based on variational calculus to the use of 
dynamic programming. The increase in the importance of 3D 
slope stability is due to the fact that most of the slope failures are 
three-dimensional in nature having a dish-shaped failure surface. 
Like the 2D methods, the 3D methods also require some assump-
tions to achieve a statically determinate definition of the problem. 
Some 3D methods do it by decreasing the number of unknowns, 
while some others achieve it by increasing the number of equa-
tions or both, such that the two numbers tally with each other.

An extensive literature review regarding stability analysis of 
slopes was presented by Duncan in 1996. Some of the other newer 
literature surveys focusing particularly on 3D slope stability anal-
ysis can be found in more recent articles by Griffiths and Marquez 
(2007) and Chakraborty and Goswami (2016). The first 3D slope 
stability method was developed by Anagnosti (1969) by extending 
the earlier Morgenstern and Price (M-P) method (1965). A simi-
lar technique was followed by other researchers (Hungr (1987), 
Ugai (1988), Hungr, Salgado, and Byrne (1989), Cheng and Yip 
(2007) and Sun, Zheng, and Jiang (2011)) to develop 3D methods 
from the existing 2D Limit equilibrium methods (LEMs). The 
assumptions of each of the 3D methods developed followed the 
same assumptions of 2D methods. However, the slip surface was 
assumed different for different slopes. Some researchers assumed 
it to be a spoon-shaped or circular cross-section while others 
assumed it to be a horn shaped or cylindrical cross-section.

In the limit analysis of 2D slope collapse, it is the rotational 
mechanism that leads to the most critical cases (Chen 1975). 
Here, slopes were analysed using 3D limit equilibrium method 
having different geometry and soil parameters with the inclusion 
of pore water pressure and finally stability charts were prepared. 
These charts allow calculation of the FOS of the slopes against a 
3D failure without the need for an iterative procedure.

3D numerical method

A 3D numerical method is developed based on the extension of 
2D Bishop’s simplified method. The slip surface for this analysis 
is assumed to be spherical in both y-direction and z-direction. 
The whole slip surface has been discretized into a number of 
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where W is the total weight of the column, u is the pore water 
pressure acting in the centre of the column base, C is the cohe-
sion, ϕ is the angle of internal friction, A is the base area and F 
is the factor of safety.

Hovland (1977) derived the column base area, A which is 
given by

 

The angle ψy between the direction of the normal force σ and the 
vertical axis is obtained from the geometry as follows:
 

Now the whole area of the sliding mass is divided into a num-
ber of columns arranged in rows of uniform width as shown in 
Figure 2.

In general, for an assemblage of j columns, a moment equi-
librium equation can be written as follows:

 

 

Putting the value of σ from Equation (10)
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columns. To make the problem statically determinate, the vertical 
shear forces acting on both the longitudinal and lateral vertical 
faces are neglected as shown in Figure 1.

From Force Equilibrium Equation,
∑V = 0
 

We know that
 

Putting the value of τ in (2)
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Figure 1. Forces acting on a single column.
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The factor of safety can be obtained from Equation (21) when 
solved by an iterative procedure.

3D stability charts

Charts representing the slope stability analyses results require 
an iterative procedure to arrive at the safety factor. Taylor’s 
(1937) stability charts were given in terms of stability factor c/
γHF, where c is the cohesion intercept needed to maintain limit 
equilibrium and H is the height of the slope. The factor c/γHF is 
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plotted against slope inclinations β for a variety of friction angle 
φ. If slope angle β and friction angle φ for a slope is given, one 
can easily find the value of F by calculating the value of c/γH 
(given slope) from Taylor’s Stability Chart. But the safety factor 
needs to be applied to tan φ also.
 

Hence, the process becomes iterative. Taylor’s stability chart 
fails to define the location of the slip circle. This problem was 
solved by Baker (2003) where he proposed design charts that 
can compute the coordinates, centre and radius of the slip cir-
cle. Steward et al. (2011) revisited Taylor’s stability charts and 
two modified design charts were presented, one for undrained 
(φu = 0) clays and other for drained (c΄-φ΄) soils. The chart 
for undrained clays consists of compound circles having two 
separate arcs connected by a straight line at the interface with 
the stiff stratum which were not present in Taylor’s chart. The 
chart for drained soils enables to compute the slope safety 
factor without any iterative procedure.  Michalowski (2002) 
produced a set of stability charts for slopes based on the 
kinematic approach of limit analysis. These charts have the 
advantage of using them for slopes subjected to pore water 
pressure and seismic forces. Michalowski (2010) extended his 
2D work to 3D and presented stability charts which do not 
require an iterative procedure to arrive at the factor of safety. A 
3D rotational failure mechanism constructed by Michalowski 
and Drescher (2009) with the failure surface being a section 
of a curvilinear cone (horn shaped) was adopted to develop 
the stability charts.

The work discussed herein required thousands of analyses of 
slopes on a micro-computer having different geometry and soil 
parameters. All the analyses were carried out using the numer-
ical method discussed above. The process of iterations will be 
eliminated if the results are plotted as a function of c cotφ. This is 

(22)F =
c

c
d

=
tan �

tan �
d

Figure 2. Discretization of a failure mass.
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necessary to plot the reciprocal of tan φ, Fm/tan(φ) versus the 
dimensionless parameter C*m/γBtan(φ) and produce stability 
charts for different values of B/H at different slope inclination. 
Here, c is the cohesion intercept, H is the height of the slope, B is 
the width of the slope, γ is the in situ unit weight of the soil, φ is 
the angle of internal friction and ‘m’ is a dimensionless parameter 
which is given by ratio of water table depth (h) and the height of 
the slope (H).The groundwater head is an alternative quantity 
for the active pore pressure. The groundwater head is defined as:

 
(23)p = �w(z − h)

obvious that c cot φ is independent of the safety factor as from the 
definition and illustrated in Figure 3. No matter what the safety 
factor, product c cot φ will always remain the same. It is hence 

Figure 3. Independence of parameter c cot of the safety factor.

Figure 4. Stability charts for undrained soil.

Figure 5. Stability chart for drained soil for slope angle 30°.

Figure 6. Stability chart for drained soil for slope angle 35°.

Figure 7. Stability chart for drained soil for slope angle 40°.
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non-dimensional parameter (Cu*m)/γBF is presented as a func-
tion of slope inclination angle β for different ratios of B/H. The 
use of this chart is very straight forward. If the slope geometry 
and hydrological condition is known, one can easily calculate 
the value of Cu*m/γBF from which the FOS can be found out.

Stability charts for drained soils (c – φ soil)

The remaining computational results are represented for soil 
strength characterized by c and φ. Here, the results are pre-
sented as a function of Fm/tan(φ) versus C*m/γBtan(φ) for 

where h is the depth of water table, p is the active pore pressure 
(i.e. steady-state pore pressures + excess pore pressures) and γw 
is the unit weight of water.

Computational results

Stability charts for undrained soils (φu = 0 soil)

The computational results are first presented for the 
undrained failure of the soil (φu = 0) as shown in Figure 4. The 

Figure 8. Stability chart for drained soil for slope angle 45°.

Figure 9. Stability chart for drained soil for slope angle 50°.

Figure 10. Stability chart for drained soil for slope angle 55°.

Figure 11. Stability chart for drained soil for slope angle 60°.

Figure 12. Stability chart for drained soil for slope angle 65°.

Figure 13. Stability chart for drained soil for slope angle 70°.
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internal friction, φu = 0 and other for drained soils (c – φ) soils. 
The use of these charts has been found to be very straight for-
ward. If the slope geometry and hydrological condition is known, 
the 3D FOS of the slope can be easily computed from the design 
charts. These charts has been used to calculate the 3D FOS of 40 
vulnerable sites from Guwahati and its adjoining areas, Assam, 
India and the results were compared with the values obtained 
from LEM. Based on the logical hypothesis (Smith 1986), if a 
model gives R > 0.8, and RMSE value is at minimum, there is a 
strong correlation between the predicted values and measured 
values. From Table 1, it has been found that the FOS obtained 
from design charts are having a higher degree of accuracy bear-
ing a correlation of 93.61% and RMSE and MAE of 11.06% and 
4.78%, respectively. Hence, the design charts enables to calculate 
the 3D FOS of the slopes without any iterative procedure. Finally, 
it can be concluded that the results of this study would be very 
beneficial in the field of decision-making for the engineers, plan-
ners, developers, etc., to estimate the stability for a whole study 
area using the design charts and create appropriate landslide 
hazard assessment maps.
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